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Abstract—In this article we study robust speaker recognition
in far-field microphone situations. Two approaches are investi-
gated to improve the robustness of speaker recognition in such
scenarios. The first approach applies traditional techniques based
on acoustic features. We introduce reverberation compensation
as well as feature warping and gain significant improvements,
even under mismatched training-testing conditions. In addition,
we performed multiple channel combination experiments to
make use of information from multiple distant microphones.
Overall, we achieved up to 87.1% relative improvements on
our Distant Microphone database and found that the gains hold
across different data conditions and microphone settings. The
second approach makes use of higher-level linguistic features.
To capture speaker idiosyncrasies, we apply n-gram models
trained on multilingual phone strings and show that higher-
level features are more robust under mismatching conditions.
Furthermore, we compared the performances between multi-
lingual and multi-engine systems, and examined the impact
of number of involved languages on recognition results. Our
findings confirm the usefulness of language variety and indicate
a language independent nature of this approach, which suggests
that speaker recognition using multilingual phone strings could
be successfully applied to any given language.

Index Terms—Robust Speaker Recognition, Far-field Micro-
phones, Multilingual Phone Strings, Mismatched Conditions

EDICS Category: SPE-SPKR

I. INTRODUCTION

Automatic speaker recognition has developed into an im-
portant technology and is lately perceived to be crucial to var-
ious speech-aided applications. Traditional approaches, such
as Gaussian Mixture Models (GMM) [4] achieve very high
accuracies for speaker identification and verification tasks on
high quality data when training and testing conditions are
well controlled. However, real-world speech-aided applications
require to handle a large variety of speech signals, corrupted by
adverse environmental conditions (noise, background, chan-
nel), and mismatched training-testing conditions, i.e. scenarios,
in which speaker models were trained in one signal condition
but deployed in different conditions.

GMM-based systems are known to degrade significantly
under adverse and mismatched conditions, often below the
threshold of being useful to real-world applications. This
degradation becomes even more severe when the speech
signals are captured from the distance [5]. However, while far-
field speech recognition has been investigated for some time,
far-field speaker recognition has not received much attention
yet.

This paper describes our efforts to improve the performance
of speaker recognition in far-field situations, focusing on
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meeting scenarios that are recorded with multiple distant
microphones. We tackle this problem by two approaches
that differ in the level of applied linguistic knowledge. Our
low-level approach follows the traditional GMM techniques,
applying acoustic features. Here, we introduced reverberation
compensation, feature warping, and multiple channel combina-
tion techniques to alleviate the issues of acoustic mismatches.
In the high-level approach we explore the potential of phonetic
speaker information and speaker pronunciation idiosyncrasy.

II. DATABASES

We use three distant microphone databases that differ in
microphone positioning, room characteristics, and speaking
style for evaluation, in order to demonstrate the robustness
of our approaches and to compare results across sites.

A. ICSI Meeting Database

The ICSI Meeting Database [3] contains 75 meetings with
simultaneous multi-channel audio recordings collected at the
International Computer Science Institute (ICSI) in Berkeley.
We selected 24 out of a total of 53 speakers for training and
testing based on the speakers’ position with respect to the
microphone and their total speaking time. Figure 1 illustrates
the distant table microphone arrangement in the ICSI meeting
room and indicates the position of the selected speakers. The
table microphones are desktop omni-directional Pressure Zone
Microphones (PZM). They were arranged in a staggered line
along the table center. We randomly selected 90 seconds of
speech per speaker from the meetings as training data. The
remaining speech was used for testing, which leads to 397
test trials in total for all speakers. Test segments longer than
20 seconds were split into 20 second chunks.
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Fig. 1. Distant table microphone setup in ICSI meetings

B. 2D Distant Microphone Database

The 2D Distant Microphone database (2D DMD) collected
at the Interactive Systems Labs in 2000 [19] contains record-
ings from microphones at various distances. Similar to the
ICSI setup, the microphones were arranged in a staggered
line along the table center. However, there were 8 microphones
used in total, one close-talking Sennheiser headset microphone
(Dis0), one Lapel microphone (DisL) attached to the speaker’s
lapel, and six additional Lapel microphones, mounted on
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microphone stands positioned at distances of 1 foot (Dis1),
2 feet (Dis2), 4 feet (Dis4), 5 feet (Dis5), 6 feet (Dis6) and 8
feet (Dis8) to the speaker, respectively.

Figure 2 displays the microphone distance arrangement
with respect to the speaker (top) and that all microphones
are positioned in the same vertical space, but not the same
horizontal one (bottom), hence the name “2D” database.
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Fig. 2. Microphone setup in 2D DMD collection

The database consists of 30 speakers (16 female, 14 male).
Each speaker recorded five sessions using all eight micro-
phones in parallel. The speakers sit at the table and read
articles. The articles were different for each session. For each
speaker we randomly select 60 seconds from the first session
as training data. The remaining data was split into 20-seconds
segments and used as test trials, summing to 60 test trials.

