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ABSTRACT
Future single rotation propeller and contra-rotating advanced open rotor concepts promise a
significant fuel efficiency advantage over current generation turbofan engines. The development of
rotors which produce a minimum level of noise is a critical technical issue which needs to be
resolved in order for these concepts to become viable aircraft propulsors. Noise and emissions are
subject to stringent legislative requirements, thus accurate models are required in order to predict
the noise radiated from aircraft engines. In this article, the development of a theoretical model to
predict noise levels of an installed open rotor is reported. First a canonical problem is examined:
how to predict the pressure field produced by a rotating ring of point sources adjacent to a rigid
cylinder. Analytic expressions for the far-field pressure from a rotating ring of single-frequency
monopole and dipole point sources, located near an infinitely long rigid cylinder, immersed in a
constant axial mean flow, are explicitly formulated. Illustrative results show how the far-field
pressure is affected by varying the source rotational direction, source location and source radius.
Next the solution of the canonical problem is utilized to formulate a more advanced model to
predict the noise due to an installed open rotor. In this model, the rotor noise sources are represented
by a distribution of rotating sources. The adjacent aircraft fuselage is modeled by the rigid cylinder,
and the effect of the fuselage boundary layer and other steady distortions are neglected. Also
neglected is the scattering from other surfaces such as the pylon, wing and centerbody. This
distributed source model can be used to calculate the effect of scattering of open rotor noise by an
adjacent cylindrical fuselage. The model can be used to calculate both rotor-alone tones and tones
produced by periodic unsteady loading on the rotor blades. Practical examples are provided which
show how the effect of blade rotational direction and propeller location relative to the fuselage affect
the sound produced by the interaction of a pylon wake with a rotor in a pusher configuration.

1. INTRODUCTION
Noise and emissions are critical technical issues in the development of aircraft engines,
and are subject to stringent legislative requirements. Currently, there is renewed interest
in open rotor, contra-rotating propellers, which are more fuel efficient than comparable
high-bypass ratio turbofan engines. Owing to the interaction of each rotor with the
unsteady flow-field produced by the adjacent contra-rotating rotor, the radiated sound
pressure will consist of a multitude of tones at frequencies equal to integer multiples of



the sum and difference of the front and rear rotor blade passing frequencies. Also the
open rotor will be attached either to the fuselage or the wing, using a large pylon, as
shown in figure 1. The pylon will attach to the open rotor centerbody either upstream
(pusher configuration) or downstream (puller configuration) of the rotor blades. For
engines mounted in a pusher configuration, the interaction of the wake produced by the
upstream pylon with the rotor blades will induce unsteady loading on the rotor blades
which in turn will produce tones at integer multiples of the rotor’s blade passing
frequency. The minimization of the tonal noise is a critical technical issue which needs
to be met if open rotors are to be introduced into civil aviation.

The objective of the work reported in this article† is to provide a theoretical model
which can be used to investigate installation effects for an open rotor. First a canonical
problem which is a simple representation of an installed open rotor is examined. In this
‘point source’ model, rotor noise sources are represented in terms of idealised rotating
point sources. Subsonically rotating, single-frequency, monopole and dipole point
sources are considered. The adjacent aircraft fuselage is represented by an infinitely
long rigid cylinder. Taking an infinite cylinder avoids having to develop a solution that
includes scattering and diffraction at the cylinder’s ends. Also, a constant mean flow in
a direction aligned with the axis of the cylinder is included in the model problem.
Taking uniform flow means that the effect of the fuselage boundary layer is omitted in
the current analysis‡.
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Figure 1: Advanced open rotor concept in pusher configuration (courtesy of Rolls-
Royce plc).

†This work was presented at the 14th CEAS-ASC Workshop (& 5th Scientific Workshop of X3-Noise) on
Aeroacoustics of high-speed aircraft propellers and open rotors, Institute of Aviation, Warsaw, Poland, 7–8
October 2010.
‡The inclusion of the boundary layer would require a solution (in this region) of the linearized Euler equations
or the Pridmore-Brown equation, in which case it would not be possible to obtain a closed form analytic
solution.



Next the ‘point source’ model is extended in order to account for a distribution of
monopole and dipole sources over the surface of each blade of an open rotor. The
‘distributed source’ model is then used to calculate the effect of scattering of open rotor
tones by an adjacent cylindrical fuselage.

The model can be used to calculate the pressure due to both rotor-alone tones and
interaction tones. Rotor-alone tones are produced by the steady loading on, and finite
thickness of, the rotor blades. Interaction tones are produced by the periodic loading on
the rotor blades caused by their interaction with, for example, the wakes or potential
field of an adjacent rotor or pylon. Particular attention is given to the scattering of tones
produced by the interaction of the wake from an upstream pylon with the front rotor.
Rotor-alone tones (thickness and steady loading) can be represented by monopole and
dipole sources with source strength independent of position and time, whereas
interaction tones (unsteady loading) can be represented by dipole sources with periodic
variation in source strength§.

