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AnnularWalsh 
lters are derived from the rotationally symmetric annularWalsh functionswhich form a complete set of orthogonal
functions that take on values either +1 or −1 over the domain speci
ed by the inner and outer radii of the annulus. 	e value of any
annular Walsh function is taken as zero from the centre of the circular aperture to the inner radius of the annulus.	e three values
0, +1, and −1 in an annular Walsh function can be realized in a corresponding annular Walsh 
lter by using transmission values of
zero amplitude (i.e., an obscuration), unity amplitude and zero phase, and unity amplitude and � phase, respectively. Not only the
order of the Walsh 
lter but also the size of the inner radius of the annulus provides an additional degree of freedom in tailoring
of point spread function by using these 
lters for pupil plane 
ltering in imaging systems. In this report, we present the far-
eld
amplitude characteristics of some of these 
lters to underscore their potential for e�ective use in several demanding applications
like high-resolution microscopy, optical data storage, microlithography, optical encryption, and optical micromanipulation.

1. Introduction

Annular apertures and di�erent types of ring-shaped aper-
tures continue to be investigated for catering to the growing
exigencies in diverse applications, for example, high reso-
lution microscopy, optical data storage, microlithography,
optical encryption, and opticalmicromanipulation [1–5]. Not
only for obvious energy considerations but also for their
higher inherent potential in delivering complex far-
eld am-
plitude distributions, annular phase 
lters are being investi-
gated in di�erent contexts [6–9].

A systematic study on the use of phase 
lters on annular
pupils can be conveniently carried out with the help of annu-
lar Walsh 
lters derived from the annular Walsh functions.
Walsh functions form a closed set of normal orthogonal
functions over a given 
nite interval and take on values +1 or−1, except at a 
nite number of points of discontinuity, where
they take the value zero [10, 11].	e order of aWalsh function
is directly related to the number of its zero crossings or phase
transitions within the speci
ed domain, and they constitute a
closed set of normal orthogonal functions over the speci
ed
interval. 	ey have the interesting property that an approx-
imation of a continuous function over a 
nite interval by a


nite set of Walsh functions leads to a piecewise constant
approximation to the function.Walsh 
lters of various orders
may be obtained from corresponding Walsh functions, by
realizing transmission values of +1 and −1 by 0 and �
phase, respectively. Incidentally it may be noted that binary
phase 
lters are being explored for many interesting light
distributions [12].

Walsh functions have been used in the 
eld of signal
coding and transmission and in allied problems of informa-
tion processing [13]. Two-dimensionalWalsh functions in the
usual rectangular coordinates have been used in digital image
processing applications [14]. For treatment of problems of
optical imaging, Walsh functions in polar co-ordinates have
been utilised [15]. For systems with rotational symmetry
about the axis, radial Walsh functions [16] have been devel-
oped as a special case ofWalsh functions in polar co-ordinates
and they were proved useful in the treatment of apodization
problems [17, 18]. It has also been observed that not only the
transverse amplitude distribution on the far-
eld plane but
also the axial distribution of amplitude/intensity in the far-

eld is signi
cantly modi
ed in presence of radial Walsh

lters on unobscured apertures [19].
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Annular Walsh functions are a generalization of radial
Walsh functions. For a speci
c central obscuration ratio, they
are a complete set of orthogonal functions over the annulus.
Annular Walsh 
lters may be considered to have ternary
transmission values.	e three values of transmission are zero
amplitude over the central obscuration, unity amplitude and
zero phase for value +1, and unity amplitude and � phase for
value −1 in corresponding annular Walsh functions.

In this paper, we present some results of our investigations
on the far-
eld amplitude characteristics of annular Walsh

lters of orders 0, 1, 2, and 3with di�erent central obscuration
ratios. A�er a brief description of annularWalsh functions in
the next section, Section 3 presents the mathematical expres-
sion for the amplitude distribution in the far-
eld of an exit
pupil with annular Walsh 
lters on it. Some interesting
numerical results and our observations on the same are put
forward in the last two sections.

2. Annular Walsh Functions

To de
ne annular Walsh function Ψ��(�) of index � ≥ 0 and
argument � over an annular region with � and 1 as inner and
outer radii, respectively, it is necessary to express the integer� in the form

� = �̃−1∑
�=0

	�2�, (1)

where 	� are the bits, 0 or 1 of the binary numeral for �, and(2�̃) is the power of 2 that just exceeds �. For all � in (�, 1),Ψ��(�) is de
ned as

Ψ�� (�) = �̃−1∏
�=0

sgn{cos[	�2��(�2 − �2)
(1 − �2) ]} , (2)

where

sgn (�) = {{{{{
+1, � > 0,0, � = 0,−1, � < 0. (3)

	e orthogonality condition implies that

∫1
�

Ψ�� (�) Ψ�� (�) � �� = 1 − �22 ���, (4)

where ��� is the Kronecker delta de
ned as

��� = {0, � ̸= �,1, � = �. (5)