C. 3D Distant Microphone Database

We collected a second Distant Microphone Database (3D
DMD) [14] to investigate robust speaker recognition with dis-
tant microphones arranged in the 3D space. Five microphones
(labeled as 1 to 5) are hanging from the ceiling, while three
microphones (6, 7, and 8) are mounted on the meeting table,
as depicted in Figure 3 (left-hand side). The right hand-side of
Figure 3 illustrates the positioning of these 8 microphones with
respect to the speaker. The cubical grid defines the distances
of the microphones to the speaker. A grid unit corresponds to
0.5 meters. The recording room of the 3D DMD was quieter
and slightly smaller than in the 2D DMD setup.
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Fig. 3. Microphone setup in 3D DMD collection

For the recordings, we used miniature cardioid condenser
microphones that are very similar to omni-directional mi-
crophones. Since the speaker (sound source) is not omni-
directional, the microphones will receive different signals even
when they have the same Euclidean distance to the speaker.
Therefore, we defined the distance between the microphone
(receiver) and the speaker (sound source) to be the Euclidean
grid distance, which is penalized by both the horizontal and

vertical angles between the speaker and the microphone. For
example, the distance of channel 5 is computed as:

D(5) =

√
42 +52 +42

cos(arctan( 4
5 ))cos(arctan( 4√

42+52
))

= 11.4 (1)

which is the Euclidean distance in both horizontal and vertical
planes divided by the cosine values of the angle in horizontal
plane and vertical plane, respectively. For Dis6, Dis7, and
Dis8, no vertical angle penalty was applied since the speaker
is positioned in the same horizontal plane as the table micro-
phones. The distance calculations gave D(1) = 14.5,D(2) =
D(3) = D(8) = 10,D(4) = 12,D(5) = 11.4,D(6) = 4.3, and
D(7) = 2.

The 3D DMD consists of 24 speakers (4 female, 20 male).
We recorded one session per speaker, in which they were asked
to talk about 10 given topics in a spontaneous speaking style.
The duration varies from 8 minutes to 20 minutes. As training
data, we randomly picked two minutes of speech from the first
80% of a speaker’s recording. The remaining 20% of speech
was split into 20 seconds segments, leading to a total of 183
test trials over all speakers. Although the fact that test and
training data are taken from the same session may result in
optimistic estimates, such experimental design allows us to
focus on far-field effects. All test speakers are assumed to be
enrolled in the system, i.e. we perform a closed-set speaker
recognition task.

III. FEATURE PROCESSING FOR FAR-FIELD

A. Reverberation Compensation

Speech signals recorded by a distant microphone are more
prone to be degraded by additive background noise and
reverberation. Considering room acoustics as a linear shift-
invariant system, the receiving signal y(t) can be written as

y[t] = x[t]∗h[t]+n[t] (2)

where the source signal x[t] is the clean speech, h[t] is the
impulse response of the room reverberation, and n[t] is the
room noise. Cepstral Mean Subtraction (CMS) [2] has been
successfully used to compensate the convolution distortion.
In order for CMS to be effective, the length of the channel
impulse response has to be shorter than the short-time spectral
analysis window, which is usually 16ms-32ms. Unfortunately,
the duration of the impulse response of reverberation usually
has a much longer tail, more than 50ms. Therefore, traditional
CMS will not be as effective under these conditions.

Following the work of Pan [19], we separate the impulse
response h[t] into two parts h1[t] and h2[t], where h[t] = h1[t]+
δ(t −T )h2[t]

h1[t] =

{

h[t] t < T

0 otherwise

h2[t] =

{

h[t +T ] t ≥ 0

0 otherwise

We rewrite formula (2) as y[t] = x[t] ∗ h1[t] + x[t − T ] ∗
h2[t] + n[t]. h1[t] is a much shorter impulse response with
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length smaller than the DFT analysis window, thus it can be
compensated by the conventional CMS. We treat x[t−T ]∗h2[t]
similar to additive noise n[t], and apply the noise reduction
technique based on spectrum subtraction. Assuming the noise
x[t − T ] ∗ h2[t] + n[t] could be estimated from y[t − T ], the
spectrum subtraction is performed as

X̂ [t,ω] = max(Y [t,ω]−a ·g(ω)Y [t −T,ω],b ·Y [t,ω])

where a is the noise overestimation factor and b is the spectral
floor parameter to avoid negative or underflow values. We
can empirically estimate the optimum a, b and g(ω) on a
development dataset. We found that the system performance
is not sensitive to T . Within the range of 20-40 ms there is no
significant difference on the effect of the spectra subtraction.
However outside that range, there is obvious performance
degradation. For the recording setup, we found a = 1.0, b = 0.1
and g(ω) = |1−0.9e jω| to be optimal in most changing condi-
tions, based on development data described in [19]. Standard
CMS was applied after spectrum subtraction to eliminate the
effect of h1[t].