The approach herein follows the procedure outlined in Hanson and Magliozzi [1],
albeit the effect of the fuselage boundary layer is not included in the current work. In
Ref. [1] the incident field due to a propeller noise source in free space is utilized to
determine the total field in the presence of an aircraft fuselage which is modelled by an
infinite, rigid cylinder. The incident field is given by near-field frequency-domain
propeller source theory developed previously by Hanson. This solution was derived in a
coordinate system centred on the propeller. Accordingly, in Ref. [1] the authors show
how to shift the solution to a coordinate system which is centred on the axis of the
cylinder, using Graf’s Addition theorem. They then combine this with an appropriate
form of the scattered field (a sum of outward propagating cylindrical waves): the
resultant sum of the incident and scattered fields gives the total pressure field. Their
analysis also includes the effect of the fuselage boundary layer, and they match their
analytical solutions to a numerical solution in the boundary layer. The methodology
utilized in the present work is essentially the same as that proposed by Hanson and
Magliozzi. However, in Ref. [1] the authors do not give analytical solutions formulated
explicitly for rotating, single-frequency, monopole and dipole point sources, or their far-
field approximations.

A comprehensive aeroacoustic study into propeller noise has been reported by
Whitfield, Gliebe, Mani and Mungur [2] for single-rotation propellers, and by Whitfield,
Mani and Gliebe [3] for counter-rotating propellers. In the former report, there are detailed
sections on installation effects and scattering of propeller noise by the aircraft fuselage and
wings. Their modelling of the scattering of propeller noise by a cylindrical fuselage
follows essentially the same method as that proposed by Hanson and Magliozzi [1].

Also, Fuller [4] has examined the scattering of spherical waves by an infinite, rigid
cylinder, and how the sound radiation levels are affected by the presence of the cylinder.
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§Broadband (incoherent) sources would require a solution which permits the source strength to vary randomly
with time: this type of source has not been included in the analysis.



He examined the field due to stationary monopole and dipole point sources located near
a cylinder, also using the type of approach followed by Hanson and Magliozzi [1], albeit
for stationary sources only. In fact the solution for a monopole point source located near
an infinite, rigid cylinder has been known for many years, and is given in the text on
Electromagnetic and Acoustic Scattering by Simple Shapes by Bowman, Senior and
Uslenghi [5], published in 1969.

Unpublished recent work by Leppington, Blakemore and Heron [6] examines the
same canonical problem which is considered in this article. The authors solve the
problem following an alternative procedure from previous work in Refs. [1, 2, 4].
Leppington, Blakemore and Heron solve the convected wave equation for a point source,
but take a reference frame which is centred on the axis of the cylinder. The wave
equation is solved using Fourier transform methods. The resulting solution does not
need to be shifted to a different reference frame. However, their solution appears more
complex compared to the solution presented in this paper.

A related problem has been investigated by Glegg [7], and more recently by Kingan,
Powles and Self [8]. This problem involves the effect of centrebody scattering on
propeller noise. The key difference in the mathematical formulation between this
problem, and the problem of fuselage scattering, is that in the former problem, the axis
of the propeller and the axis of the centrebody are coincident, which avoids the need to
shift the near-field solution of the propeller to a new reference frame. This shift of
coordinate systems, achieved using Graf’s Addition theorem, significantly alters the
subsequent analysis. Other examples of related work include Hanson [9], Lu [10] and
Kopiev, Maslov and Chernyshov [11]. Similar to Hanson and Magliozzi [1], these
articles all concern the effect of shielding by the fuselage boundary layer. In the work
reported in this article, the effect of the fuselage boundary layer and other steady
distortions are neglected. Also neglected is the scattering from other surfaces such as
the pylon, wing and centerbody.

2. POINT SOURCE MODEL
A sketch of the canonical problem set-up is shown in figure 2. The point source moves
along a helical path, centred on an axis of rotation which lies parallel to the axis of the
cylinder. The axis of rotation lies a horizontal distance of b cos β and a vertical distance
of b sin β from the axis of the cylinder. The radius of the helical path is a, and the radius
of the cylinder is a

0
, where a + a0 < b. The angular velocity of the point source is Ω

and its axial velocity is U. The cylinder is of infinite length and is rigid.
In a uniform, stationary medium with constant sound speed c0 and density ρ

0
, from

the Ffowcs Williams-Hawkings equation, the acoustic pressure field p′(x, t) due to a
monopole or dipole source is given by the solution of the inhomo-geneous wave equation
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For a monopole source, s = −ρ
0
∂q/∂t, where q (x, t) is the volume flow rate per unit

volume, or for a dipole source s = ∇ · f, where f (x, t) is the force per unit volume. Only
single-frequency, subsonic sources are considered. Since the sources are moving then,

(2)

where X(t) denotes the position of the source at time t, Q0 is volume velocity and F0 is
force.