Figure 1 shows the 
rst four annularWalsh functions for cen-
tral obscuration � = 0.3 in two dimensions. Figure 2 presents

values of the functions Ψ0.3� (�), � = 0, . . . , 3, along the radius
in an azimuthal direction. It should be noted that the order
of the functions � is equal to the number of zero crossings,
or sign changes of the function in the interval (0.3, 1), and

n = 0 1 2 3
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−1

Obscuration

Figure 1: AnnularWalsh functionsΨ��(�) in twodimensions of order� = 0, 1, 2, 3 for central obscuration � = 0.3.
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Figure 2:AnnularWalsh functionsΨ��(�) of order � = 0, 1, 2, 3 along
radius � for central obscuration � = 0.3.
locations of the points of zero crossings for members of the
set of functions Ψ��(�), � = 0, . . . , 3 are given by

�� = √ [(4 −  ) �2 +  ]
4 ,  = 1, 2, 3. (6)

In general, for the 
rst ", where " = 2� and # is a positive
integer, and annularWalsh functionsΨ��(�), � = 0, 1, . . . , ("−1), the zero crossings are located at

�� = √ [(" −  ) �2 +  ]
" ,  = 1, 2, . . . , (" − 1) . (7)

	e inner and outer radii of the annulus is �0 = � and �� = 1.
Note that the set of (" − 1) zero crossing locations, ��,  =1, 2, . . . , (" − 1), consists of all zero crossing locations
required for specifying members of this particular set of
Walsh functions. An individual member of this set of Walsh
functions will have the same number of zero crossings as its
order.

For computational purposes it is o�en convenient to
express an annular Walsh function Ψ��(�) as

Ψ�� (�) = �∑
	=1

ℎ�	%�	 (�) , (8)



Advances in Optical Technologies 3

Table 1: 	e Hadamard matrix for " = 22.
+1 +1 +1 +1

+1 +1 −1 −1
+1 −1 −1 +1

+1 −1 +1 −1

where " = 2�̃. For a particular value of �, the integer �̃ is

taken such that " just exceeds �. %�	 (�) are zero-one func-

tions, also known as Walsh block functions, de
ned as

%�	 (�) = {1, �	−1 ≤ � ≤ �	,0, otherwise. (9)

For all annular Walsh functions of order � < ", the same
values of �	, * = 0, " are to be used. 	ey are unique for
the particular value of ", and their values are given in (7).ℎ�	 are the elements of a (" × ") Hadamard matrix whose
elements are +1 or −1 [13]. Table 1 gives the Hadamard matrix

for" = 22.	eHadamardmatrices for other values of" can
be obtained from the de
ning relation (2) of annular Walsh
functions.

3. Far-Field Amplitude Distribution

Figure 3 shows the image space of an axially symmetric imag-
ing system. It is well known that the complex amplitude dis-
tribution on the image plane corresponding to an axial object
point is given by the far-
eld di�raction pattern of the pupil
function over the exit pupil. 	e complex amplitude -(/) at
a point Q
 in the far-
eld due to a point object on the axis is,
apart from the multiplicative constant, given by the Hankel
transform of order zero of the pupil function [20, 21]:

- (/) = ∫1
0

5 (�) 60 (/�) � ��, (10)

where 5(�) is the circularly symmetric pupil function. 	e
variable � is the fractional coordinate for a point 7
 on the
pupil sphere of center8
 and radius8
9
, where9
 is the axial
position of the exit pupil. � is equal to the ratio (�
/ℎ
), where�
 is the perpendicular distance of the point 7
 from the axis
and ℎ
 is the maximum value of �
, so that 0 ≤ � ≤ 1. / is the
reduced di�raction variable given by

/ = 2�; (�
 sin?
) @
, (11)

where?
 is the semiangular aperture of the imaging system,�

is the refractive index of the image space, 2�/; is the prop-
agation constant, and @
 (= 8
Q
) is the actual geometrical
distance of point Q
 on the image plane from the center 8
 of
the di�raction pattern.

For a speci
c central obscuration ratio �, annular Walsh

lters of various orders can be obtained from the correspond-
ing annular Walsh functions by realizing transmission values
+1 and −1 by zero and � phase 
lters, respectively. In presence

Pupil sphere

Exit pupil
Image plane

��

E� O�

Q�
n�

��

r�

P�

h�

Figure 3: Schematic representation of the image space parameters.

of an annular Walsh 
lter on a uniform pupil, the pupil fun-
ction 5(�) is given by

5 (�) = {0, 0 ≤ � < �,Ψ�� (�) � ≤ � < 1. (12)

It may be noted that 5(�) is binary (value either 0 or +1) only
in the case of zero order annularWalsh functionΨ�0(�); for all
other orders, 5(�) is ternary with value either 0, +1, or −1.

	e far-
eld amplitude pattern-��(/) of an annularWalsh

lter Ψ��(�) is given by

-�� (/) = ∫1
�

Ψ�� (�) 60 (/�) � �� = �∑
	=1

ℎ�	Γ	 (/) , (13)

where

Γ	 (/) = ∫1
�

%�	 (�) 60 (/�) � ��

= [
[

�2	61 (/�	)/�	 − �2	−1 (/�	−1)/�	−1 ]
]

.
(14)

4. Numerical Results and Discussion

Figures 4–7 give the far-
eld amplitude distributions for
annular Walsh 
lters Ψ��(�), with central obscuration � = 0.3,0.5, 0.7, and 0.9, respectively. In each 
gure, the amplitude
distribution is shown for the annularWalsh 
lters of orders 0,
1, 2, and 3. Note that the amplitude values are normalized by
the central amplitude for an unobstructed uniform aperture.
For the sake of underscoring amplitude variations, the scales
along the ordinate and abscissa of di�erent curves could not
be maintained the same; they were tailored to bring forth the
speci
c features.