B. Feature Warping

The feature warping method applied here [1] warps the
distribution of a cepstral feature stream to a standardized
distribution over a specified time interval. The warping can be
considered as a nonlinear transformation T , which transforms
the original feature X to a warped feature X̂ , i.e., X̂ = T (X ).
This can be implemented by CDF (Cumulative Distribution
Function) matching as described in [6], which warps a given
feature such that its CDF matches a desired distribution, for
example the normal distribution. This method assumes that
the dimensions of the Mel Frequency Cepstral Coefficient
(MFCC) vectors are independent. Therefore, each dimension
is processed as a separate stream. The CDF matching is
performed over short time intervals by shifting a window, and
only warping the central frame of that window. The warping
executes as follows:

• for i = 1, · · · ,d where d is the feature dimension
• sort features of dimension i in ascending order in a given

window
• warp the raw feature value x in dimension i of the

central frame to its warped value x̂, which satisfies
φ =

∫ x̂
−∞ f (y)dy, where f (y) is the probability density

function (PDF) of the standard normal distribution, i.e.
f (y) = 1√

2π
exp(− y2

2 ) and φ is its corresponding CDF
value. Suppose x has a rank r and the window size is N.

Then the CDF value can be approximated as φ =
(r− 1

2 )
N

• find x̂ by lookup in a standard normal CDF table.

In our experiments we set the window size to 300 frames
and the window shift to one frame. Zeros are padded at the
beginning and at the end of the raw feature stream.

C. Experiments on Noise Compensation

Throughout this paper the system performance is measured
using closed-set speaker identification accuracy, which corre-
sponds to the percentage of correctly recognized test trials

over all test trials. This GMM-based system was evaluated in
NIST CLEAR06 and CLEAR07 evaluations and achieved very
competitive results.

The front-end processing relies on 13-dimensional MFCC
signal analysis every 10ms. Non-informative frames are re-
moved by performing speech detection based on normalized
energy, with an empirically set threshold that is applied to
all microphone channels. The mean feature vector in CMS is
computed on the informative frames only, all non-informative
frames are discarded from training as well as from testing.
The baseline system (baseline-CMS) consists of the follow-
ing components (1) energy-based speech detection, (2) 13-
dimensional MFCC front-end processing and CMS, and (3)
128-mixture GMMs per speaker model trained with the EM
algorithm. The ‘improved baseline system (RC+Warp+CMS)‘
varies from the baseline system only in applying reverberation
compensation (RC) and feature warping (Warp) in addition to
CMS in the front-end processing.

TABLE I
Baseline system (baseline-CMS) performance (in %) on 3D DMD

Test
Train

Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8

Ch1 95.6 94.0 76.0 83.6 72.7 77.6 71.6 83.1
Ch2 61.2 100.0 86.3 70.0 84.2 94.0 89.1 88.0
Ch3 38.3 63.4 98.4 49.2 59.0 71.6 78.7 78.7
Ch4 71.0 83.1 70.5 87.4 59.6 83.1 77.6 84.2
Ch5 54.1 86.9 76.0 59.6 91.8 85.3 84.7 84.7
Ch6 49.2 77.1 78.1 47.0 76.5 90.7 90.7 76.0
Ch7 38.8 68.9 75.4 52.5 72.1 86.3 92.9 80.9
Ch8 62.8 85.3 78.1 65.0 86.9 85.3 89.6 95.1

1) Results of the Baseline System: Table I presents the
baseline speaker recognition accuracies on the 3D DMD.
Rows refer to training channels and columns refer to test
channels. Bold numbers indicate that accuracies of matched
training-testing conditions (i.e. speaker models trained and
tested on the same channel) are much higher than accuracies
of mismatched conditions (off the diagonal cells). From this
table, we also observe large differences in recognition results
among training and test pairs. For example, the performance
for training on CH1 and testing on CH2 (94%) differs a lot
from the performance when training on CH2 and testing on
CH1 (61.2%). This is expected as the quality of test speech has
a large impact on the system performance. Since microphone 1
is hanging from the ceiling behind the speaker (see Figure 3) it
receives more reverberations, therefore the CH1 signal is more
distorted. Also, CH1 has the largest distance according to our
distance definition in section II-C. Consequently, the average
performance on CH1 is the worst among all the channels as
shown in Figure 4.

Figure 4 shows the correlation between recognition ac-
curacy and channel distances on the 3D DMD. Apparently
the performance is a function of the distance value: after
surpassing a critical distance (mic 1,4,5) the performance
decreases significantly. The worst performance is achieved for
the two ceiling microphones, which are mounted in the back
of the speaker.