The solution method is as follows. First, the incident pressure field p′i due to a
rotating, single-frequency, monopole or dipole point source is determined using Fourier
transform methods. This is the pressure field that would be present in the absence of the
cylinder. It is convenient to determine the incident field in terms of a moving reference
frame, (x, y, z) = (r cos φ, r sin φ, z), centred on the source’s axis of rotation. In this
moving frame, the source is located in the plane z = 0, and there is a mean axial flow
with velocity −U in the positive z-direction. The subsequent analysis then follows the
method proposed by Hanson and Magliozzi [1]. The solution for the incident field is
shifted, using Graf’s Addition theorem, so that the expression is given in terms of
another moving reference frame, (x–, y–, z–) = (r– cos φ–, r– sin φ–, z–), centred on the axis
of the cylinder. (Note that z ≡ z–.) The incident field impinging on a solid object
produces scattered waves. An appropriate form of the scattered pressure field p′s is
found. This is related to the shape of the scattering object. In this case the scattered field
is expressed in terms of outward propagating cylindrical waves. The total pressure field
p′t is the sum of the incident and scattered fields, p′i + p′s . This is the pressure field with
the cylinder located near the rotating source. The total pressure field is deduced so that
it satisfies appropriate boundary and radiation conditions. Finally, the total pressure field
in the far field is found by an asymptotic evaluation of the inverse Fourier transform,
using the method of stationary phase. The canonical problem set-up, including the
moving coordinate systems, is shown in figure 3.

q Q e ei t i t
( ) ( ) ( ) (x x X f x F x, ( ) and ,t t t= − =

0 0
0 0

ω ωδ δ −− X( )t ),
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Figure 2: Sketch of canonical installed open rotor problem.



2.1. Incident field
The incident field for a rotating, single-frequency, monopole source is found by solving

(3)

where

(4)

and the position of the point source is r = a, φ = Ωt and z = 0.
The solution of equation (3) is found using Fourier transform methods. Introduce the

Fourier transform in z and t, and the Fourier series in φ as follows:
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Figure 3: Sketch of canonical installed open rotor problem including the source and
cylinder coordinate systems.



(6)

where kz, m and ω denote the axial wavenumber, azimuthal order and angular frequency,
respectively.

This transforms derivatives as follows:

(7)

Transforming the inhomogeneous wave equation (3) following (5) leads to

(8)

where

(9)

and k = ω/c
0
, M = U/c

0
.

The solution of equation (8) can be obtained using the method of variation of
parameters. Taking Qm = 0, then (8) is in the form of Bessel’s differential equation,
i.e.
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where the ‘radial’ wavenumber Γ is defined as
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It is convenient† to take Jm (Γr) and H(2)
m (Γr) as the linearly independent solutions

of Bessel’s differential equation. Then the solution of equation (8) is

(12)

where Am and Bm are functions of kz and ω only, and s is a dummy integration variable.
After inserting Qm (9) into (12), and evaluating the integrals, then the functions

Am and Bm can be found by applying appropriate finiteness and radiation conditions, in
the limit as r → 0 and r → ∞, respectively. The resulting solution can be expressed in
the form

where r> and r< are defined as follows:

(14)

Now define

(15)

which is the inverse Fourier time-transform. The ω-integration can be performed by
noting that the zeros of the delta-function in equation (13) occur when ω = ω0 + nΩ.
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†Taking H(2)
m (Γr) in place of Ym(Γr) will simplify the analysis when applying the radiation condition as

r → ∞.



(16)

where k
0m and Γ

0m are defined as

(17)

Also, on comparing the definition of Γ (11) with (16), in order to ensure that

only outward propagating waves are allowed as r → ∞, then

(18)

which ensures that the correct sign of the square root is selected, depending whether the
angular frequency (ω

0 
+ mΩ) is positive or negative.

A similar analysis can be performed for a rotating dipole source. The three
components of the force F0 = (F0r , F0φ, F0z ) correspond to a ‘radial’, ‘angular’ and
‘axial’ dipole, respectively. In the context of sound radiation from an open rotor, only
the contributions from the ‘angular’ and ‘axial’ dipoles are significant, so in the
following analysis the contribution of the ‘radial’ dipole is omitted by setting F0r = 0.
For the rotating dipole source, the incident field is found to be

(19)

The results for the monopole and dipole sources are now summarized as follows. The
incident field due to a rotating point source is given by

(20)

where

(21)′ = > <p r k t k H r J r eim z m z m m m m
i

( , , ) ( ) ( ) ( )
( ) (S 2

0 0
Γ Γ ωω

0
+ Ωm t)

,

′ = ′ −

−∞

∞
p r z t p r k t e dki im z

ik z
z

z( , , , )
( )

( , , )φ
π

1

2 2 ∫∫∑










−

=−∞

∞

e im

m

φ
,

′ = +










p r k t m
a

F k F Him z z z m( , , )
(π

φ2 0 0
2)) ( )
( ) ( ) .Γ Γ

0 0
0

m m m
i m tr J r e> < + Ωω

Γ
0

0 0
2 2

0
2 2

m
m z z m z zm k k M k k k M k

=
+ Ω + − + >sgn( ) ( ) , ( )ω

−− = − + + <i k k k M k k M km m z m z m z zγ γ
0 0

2
0

2
0

2
where ( ) , ( )

22









,

′p im

k
m

c
k k M km m m z z0

0

0
0

2
0

2 2=
+ Ω

= + −
ω

and Γ ( ) .

′ = + >p r k t Q c k k M H r Jim z m z m m( , , ) ( ) ( )
( )π

ρ
2 0 0 0 0

2
0

Γ mm m
i m tr e( ) ,
( )Γ

0
0< + Ωω

aeroacoustics volume 11 · number 2 · 2012 221



and Sm (kz) is dependent on the type of source. From equations (16) and (19),

(22)

(23)

Graf’s Addition theorem is now used to transform the incident field to the cylindrical
polar coordinate system, (r–, φ–, z–), centred on the cylinder. Graf’s Addition theorem is
given by Abramowitz and Stegun ([12], Eq. 9.1.79, p. 363). The theorem can be used
for transforming between the coordinate systems (r, φ, z) and (r–, φ–, z–) as shown in
figure 3. However, the application of Graf’s theorem is slightly different depending
whether the field point is in the near field (close to the surface of the cylinder) or the far
field.