It is seen in Figures 4(a), 5(a), 6(a), and 7(a) that for
the zero order annular Walsh 
lters, there is a central max-
imum of amplitude in the di�raction pattern, and the mag-
nitude of themaximum is obviously dependent on the central
obscuration �. For the sake of comparison, amplitude dis-
tribution for an unobscured uniform aperture is shown
alongside the same for zero order annular Walsh 
lters. It is
well known that with higher values of obscuration, the central
lobe narrows down signi
cantly [20].
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Figure 4: Far-
eld amplitude distributions for annular Walsh 
lters Ψ��(�) on an annular aperture with central obscuration � = 0.3 for orders
(a) � = 0, (b) � = 1, (c) � = 2, and (d) � = 3. 	e red graph in (a) represents amplitude distribution for an unobscured uniform aperture.
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Figure 5: Far-
eld amplitude distributions for annular Walsh 
lters Ψ��(�) on an annular aperture with central obscuration � = 0.5 for orders
(a) � = 0, (b) � = 1, (c) � = 2, and (d) � = 3. 	e red graph in (a) represents amplitude distribution for an unobscured uniform aperture.

Figures 4–7 show that for Walsh 
lters of all orders other
than zero, the central amplitude is zero.	is is a consequence
of orthogonality property of the Walsh functions. 	e dark
center is surrounded by rings of oscillating amplitudes. For
lower orders, this oscillation gradually decays a�er the 
rst
few rings, but for higher orders, the oscillations continue for

many more rings. As expected from energy considerations,
the amplitude of oscillation is signi
cantly less in case of
higher order 
lters compared to the lower order ones in each
case of obscuration. From lower to higher obscuration, the
ring with peak oscillatory amplitude gradually shi�s away
from the centre in case of higher order annular Walsh 
lters.
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Figure 6: Far-
eld amplitude distributions for annular Walsh 
lters Ψ��(�) on an annular aperture with central obscuration � = 0.7 for orders
(a) � = 0, (b) � = 1, (c) � = 2, and (d) � = 3. 	e red graph in (a) represents amplitude distribution for an unobscured uniform aperture.
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Figure 7: Far-
eld amplitude distributions for annular Walsh 
lters Ψ��(�) on an annular aperture with central obscuration � = 0.9 for orders
(a) � = 0, (b) � = 1, (c) � = 2, and (d) � = 3. 	e red graph in (a) represents amplitude distribution for an unobscured uniform aperture.

Use of ternary values of transmission 0, +1, and −1 in
annularWalsh 
lters has opened up new possibilities for gen-
eration of interesting far-
eld patterns. Amplitude patterns
shown in Figures 6(b)–6(d) and 7(b)–7(d) corresponding to
annularWalsh 
lters of orders 1, 2, and 3 on a pupil with large
obscuration have distinct characteristics that remain to be

explored further formany practical applications, for example,
optical encryption. Incidentally, it is also observed that for
orders higher than 3, the typical nature of amplitude distri-
bution ismore pronounced, with the frequency of oscillations
in amplitude becoming increasingly higher with concomitant
decrease in peak amplitude.
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5. Concluding Remarks

Optimal combinations of annular Walsh 
lters can help in
realizing desired amplitude distributions on the far-
eld
plane for applications using coherent illumination.An impor-
tant application is to obtain “superresolution” e�ect by nar-
rowing down of the central lobe and suppression of the side
ripples. Solution of the related optimization problem can
make e�ective use of orthogonality of annular Walsh func-
tions. Incidentally, inverse problems on pupil synthesis for
prespeci
ed intensity characteristics in the far-
eld plane
were tackled earlier for the case of incoherent illumination by
the use of radial Walsh 
lters for unobscured apertures [18].
It is obvious that the availability of an additional degree of
freedom, namely, the obscuration ratio �, is likely to expand
the scope of this inverse problem.

Ready availability of high e�ciency spatial light modu-
lators has facilitated the practical realization of phase 
lters.
[22–24]. Nevertheless, it is obvious that, in general, practical
implementation of 
lters with binary or ternary phase values
is relatively easier than 
lters with continuously varying
phase. Use of Walsh function-based analysis and synthesis of
pupil plane 
lters has become useful, for it can circumvent the
tricky problem of synthesizing continuously varying phase by
providing alternative analytical treatments that deal with a

nite number of discrete phase levels.

Finally, it remains to investigate the axial resolution char-
acteristics of annularWalsh 
lters and also their usefulness in
the synthesis of three-dimensional light 
elds [25].
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