Figure 5 summarizes for each test channel the performance
of the baseline system (baseline-CMS) under matched and
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Fig. 4. Correlation between performance and distance on the 3D DMD
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Fig. 5. Baseline performance (matched vs. mismatched) on 3D DMD

mismatched conditions. The curve for the matched condition
corresponds to the bold numbers in table I. The curve for mis-
matched conditions gives the average performance, calculated
over each but the diagonal cell of a column in Table I. The bars
of the curve for mismatched conditions in Figure 5 refer to
the performance range. The average accuracy under matched
conditions is 94.0% and compares to 74.2% for mismatched
conditions, which proves that the system performance degrades
severely under mismatched conditions. Furthermore, the range
varies strongly between the different channels, and tends to be
smaller for the closer microphones.

TABLE II
RC and Warp impact on 3D DMD

System Matched Mismatched
baseline-CMS 94.0 74.2
RC+CMS (relative gain) 94.8 (13.3%) 78.1 (15.1%)
Warp+CMS (relative gain) 96.4 (40.0%) 79.1 (19.0%)
RC+Warp+CMS (relative gain) 96.7 (45.5%) 84.9 (41.6%)

2) Results from the Improved Baseline System: Table II
shows the performance and relative improvements over the
baseline results on the 3D DMD when applying reverberation
compensation, feature warping, and their combination. Each
approach outperforms the baseline under both, matched and
mismatched conditions. Furthermore, the combination of both
gives additional gains, indicating that the two techniques take
care of different signal degradation effects.

Figure 6 summarizes the gains achieved by reverberation
compensation and feature warping (RC+Warp) on all three
data sets. Significant improvements were achieved under both
matched and mismatched conditions on all three data sets. On
average, we achieved 45.5% and 41.6% relative improvements
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Fig. 6. Gains from RC+Warp on 3D (top), 2D (mid), and ICSI (bottom)
all three figures share the same legend as shown in the top figure

under matched and mismatched conditions on 3D DMD,
20.0% and 17.7% on 2D DMD, and 31.9% and 34.1%
on the ICSI Meeting Database. These results confirm that
the applied methods are robust under different microphone
positionings and distances, as well as for different speaking
styles. Consequently, we will use both techniques in all
following experiments and refer to this improved system as
“improved baseline (RC+Warp+CMS)”. In the next section we
will investigate the concept of multiple channel combination
for further improvements.

IV. MULTIPLE CHANNEL COMBINATION

The set-up of hands-free multiple distant microphones is
cheap and easy compared to arrangements such as microphone
arrays, and becomes common practice in applications like
meetings and lectures. In order to benefit from such a multiple
channel setup, we investigated four approaches to combine
information from multiple channels.
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A. Data Combination (DC)

In the “Data Combination” (DC) approach, speaker models
are trained by combining data from multiple channels, here
from all mismatching channels, i.e. for the evaluation on
channel 1, the speaker models are trained on all but channel
1 data. In the 3D DMD case this would lead to an increase
of training data by a factor of 7 (3D DMD has 8 channels).
However, since we aim to study the effect of data variety rather
than data volume, we limited the training data to the same size
as in the matched condition. In case of 3D DMD the training
data for the speaker on channel 1 (CH1) is formed by randomly
selecting a fraction of 1

7 th data from the mismatched channels
(CH2 to CH8).

B. Frame based Score Competition (FSC)

In the “Frame based Score Competition (FSC)” approach
we compute the likelihood of observing a speaker based
on a set of GMM models, where the term “score” refers
to the log likelihood. Before explaining the FSC approach
we briefly review the likelihood calculation and decision
rules in a GMM-based system. The GMM Θk of speaker k
is defined as a mixture of M Gaussian distributions Θk =
(λm,N(µm,Σm)) ,m = 1,2, · · · ,M and the identification deci-

sion is given by s∗ = argmax
k

(

LL(X |Θk)
)

,k = 1,2, · · · ,S,

where s∗ is the recognized speaker identity, S is the total num-
ber of enrolled speakers, and LL(X |Θk) is the log likelihood
score that the entire test feature set X was generated by the
GMM Θk.

The likelihood of an observation (here for feature vector xn)
given a GMM model Θk of speaker k is estimated as

p(xn|Θk) =
M

∑
i=1

λi
√

2π|Σi|
exp{−(xn −µi)

T Σ−1
i (xn −µi)

2
} (3)

The feature vectors X are assumed to be independent and
identically distributed (i.i.d.). Accordingly, the likelihood of
observation sequence X given Θk is estimated as

p(X |Θk) =
N

∏
n=1

p(xn|Θk) (4)

LL(X |Θk) =
N

∑
n=1

log p(xn|Θk) =
N

∑
n=1

LL(xn|Θk) (5)

Since a multiple microphone setup emits speech samples
from multiple channels, we can build multiple GMM models
for each speaker k, one for each channel i and refer to them
as Θk,Chi . For a total number of C channels we get Θk =
{Θk,Ch1 , . . . ,Θk,ChC} models for speaker k.