First consider a field point close to the surface of the cylinder where r > a and
r– < b ‡. Direct application of Graf’s Addition theorem gives

(24)

Using this, after some algebraic manipulation, the incident field (21) can be
expressed as
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‡ It is emphasised that at this point in the analysis, the cylinder has not been included in the modelling. At this
stage the aim is to find the incident pressure field at r– = a

0
, which will be the location of the surface of the

cylinder (when it is included in the subsequent analysis).



Using this, the incident field (21) can be expressed as

(27)

2.2. Scattered field
Since the scattering object is an infinite cylinder, the scattered acoustic waves will be
outward propagating cylindrical waves. An appropriate form of the scattered field p′s is
determined by solving the convected wave equation

(28)

which is the homogeneous version of equation (3) expressed in the cylinder’s polar
coordinate system (r–, φ–, z–).

Following the procedure used to find the incident field, taking the Fourier transform
of equation (28) gives equation (10) (Bessel’s differential equation) with replaced

by and r replaced by r–. As r– → ∞ the solution should decay or represent an

outward propagating wave. Applying this radiation condition, it can be shown that the
scattered field is given by

(29)

where

(30)

2.3. Total field
The total pressure field p′t for a rotating point source located near an infinite, rigid
cylinder is given by
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The total field satisfies a rigid wall boundary condition on the surface of the cylinder,
i.e.

(32)

On substituting equations (25) and (30) into the boundary condition (32) this leads to

(33)

where ′ denotes differentiation with respect to the function’s argument.
Equation (33) is solved by first setting

(34)

Then, substituting Cm (34) into equation (33), and setting each coefficient in the
summation equal to zero gives

(35)

The total pressure field p′t is given by

(36)
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where the incident field is given by equation (25). In the far field

(38)

where now the incident field is given by equation (27).
Equation (38) is the pressure wavenumber transform in the far field for a rotating,

single-frequency, point source located near an infinite, rigid cylinder. In order to
calculate the far-field pressure it is necessary to determine the inverse Fourier 
z-transform, which can be found via an asymptotic evaluation of the integral, using the
method of stationary phase. The presence of a uniform mean flow complicates the
stationary phase integral, but this complication can be removed by using flow similarity
variables and a transformation of the axial wavenumber.

The far-field pressure will be expressed in the spherical polar coordinates (R–, θ
–, φ–),

where

(39)

Then, following Chapman [13], the similarity variables R̂ and θ̂ are introduced.
These are related to R– and θ

–
by

where σ2 = 1 − M 2. (Also note that R– sin θ
– = R̂ sin θ̂ and R– cos θ
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The inverse Fourier z-transform in equation (36) can be expressed in the form of a

stationary phase integral, replacing H(2)
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0nr–) by their large-
argument asymptotic forms, and by using Chapman’s similarity variables. Also,
following Rienstra [14], the axial wavenumber kz is transformed, via
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shown that
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(42)

After these changes of variables, the point of stationary phase is found to be τ = cos θ̂ ,
and it is more straightforward to evaluate the stationary phase integral. This leads to, in
the far field R– � 1, the total pressure

(43)

where

(44)

In the far-field, the source term becomes

(45)
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§Note that in other articles the definition of S(θ–) may vary slightly, specifically the sign of M. In this analysis,
in the moving frame of reference the uniform flow is −U in the positive z–-direction. This accounts for the
different sign of M which is taken here.



2.4. Solution for a rotating ring of point sources
Equation (43) gives the far-field pressure due to a rotating point source. This could be
used to model the radiation from a single rotor blade. Hanson ([15], Appendix: Effect
of Multiple Blades, p. 617) outlines how to extend a radiation model for one blade to
multiple blades. His approach is followed here, for an example based on a ‘rotor-rotor’
interaction tone generated by a contra-rotating propeller.

An illustration of the problem set-up is shown in figure 4. The rotors are labelled
1 and 2. Rotor 1 is modelled by a distribution of identical point sources, equi-spaced
around a circle of radius a . Denote the total number of sources by B (which equals the
number of rotor blades of rotor 1), and number the sources p = 0, 1, 2, …, B − 1. The
angular velocity of rotor 1φ

.
= Ω. Rotor 2 is also represented by a distribution of

identical point sources, equi-spaced around a circle of radius ak . Denote the total
number of sources by Bk (which equals the number of rotor blades of rotor 2). The
angular velocity of rotor 2 φ

.
= −Ωk. Only a single reference blade (i.e. point source)

from rotor 2 is shown. In the sketch, when sources from rotor 1 and rotor 2 are aligned
(in a vertical sense) this signifies an ‘interaction’ between the two blades, for example,
owing to the wake or potential field from one rotor blade interacting with a blade on
the other rotor.