The idea of the FSC approach is to use the set of multiple
GMM models rather than a single GMM model. In each
frame we compare the incoming feature vector of channel Chh

to all GMMs {Θk,Ch1 , . . . ,Θk,Chh−1 , . . . ,Θk,Chh+1 , . . . ,Θk,ChC} of
speaker k but the GMM of the test channel Chh. The highest
log likelihood score of all GMM models is chosen to be the
frame score. Finally, the log likelihood score of the entire test

feature vector set X from channel h is estimated as

LL(X |Θk) =
N

∑
n=1

LL(xn|Θk) =
N

∑
n=1

max{LL(xn|Θk,Ch j)}C
j=1, j 6=h

(6)
This multiple-channel competition process differs from the

one-channel standard scoring process in that the per-frame log
likelihood scores are not necessarily derived from the same
microphone. Figure 7 illustrates how the standard procedure
gets replaced by the circled portion to form the “Frame based
Score Competition” speaker recognition approach.
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Fig. 7. Speaker recognition procedure with FSC

C. Segment based Score Fusion (SSF)

The term “segment” refers to the entire test utterances, i.e.
the complete set of test feature vectors X . In the “Segment
based Score Fusion” approach, we compute the score of a test
utterance from channel Chh given the set of C GMM models
Θk = {Θk,Ch1 . . .Θk,ChC} for speaker k by a fusion of all GMM
models scores but the one from Θk,Chh .

LL(X |Θk) =
C

∑
j=1, j 6=h

w j ·LL(X |Θk,Ch j ) (7)

The fusion weights w j are simply set to be equal across
channels.

D. Segment based Decision Voting (SDV)

In the “Segment based Decision Voting” approach, the
entire set of feature vectors X is evaluated multiple times, by
particular speaker models that were trained on one mismatched
channel. As a consequence, the speaker identity decision rule
delivers (C − 1) identity values, one for each mismatched
channel. The final decision for the speaker’s identity is made
by picking the identity value which appears the most often
among the C−1 values. In case of a tie, we pick the one with
the highest log likelihood score.



E. Experimental Results on Mismatched Conditions

We investigated the performance of all proposed multiple
channel combination approaches on the three described data
sets. Figure 8 presents the performance improvements under
mismatched conditions for 3D DMD (top), 2D DMD (middle)
and ICSI (bottom) and shows that significant improvements
were achieved for all combination approaches.
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Fig. 8. Multiple channel combination on 3D (top), 2D (middle), ICSI (bottom)
All three figures share the same legend as shown in the top figure

On average, “Data Combination” gives 72.8% relative
improvement over the improved baseline (RC+Warp+CMS)
and 84.1% relative improvement over the baseline (baseline-
CMS), i.e. DC achieves additional gains over reverberation
compensation and feature warping. Since we controlled the
amount of data in the DC approach to be the same as in the
baseline, the gains prove that more variability in training data
significantly improves the robustness of speaker recognition.
77.8% relative improvement was achieved by the “Frame
based Score Competition”, 62.4% by the “Segment based
Score Fusion” and 57.9% by “Segment based Decision Voting”
over the improved baseline (RC+Warp+CMS). This indicates
that it is beneficial to use information from multiple sources,
even though each single one is not very powerful. We also
tested the DC approach using all data from all channels and

observed 76.9% relative improvement over the improved base-
line (RC+Warp+CMS). Compared to the 72.8% above from
the controlled data amount, this testifies that the significant
improvement is mostly due to the larger variability rather than
the larger amount in training data. Even higher relative gains
are achieved on the 2D DMD. We see 81.9%, 91.0%, 77.4%,
and 64.7% relative improvements by DC, FSC, SSF, and SDV,
respectively. On the ICSI Meeting Database we got 9.7%,
11.4%, 6.8%, 3.5% relative improvement by DC, FSC, SSF,
and SDC over the improved baseline (RC+Warp+CMS) under
mismatched conditions. The improvement differences among
the three databases might be a result of the range of speaking
styles (2D is read speech, 3D is spontaneous but monologue,
ICSI is meeting style). The significantly smaller gains for ICSI
might be due to the smaller number of channels, which makes
channel combination less powerful. Table III summarizes these
findings for all four multiple channel combination approaches
on the three databases and shows that the “Frame based Score
Competition” approach achieves the highest improvements,
while “Segment based Decision Voting” gives the lowest gains.
We think the reason why FSC approach works best among
the multiple channel combination approaches is that FSC
combines multiple sources at the finest granularity, i.e. at
the frame level, while the other approaches combine at the
segment level.

TABLE III
Relative improvement by multiple channel combination

Data Combination
Approach

3D DMD 2D DMD ICSI

Data Combination 72.8% 81.9% 9.7%
Frame based Score Competition 77.8% 91.0% 11.4%
Segment based Score Fusion 62.4% 77.4% 6.8%
Segment based Decision Voting 57.9% 64.7% 3.5%

F. Matched and Mismatched Conditions

In the experiments above we focused on the performance
impact of multiple channel combination approaches under
mismatched channel conditions. For this purpose we using
only data of mismatched channels. However, this does not
imply that we always assume to have prior knowledge about
the channel origin of the test signal. The intention was rather
to prove that very high speaker recognition accuracies can
be achieved, even when no data of particular microphone
positions are available. In this section we investigate if the
performance can be further improved by including training
material of the matched channel. Figure 9 compares the per-
formance of multiple channel combination with the improved
baseline (RC+Warp+CMS) when all channel data including
the matched channel are used for training. The results show
that on average DC and FSC outperform the improved base-
line, while SSF and SDV do not gain but stay within close
range.

The strength of the multiple channel combination shows
when training data gets scarce. Figure 10 compares the per-
formance of the improved baseline (RC+Warp+CMS) with
FSC for varying number of training samples (in seconds).
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Obviously, the performance differences increase with smaller
amount of training data. With 120 seconds of training material,
the relative improvements of FSC over the improved baseline
(RC+Warp+CMS) is 24.2%, while with 30 seconds the gain
increases to 62%.
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V. FAR-FIELD PHONETIC SPEAKER RECOGNITION

Recently, the focus in automatic speaker recognition has
extended from utilizing low-level acoustic features to “higher-
level” features, originally proposed by [12] in the context of
speaker recognition. Most prominent example of this phonetic
speaker recognition are phonetic n-gram models, which are
supposed to capture speaker idiosyncrasies and other phonetic
and lexical speaker patterns [7]–[11], [13]. The basic idea is
to decode speech by various phone recognizers and to use the
relative frequencies of phone n-grams as features for training
and evaluating speaker models. In this section we describe
our extension of phonetic speaker recognition to the far-field
speaker recognition task. We enrich existing algorithms by
applying a larger number of language independent phone
recognizers, compare multi-lingual to multi-engine system
combinations, and study the number of languages involved
in decoding the speech.

A. Phonetic Speaker Model Training and Evaluation

To decode the speaker’s speech into phone sequences, we
used phone recognizers from the GlobalPhone project [17]
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Fig. 11. Phoneme error rate vs. modeled phonemes

available in eight different languages Mandarin Chinese (CH),
German (DE), French (FR), Japanese (JA), Croatian (KR),
Portuguese (PO), Spanish (SP), and Turkish (TU). Figure 11
shows the phoneme error rate in relation with number of
phonemes modeled in each phone recognizer. Phone recogni-
tion is performed with a Viterbi search using a fully connected
null-grammar network of mono-phones with equal-probable
language model, i.e. no prior knowledge about phone statistics
is applied to the decoding. For further details on the phone
recognizers we refer the reader to [16]. Silence labels of
duration greater than 0.5 seconds in the obtained phonetic
sequences were wrapped together as an end of utterance to
capture information about how a speaker interacts with others
by for example pausing frequently.

Based on the post-processed phonetic sequences, we gen-
erated Language-dependent Speaker Phonetic Models (LSPM)
by applying n-grams modeling. Bigram models were estimated
from the CMU-Cambridge Statistical Language Modeling
Toolkit (CMU-SLM) [15]. In the following, LSPMk

i refers to
the language-dependent phonetic bigram model of speaker k
in language i. To train a speaker model for speaker k, each
of the M = 8 phone recognizers (PR1, . . . ,PRM) decodes the
training data of speaker k to produce M phonetic sequences.
Based on these phonetic sequences, M LSPMs are created for
speaker k. No transcriptions of speech data are required at
any step of model training. To recognize a speaker, each of
the M phone recognizers PRi of language i (the very same as
used for generating the phonetic sequences) decodes the test
speech. The resulting M phonetic strings are scored against
k LSPMs in language i that matches the language of the
phone recognizer. The scoring is performed by calculating the
perplexity PPk

i of the test sequence on LSPMk
i . Finally, the

perplexity scores from all M languages are combined into a
final decision score IDSk for speaker k, with an (equal) fusion
weight wi for each language.

IDSk =
M

∑
i=1

wi ·PPk
i

An unknown speaker is identified as s∗ by:

s∗ = arg
S

min
k=1

{IDSk}
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where S refers to the total number of enrolled speakers.
We refer to this approach as LSPM-pp and illustrate the
recognition process in Figure 12 for M = 5.

For the LSPM-pp approach the data amount per speaker is
crucial in order to estimate reliable probabilities for the bigram
speaker models. Therefore, we tested this approach on the 2D
DMD as this database has the most data per speaker. The
first four sessions in 2D DMD are used for training (about 7
minutes per speaker, which corresponds to roughly 5000 phone
tokens). The evaluation is carried out on the remaining fifth
session, resulting in about one minute of speech per speaker,
corresponding to 1000 phone tokens.