It is convenient to view the problem in the reference frame of rotor 1. In this
reference frame, the moving angular coordinate φ~ = φ−Ωt, and the angular velocity of
rotor 2 is − (Ω + Ωk). Taking the incident field due to point source p = 0 given by
equations (20, 21), then the incident field due to source p will be essentially the same,
apart from it is necessary to apply an angular correction and a time shift. The angular
correction is

(48)% %φ φ
π

→ −
2 p
B

.
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Figure 4: Illustration showing set-up for modelling rotor-rotor interaction tones.



Assuming that point source p = 0 coincides with the reference source at t = 0, then
source p coincided with the reference source at time t = −2πp/B (Ω + Ωk ). Therefore,
the time shift is

(49)

Then, the total incident field is given by

(50)

where p′i
(p) denotes the incident field due to point source p.

In equation (50), the summation over p can be evaluated using the standard formula
for a geometric progression. The resulting incident field due to a rotating ring of point
sources is of the same form as the field due to a single, rotating point source, given by
equations (20, 21), apart from an additional multiplicative factor B, and the summation
index is replaced by l, where m = lB − kBk . Also, the source frequency is given by
ω0 = kBk (Ω + Ωk) which represents the kth harmonic of unsteady loading.

Then, in order to determine the total pressure field in the presence of an infinite, rigid
cylinder, the analysis follows the same procedure as before. In the far field, R– � 1, the
total pressure

(51)

where n = lB − kBk . Note that it would be necessary to include a third summation over
k in equation (51) in order to include all the harmonics of unsteady loading (see section
3.2). If the loading is due to interaction with a pylon wake, or something else which is
analogous to ‘rotor-stator’ interaction tones in a turbofan engine, then set Ωk = 0. Equation
(51) is also applicable for rotor-alone tones, on setting Bk = 0, and so n = lB and ω0 = 0.

2.5. Illustrative results
A selection of illustrative results are shown in this section. One rotating ring of steady
monopole sources is considered (so Bk = 0 and ω0 = 0). The number of sources B = 12,
the radius of the cylinder a

0
= 2 m, and the axial Mach number M = 0.7. The values of

the other parameters (b, β, a and Ω) are listed in the figure captions¶.
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¶The values of c
0

and ρ0 are based on the values for the standard atmosphere at 30, 000 ft.



The far-field mean square pressure azimuthal directivity (in dB), at polar angle θ
– = 90°,

are shown for several different test cases. In these examples, taking ω0 = 0, the evaluation
of the mean square pressure from p′t (R–, θ

–
, φ–, t) (51) is straightforward. Also shown are

the comparable far-field directivity patterns when there is no cylinder.
Figures 5 and 6 show how changing the source rotation direction (sign of Ω), or the

orientation of the ring of sources relative to the cylinder (angle β), affects the far-field
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20˚

(a) Anti-clockwise rotation, β = 0˚ (b) Clockwise rotation, β = 0˚ 

(d) Anti-clockwise rotation, β = 20˚ (c) Anti-clockwise rotation, β = 20˚ 

−20˚

Figure 5: Installed open rotor configuration. B = 12, a
0

= 2 m, a = 1 m, b−a
0

−
a = 1 m, Ωa/c

0
= 0.5 and M = 0.7.
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Figure 6: Far-field mean square pressure azimuthal directivity (in dB) at polar angle
θ– = 90°. Key: solid line, with cylinder; dashed line, no cylinder.



230 Far-field sound radiation due to an installed open rotor

(a) b − a0 − a = 0.5 m (b) b − a0 − a = 1 m

(c) b − a0 − a = 2 m (d) b − a0 − a = 3 m

Figure 7: Installed open rotor configuration.  Anti-clockwise rotation. B = 12,
a

0
= 2 m, a = 1 m, β = 0°, Ωa/c

0
= 0.5 and M = 0.7.
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Figure 8: Far-field mean square pressure azimuthal directivity (in dB) at polar angle
θ– = 90°. Key: solid line, with cylinder; dashed line, no cylinder.

mean square pressure azimuthal directivity. In each case, as expected, only the
orientation of the directivity pattern is altered. The directivity pattern is the mirror
image, reflected about the horizontal plane, when the sources’ rotation direction is
reversed. Changing the angle β simply moves the directivity pattern through the same
angular shift.
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(a) b − a0 − a = 0.5 m (b) b − a0 − a = 1 m

(c) b − a0 − a = 2 m (d) b − a0 − a = 3 m

Figure 9: Installed open rotor configuration.  Anti-clockwise rotation. B = 12, a
0

= 2 m, a = 2 m, β = 0°, Ωa/c
0

= 0.5 and M = 0.7.

Figures 7 and 8 show how changing the distance between the ring of sources and the
cylinder affects the far-field directivity. The main effect owing to the presence of the
cylinder, other than the expected ‘lobed’ directivity pattern, is that at some azimuthal
angles the level of the mean square pressure is significantly lower compared to the level
with no cylinder. For example, in figure 8(a), lower mean square pressure levels are
predicted in the azimuthal angular range from φ– = 160° to 260°. As the ring of sources
is moved away from the cylinder, the extent of these regions of lower mean square
pressure become smaller.

The minimum level of the mean square pressure does not occur at φ– = 180°. This is
because the source is rotating. The minimum level of the mean square pressure, in these
cases, occurs at a value of φ– slightly greater than 180°. At the azimuthal angles where
the predicted mean square pressure is significantly lower compared to the level with no
cylinder, the source will be moving away from an observer at these locations. Presumably
this effect is related to convective amplification which occurs with moving sources.