We developed two systems for phonetic speaker recognition.
The first uses the 8 phone recognizers from the 8 Global-
Phone languages, refered to as the “multi-lingual system”.
The second system called “multi-engine system” was produced
by English phone recognizers trained on multiple conditions
(conversational telephone speech - SWB, spontaneous wide-
band dialogues - Verbmobil, and planned broadcast news
monologues - BN). Since the first system draws information
from complementary phone recognizers, we anticipate greater
robustness. Furthermore, the multi-lingual system is expected
to be somewhat language independent.

B. Multilingual LSPM-pp Speaker Identification Results

TABLE IV
Performance per language on Dis0 under matched condition (in %)

Test Duration
Language

60s 40s 10s 5s

CH 100 100 56.7 40
DE 80 76.7 50 33.3
FR 70 56.7 46.7 16.7
JA 30 30 36.7 26.7
KR 40 33.3 30 26.7
PO 76.7 66.7 33.3 20
SP 70 56.7 30 20
TU 53.3 50 30 16.7
fusion of all languages 96.7 96.7 96.7 93.3

Table IV gives a breakdown for language-dependent speaker
recognition accuracy of the LSPM-pp approach at different test
length under matched conditions for distance Dis0. It shows
that the performance decreases significantly with shorter test
duration on single languages but that the fusion of multilin-
gual information from all eight languages can overcome this
shortfall. Table V compares the multilingual LSPM-pp recog-
nition results for all distances on varying test durations under
matched and mismatched conditions. In case of mismatched
conditions, we apply all D×M phonetic models (LSPMk

i,d) for
speaker k, where D is the total number of distant channels, i.e.
we do not assume to know the test channel. For this scenario,
final decision score is computed as:

IDSk =
M

∑
i=1

wi ·
D

min
d=1

{PPk
i,d}

where PPk
i,d is the decision score in language i on the distant

channel d. The decision rule is given as:

s∗ = arg
S

min
k=1

{IDSk}

where k is the index of enrolled speakers and S is the total
number of enrolled speakers. Since we used all the channels
under mismatched conditions, we sometimes see better per-
formance than under matched condition.

TABLE V
LSPM-pp performance under matched and mismatched condition (in %)

Test Length Matched Mismatched
Channel 60s 40s 10s 5s 60s 40s 10s 5s
Dis0 96.7 96.7 96.7 93.3 96.7 96.7 96.7 90
DisL 96.7 96.7 86.7 70.0 96.7 100 90.0 66.7
Dis1 90.0 90.0 76.7 70.0 93.3 93.3 80.0 70.0
Dis2 96.7 96.7 93.3 83.3 96.7 96.7 86.7 80.0
Dis4 96.7 93.3 80.0 76.7 96.7 96.7 93.3 80.0
Dis5 93.3 93.3 90.0 76.7 93.3 93.3 86.7 70.0
Dis6 83.3 86.7 83.3 80.0 93.3 86.7 83.3 60.0
Dis8 93.3 93.3 86.7 66.7 93.3 93.3 86.7 70.0

C. Multi-Engine LSPM-pp Speaker Identification Results

Implicit to our strategy is the assumption that phone
strings originating from different language-dependent phone
recognizers yield crucial complementary information. In the
following experiment we explore if the success of this ap-
proach indeed results from language diversity or from simply
using different recognizers. If the latter is the case, a multi-
engine approach, in which phone recognizers are trained on
the same language but different conditions, might perform
equally well. To test this hypothesis, we trained three English
phone recognizers on different channel conditions (telephone,
channel-mix, clean) and speaking styles (highly conversa-
tional, spontaneous, planned) using data from Switchboard,
Broadcast News, and Verbmobil.

The experiments were carried out on matched conditions
on all distances for 60 second chunks. For fair comparison
we generated all possible language triples out of the set of
8 languages ((8

3) = 56 triples) and calculated the average,
minimum and maximum performance over all triples. The
results are given in Table VI.
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TABLE VI
Performance comparison of multi-lingual vs. multi-engine (in %)

System Multilingual Multi-Engine
Test Channel Avg (Min - Max)
Dis0 87.92 (66.7 - 100) 93.3
DisL 88.21 (63.3 - 96.7) 86.7
Dis1 83.57 (66.7 - 93.3) 86.7
Dis2 93.63 (86.7 - 96.7) 76.7
Dis4 81.43 (56.7 - 96.7) 86.7
Dis5 86.07 (66.7 - 96.7) 83.3
Dis6 81.96 (66.7 - 93.3) 63.3
Dis8 87.14 (63.3 - 93.3) 63.3

The results show that the multiple-engine approach lies in
all but two cases within the range of the multiple-language
approach. However, the best performance of the multiple-
language approach mostly outperforms the multiple-engine
approach, i.e. most of the language triples achieve better
results than the single language multiple-engines. We conclude
that multiple English language recognizers provide less useful
information than multiple language phone recognizers, at least
for the given choice of multiple engines in the context of
speaker identification. The fact that the multiple engines were
trained on English, i.e. the same language which is spoken in
the speaker identification task, whereas the multiple languages
were trained on 8 languages but English, makes the multiple-
language approach even more appealing as it indicates lan-
guage independence and thus great potential for portability to
speaker recognition in any language. Further experiments in
which the multi-engine recognizers were combined with the
multilingual recognizers did not give additional improvements.

D. Number of Languages vs. Identification Performance

We investigated the impact of the number of languages,
i.e. the number of phone recognizers on speaker recognition
performance. Figure 13 plots the speaker identification rate
over the number k of languages on matched conditions on 60
seconds data. For these experiments, we applied phone recog-
nizers from GlobalPhone available in 12 languages, the 8 as
described above plus Arabic(AR), Korean(KO), Russian(RU),
and Swedish(SW). The performance is given in average over
the m out of 12 language m-tupel

(12
m

)

for Dis0. The average
speaker identification rate increases for all distances with the
number of languages. For some distances a saturation effect
takes place after 6 languages involved (such as Dis0 and Dis1),
while for others distances even adding the 12th language has
a positive effect on the average performance (such as Dis4,
Dis6, and DisL). It also shows that the maximum performance
of 96.7% can already be achieved using two languages.
Among the total of

(12
2

)

= 66 language pairs, CH-KO and
CH-SP gave the best results. However, we were not able to
derive an appropriate strategy to predict the best language
tupels. Therefore, it is comforting that the chances of finding
suitable language tupels get better with the number of applied
languages. While only 4.5% of all 2-tupels achieved highest
performance, 35% of 4-tupels, 60% of all 6-tupels, and 88%
of all 10-tupels gave optimal performance. We furthermore
analyzed whether the performance gain is related to the total

number of phones rather than the number of different engines,
but did not find evidence for such a correlation.
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E. GMM versus Phonetic Approach

Finally, we compared the traditional GMM-based approach
incorporating reverberation compensation and feature warping
techniques to the phonetic approach. Figure 14 shows the
comparison between three systems for mismatched conditions
on 2D DMD, the GMM system with and without channel
combination and the phonetic system. As can be seen, the
phonetic approach outperforms the GMM system in the single
channel condition. Overall, the GMM system with multiple
channel combination achieves the best performance. Addition-
ally, we used simple linear fusion to combine the GMM and
the phonetic systems but did not see any additional gains. More
elaborated fusion strategies may be investigated in the future.
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VI. CONCLUSION

We studied robust speaker recognition in far-field micro-
phone situations and investigated two approaches to improve
the robustness of speaker recognition: the traditional GMM
technique based on low-level acoustic features and the pho-
netic speaker recognition technique using high-level phonetic
information. For the low-level approach we introduced rever-
beration compensation and feature warping to the feature pre-
processing step. Both methods lead to significant gains, even
under mismatched training-testing conditions. On mismatched



conditions, 41.6% relative improvement is achieved on the
3D Distant Microphone Database, 17.1% on the 2D Distant
Microphone Database, and a 34.1% on the ICSI Meeting
Database. In addition, we performed multiple channel com-
bination experiments to make use of information from multi-
ple distant microphones. Four different combination methods
were introduced “Data Combination”, “Frame based Score
Competition”, “Segment based Score Fusion”, and “Segment
based Decision Voting”. All four achieve additional gains on
mismatched conditions. Overall, we observed 72.8%, 77.8%,
62.4%, and 57.9% relative improvements over the improved
baseline (RC+Warp+CMS) on the 3D DMD. We also found
that the gains hold across the three different databases. The re-
sults indicate that variability in the training data combined with
supplementary information from multiple sources improves the
overall system robustness. Table VII summarizes the findings
for mismatched conditions.

TABLE VII
Relative gains by RC, Warp, and multiple channel combination over

baseline-CMS

Database
Approach

3D DMD 2D DMD ICSI

RC+Warp+CMS+DC 84.1% 85.1% 40.5%
RC+Warp+CMS+FSC 87.1% 92.6% 41.6%
RC+Warp+CMS+SSF 78.1% 81.4% 38.6%
RC+Warp+CMS+SDV 75.4% 71.0% 36.4%

The second approach makes use of higher-level linguistic
features. To capture speaker idiosyncrasies, we apply n-gram
models trained on multilingual phone strings and show that
higher-level features are more robust under mismatching con-
ditions. Our results show that the phonetic approach is also
very robust against channel mismatch, however one major lim-
itation of phonetic speaker recognition is the requirement for
large amounts of training data to reliably estimate phonetic n-
gram models. Furthermore, we compared the performances be-
tween multi-lingual and multi-engine systems, and examined
the impact of number of involved languages on recognition
results. Our findings confirm the usefulness of language variety
and indicate a language independent nature of this approach,
which suggests that speaker recognition using multilingual
phone strings could be successfully ported to any language.
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