Finally, Figures 9 and 10 also show the effect of changing the distance between the ring
of sources and the cylinder, but now the source radius and the cylinder radius are the same.



Reductions in the level of the mean square pressure, due to presence of the cylinder, still
occur, but the shielding effect is less in these test cases when the source and cylinder radii
are comparable.

3. DISTRIBUTED SOURCE MODEL
In propeller noise theory it is common (see for example Refs. [8, 15, 16]) to express the
pressure in terms of ‘emission’ coordinates. The emission coordinate system is shown
in figure 11.

The emission coordinate system is related to the physical coordinate system in
Cartesian and spherical coordinates by the following relationships:

(52)
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Figure 10: Far-field mean square pressure azimuthal directivity (in dB) at polar angle
θ– = 90°. Key: solid line, with cylinder; dashed line, no cylinder.



The emission coordinate system is employed in the following analysis which
details the far-field pressure for both thickness and loading noise based on a
distributed source model which simulates the noise sources generated by an open
rotor.

3.1. Thickness noise
When expressed in emission coordinates, equation (51) for a rotating ring of steady
monopole sources† at arbitrary source radius r, adjacent to an infinite, rigid cylinder and
immersed in a constant axial flow of Mach number M in the negative axial direction,
becomes

(54)
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†In this case the monopole source term is given by (45).
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Figure 11: Observer coordinates: physical and ‘emission’ coordinate systems.



where n = lB, k
0n = nΩ/c

0
and

(55)

The effect of sweep and chordwise position of a source located on the blade
planform also needs to be taken into account. The local blade geometry is shown in
figure 12.

From inspection of figure 12, a point source located at radius r and chordwise location
X is offset from the pitch-change axis in the axial direction by a distance − (s + X) cos α,
where s and α are the blade sweep‡ and stagger angle, which are both functions of the
spanwise location. The effect of the axial offset can be included by replacing z– in
equation (36) by z– +(s + X) cos α. This introduces a multiplicative factor exp {−ikz
(s + X ) cos α} in the Fourier integral in equation (36). On evaluating this integral,
using the method of stationary phase, the stationary phase point occurs at

(56)

Thus the axial offset introduces the following multiplicative factor into equation
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Figure 12: Local rotor-blade geometry.

‡ Note that sweep is measured as the distance of the blade mid-chord to the pitch-change axis along the helical
path as shown in figure 12.



The source is also offset in the azimuthal direction φ by an angle −(s + X) sin α /r.
The effect of the tangential offset is to introduce an angular correction and a time
shift to the expression for the total field (54). The process for calculating this
correction is identical to that described in section 2.4. Including the source tangential
offset in the analysis introduces an additional multiplicative factor into equation
(54):

(58)

In reality, the monopole sources are distributed over the upper and lower blade
surfaces. However, it is an acceptable approximation to instead place the monopole
sources associated with both the upper and lower blade surfaces along the chordline.
Thus for the thickness noise prediction, each rotor blade is modeled as being
acoustically equivalent to a distribution of monopole sources over the blade planform
area§. The thickness noise distributed source strength is equal to the net rate of volume
displacement produced by each blade. The net rate of volume displacement produced
by an element of area δXδr is given by

(59)

where is the local blade helical speed (i.e. the relative velocity seen

by an observer on the rotor blade at radius r), b is the
maximum blade thickness, and h is a dimensionless function, which has a maximum
value of one, and which describes the chordwise blade thickness profile. Substituting
equation (59) into equation (54), multiplying by equations (57) and (58), and
integrating over the blade planform area yields the following expression for the far-field
sound pressure produced by an open rotor located adjacent to an infinite, rigid
cylindrical fuselage:

(60)
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§Here the blade planform area is defined as the surface formed by the chordlines across the blade span.



where

(61)

is a non-compactness factor which accounts for the difference in phase of sources
distributed along the blade chord,

(62)

is a chordwise wavenumber, and

(63)

is a phase term which accounts for the effect of sweep.

3.2. Loading noise
The procedure for deriving the expression for the far-field pressure produced by loading
on the rotor blades is similar to that presented in the previous section for thickness sources.
Each rotor blade is modeled as being acoustically equivalent to a distribution of dipoles
over the blade planform area. The dipole source strength at a particular location is equal
to the net loading exerted by the rotor blade on the surrounding air which is equal to the
pressure ‘jump’ or difference in pressure between the upper and lower blade surfaces. It is
assumed that only lift forces are significant and thus the loading is modeled as acting
normal to the blade chordline. From inspection of figure 12, the axial component of
loading is F

0z = −L sin α, while the azimuthal component of loading is F
0φ = L cos α.

The unsteady loading on the rotor blades is assumed to be caused by a counter-
rotating disturbance with azimuthal periodicity of 2π/Bk radians which rotates at an
angular speed φ

.
= −Ωk . The loading exerted by each rotor blade on the air in a frame

of reference moving with the rotor blade can thus be expressed as a Fourier series

(64)

where ω0 = kBk (Ω + Ωk).
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given by equation (51) with the dipole source term given by (46). Inserting equation (64)
into equation (51) and substituting expressions for the axial and tangential loading gives

where n = lB − kBk is an azimuthal wavenumber. Note that the angular frequency can
be rewritten as

(66)

i.e. in terms of sum and difference tones. Thus, it is convenient to introduce a slight
change in notation as follows:

(67)

(68)

(69)

Following this notation change, this means that in equation (65), ω0 + nΩ may be
replaced by ωlk, k0n may be replaced by klk, and ∆n may be replaced by ∆lk.

Converting to emission coordinates, accounting for the axial and tangential offset
produced by the sources located along the blade chord¶, and integrating over the blade
planform area yields the following expression for the far-field sound pressure due to
periodic unsteady loading on the blades of an open rotor located adjacent to an infinite,
rigid cylindrical fuselage:
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¶Note that in the case of unsteady blade loading, the axial and tangential offset of a source located at chordwise
position X on a swept blade introduces a multiplicative factor of exp{ −i (klk cos θ–e/(1 − M cos θ–e) + (n/r)
sin α) (s + X)}



(70)

where the function S(r) is given by

(71)

and

(72)

The chordwise wavenumber kX and phase term φs are given by equations (62) and
(63) respectively, with k

0n replaced by klk.

3.3. Illustrative results
In this section, additional illustrative results are presented which provide more
practically relevant examples of noise predictions for an installed open rotor. The effect
of fuselage scattering on the sound field produced by two different force distributions is
considered. The first corresponds to a rotating point force, acting in the negative axial
direction and located at r = a, for which the amplitude varies as a function of blade
azimuthal position φ = Ωt (for the reference blade) given by

(73)

where L0 is an amplitude term, and φs = 3.75°�. This loading is ‘impulsive’, having
large amplitude as the blade passes through φ = 0° and small amplitude elsewhere, and
could be thought of as being similar to the loading produced when a blade passes
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�This loading function was first considered by Glegg [7] who used it to investigate scattering from a propeller

centerbody.



through the wake of an upstream pylon. In this scenario the pylon (at φ = 0°) would be
vertically aligned, which is representative of a rotor hung beneath a wing. As the loading
is not distributed over the blade chord and span, the sound field can be evaluated very
rapidly. Also, effects such as interference from sources located at different chordwise
and radial locations are not included. It has been found by the authors that, because of
these simplifications, this function is useful for investigating the characteristics of the
scattered sound field.

Figures 13 and 14 plot sound pressure time histories produced by one propeller blade
with a source Mach number Ωa/c

0
= 0.7. The fuselage radius is a

0
= 2a and the

fuselage axis is located at b = 4a and β = 270° (figure 13) or β = 90° (figure 14)
relative to the propeller axis. The location of the impulsive force on the rotor blades is
indicated by two concentric red circles located at r = a, φ = 0°. This corresponds to a
propeller mounted adjacent to the fuselage with a pylon located at φ = 0° and is
representative of a case where the propeller was mounted either directly above or below
the wing.

For both cases, four far-field observation points are considered at azimuthal angles
φ– = 0°, 90°, 180° and 270°. Each observation point is located at polar emission angle
θ–e = 45°. The incident (free) field sound pressure time history is shown in black, while
the red curve corresponds to the total pressure which is the sum of the incident and
scattered fields. The incident field (black) curve has been superimposed upon the total
field curve (red).
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Figure 13: Sound pressure time histories, due to an impulsive source on a propeller
located at β = 270°. Key: black line, incident (free-field) pressure; red
line, total pressure.



Inspection of figures 13 and 14 shows that the free-field pulse generated by the
propeller blade has maximum amplitude at φ– = 90° and minimum amplitude at φ– = 270°.
This is presumably due to convective amplification effects. When the blade passes through
the point of maximum loading at φ = 0°, a relatively significant level of sound is
generated. At this point the blade is moving towards the observer at φ– = 90°. As is
observed, this increases the amplitude of the pressure pulse relative to an observer
located at φ– = 0° or φ– = 180° for which the blade is neither moving towards nor away
from the observer, (see for example chapter 1 of Goldstein [17]). Conversely, for an
observer located at φ– = 270° the blade is moving away from the observer, which
decreases the amplitude of the pressure pulse.

From a practical point of view this means that for the case considered here, if the
propeller is located on the negative y–-axis then the sound pressure incident on the
fuselage is of relatively large amplitude. This results in a reflected acoustic pulse of
significant amplitude at all angles. It is interesting to note that the reflected pulses at
φ– = 0° and φ– = 270° have significantly larger amplitudes than the incident field
pulses at these angles. Conversely, if the propeller is located on the positive y–-axis
then the sound pressure incident on the fuselage is of relatively small amplitude and
consequently the reflected acoustic pulses have amplitudes, which relative to the
propeller on the negative y–-axis, are significantly smaller.

Thus it can be deduced that for impulsive loading, such as occurs when a rotor blade
passes through a pylon wake, the sound which is generated radiates primarily in the
direction that the blade is moving at the time when the impulsive loading occurs. Thus
by either placing an upstream pylon in an appropriate position, or by ensuring that the
propeller rotates in a direction such that it is moving away from the fuselage when it
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Figure 14: Sound pressure time histories, for the case shown in figure 13 but with
β = 90°.



passes through the pylon wake, the sound radiated towards the fuselage will be
minimized. This will minimize both the in-cabin noise and also the level of the scattered
field.

The second case considered here corresponds to the loading induced on a propeller
due to its interaction with the viscous wake of an upstream pylon. The pylon wake
velocity deficit is modeled using the Gaussian wake described in Parry [18]. As the
solidity of an open rotor is relatively low, the ‘blade response’, or unsteady loading due
to the interaction of the rotor blades with the pylon wake was calculated using isolated
aerofoil theory (cf. Parry [16]). The free-stream and blade tip Mach numbers are,
respectively, 0.2 and 0.7. The rotor blade chord and sweep distributions are identical to
the blade described in Whitfield et al. [3]. Otherwise, the parameters used in the
previous case remain the same, albeit a

0
= 2rt and b = 4rt.

The mean square pressure azimuthal directivity pattern of the first two interaction
tones are shown respectively in figures 15 and 16. Unlike the time-domain simulation,
the effect of source motion (i.e. convective amplification) on the azimuthal directivity is
not immediately apparent. However, the effect of the fuselage on the scattered field is
clearly observed. At angles for which the fuselage obscures the observer position, a
significant reduction in sound pressure level occurs.

The effect of pylon length on the radiated sound field is now briefly investigated. In
figure 17 again the azimuthal directivity of the first interaction tone is plotted at polar
angle θ– = 45°. The propeller is located at β = 270° while the pylon is vertically
aligned, i.e. located at φ = 0°. Both the propeller and section of the pylon for which
the wake impinges on the rotor disc are identical to those considered in figures 15 and
16. The distance between the rotor and the cylindrical fuselage is varied from b = 3.5rt
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Figure 15: Far-field mean square pressure azimuthal directivity (in dB) of the first
interaction tone at polar angle θ– = 45°. The propeller is located at:
(a) β = 270°; (b) β = 90°. Key: solid line, with cylinder; dashed line, no
cylinder.



to 7rt . The shielding effect of the cylinder at φ– = 90° is clearly observed in all the
directivity plots. For the calculations which include the fuselage, the radiated pressure
field displays a strong dependence on the distance between the rotor and the fuselage.
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Figure 16: Same as figure 15, but for the second interaction tone.
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Figure 17: Far-field mean square pressure azimuthal directivity (in dB) of the first
interaction tone at polar angle θ– = 45°. The propeller is located at β = 270°.
The distance between the rotor and fuselage is: (a) b = 3.5rt, (b) b = 4rt,
(c) b = 4.5rt, (d) b = 5rt, (e) b = 6rt and (f) b = 7rt . Key: solid line, with
cylinder; dashed line, no cylinder.



These results, in addition to those presented in figures 13 and 14 indicate that the noise
produced by an installed open rotor is significantly affected by: (i) the location of the
pylon, and, (ii) scattering from the fuselage. As such, it is likely that optimization of
the pylon location and the location of the open rotor relative to the fuselage will
significantly affect the level of the radiated sound field.

4. CONCLUSIONS
Analytic far-field solutions have been derived for a rotating ring of single-frequency
monopole and dipole point sources located near to an infinite, rigid cylinder, in the
presence of constant axial mean flow. It can be shown that the solutions for a rotating
point source reduce to the comparable solutions for a stationary source, as the
source’s angular velocity Ω → 0†. Also, taking M = 0, solutions with no mean flow
are recovered.

In addition, these far-field solutions have been extended to incorporate a distributed
source model, in order to formulate a theoretical model which is more representative of
an installed open rotor. The analytic solutions of the far-field pressure are expressed in
terms of double or triple infinite summations of expressions containing Bessel
functions. It can be shown using Debye’s asymptotic expansion for Jν (ν sech α), (see
Ref. [12], Eq. 9.3.7, p. 366), that these summations convergence quite rapidly if Mr =

Ur/c
0

is not too close to one. (Mr is the relative Mach number seen by an observer
moving with the source.)

Illustrative results for the far-field pressure due to a rotating ring of point monopole
sources located near an infinite, rigid cylinder show, as expected, that the direction of
the rotation is important, viz-a-viz the locations of the cylinder and the rotor. The results
show how the far-field pressure is affected by varying the source radius or the distance
between the cylinder and the sources. Other parameters, such as the rotation speed, are
also likely to affect the far-field pressure levels.

Additional illustrative results show predictions of the far-field pressure produced by
periodic, unsteady loading on an installed open rotor. These provide more realistic
examples of how the theory can be utilized to predict installed noise levels. Two different
blade loading cases have been considered. The first corresponds to an ‘impulsive’ point
force, which has maximum amplitude as the blade passes through the azimuthal angle φ =

0°. It is hypothesized that this loading case produces a sound field which would be similar
to that produced by the interaction of a pylon wake with a rotor blade. The incident sound
field varies significantly with azimuthal location, and consequently the amplitude of the
scattered sound field is highly dependent on the locations of the fuselage and the rotor. The
second case investigated is a full calculation of the interaction of a pylon–wake with a rotor.
Plots of the azimuthal directivity of the first two interaction tones are presented and the
effect of cylinder scattering on the radiated field is clearly observed. A cursory investigation
of the effect of the position of the rotor relative to the fuselage is also presented. It is shown
that the azimuthal directivity of the scattered field varies strongly with rotor position.
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†This requires, in some instances, further applications of Graf’s Addition Theorem, and some significant
algebraic manipulations.
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