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Abstract
Ghost imaging (GI) facilitates image acquisition under low-light conditions by single-pixel measurements and
thus has great potential in applications in various fields ranging from biomedical imaging to remote sensing.
However, GI usually requires a large amount of single-pixel samplings in order to reconstruct a high-resolution
image, imposing a practical limit for its applications. Here we propose a far-field super-resolution GI technique
that incorporates the physical model for GI image formation into a deep neural network. The resulting hybrid
neural network does not need to pre-train on any dataset, and allows the reconstruction of a far-field image with
the resolution beyond the diffraction limit. Furthermore, the physical model imposes a constraint to the network
output, making it effectively interpretable. We experimentally demonstrate the proposed GI technique by imaging
a flying drone, and show that it outperforms some other widespread GI techniques in terms of both spatial
resolution and sampling ratio. We believe that this study provides a new framework for GI, and paves a way for its
practical applications.

Introduction
Conventional imaging methods exploit the light reflec-

ted or scattered by an object to form its image on a two-
dimensional sensor that has millions of pixels. However,
ghost imaging (GI), an advanced imaging modality based
on the second-order correlation of quantum or classical
light, uses a single-pixel detector instead to record the
reflected or scattered light, yielding a one-dimensional
(1D) bucket signal1–6. In some cases, an additional
position sensitive detector is required to measure the
illumination patterns. Although neither detector directly
records a resolvable image of the object, one can employ
an intuitive linear algorithm to reconstruct its image by
spatial correlating the acquired time-varying patterns and
the synchronized bucket signal. As it uses a single-pixel

detector to collect the photons that interact with the
object, GI has significant advantages over conventional
imaging modalities in terms of detection sensitivity, dark
counts, spectral range, and cost efficiency7,8. In addition,
with the aid of some prior information, e.g., sparsity, it is
capable of sensing compressively during data acquisi-
tion9,10. Such enhancements can provide significance in
low-light imaging where the photon counts are very low
due to scattering or absorption losses as in medical ima-
ging or remote sensing; and in non-visible waveband
imaging where the availability of silicon-based sensor
becomes expensive or impractical as in infrared or deep
ultraviolet regime.
However, in GI, a large amount of single-pixel mea-

surements is necessary because one sampling only
contains a little information about the object. Specifi-
cally, to obtain an N-pixel image one needs at least M=
N measurements to meet β=M/N= 100%, where β
represents the sampling ratio (the Nyquist sampling
criterion). In many applications such as remote sen-
sing10, a rotating ground glass (RGG) is frequently used
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to generate speckle illumination patterns compared with
other programmable modulation strategies, e.g., digital
micromirror device11 owing to its high power endurance
and cost efficiency. In this case one needs M � N
measurements to improve the signal-to-noise ratio
(SNR) of the reconstructed image due to the overlap of
different patterns9. This inevitably leads to a paradox
between the number of pixels occupied by the object
and the data acquisition time. In addition, the spatial
resolution of GI is physically limited by the grain size of
the speckle pattern on the object plane12. This is unfa-
vorable for far-field imaging as the speckle grain
becomes too large to distinguish the detailed structure
of the object13,14. Thus, an intuitive and longstanding
goal in the study of GI is to decrease β while retaining
good resolution, so as to reduce the burden of data
acquisition and produce better imaging visual effects.
However, the consequential incomplete sampling strat-
egy usually lead to ill-posedness in GI reconstruction.
Thus, suitable prior assumptions are needed to com-
pensate the missing information.
One popular approach is based on compressive sensing

(CS). CS uses sparsity as a general prior assumption and has
become a popular signal reconstruction framework15–17. It
has been widely used in various imaging systems such as
single-pixel cameras11 and compressive holography18. Spe-
cifically, given the measurements y, the CS technique usually
reconstructs the object x by solving the following iteration
problem:

min
x

k Φx� y k22 þξ k Ψx k1 ð1Þ

where Φ is the random measurement matrix and Ψ is the
transformation matrix that transforms x into a sparse
domain such as discrete cosine transform (DCT) or
wavelet. Ψx represents the corresponding transform
coefficients regularized by the l1 norm with the regular-
ization parameter ξ. Owing to the sparsity of the image of
the object and the randomness of the illumination
patterns, CS is also suitable for GI reconstruction. Such
GI using sparsity constraint, or GISC for short, enables
the reconstruction of high-quality and high-resolution
image when β < 100%7,9,13,19,20 [Fig. 1f]. In the field of GI,
CS has been used for resolution enhancement21–23,
remote sensing10, 3D imaging24, and among many
others7,8,19. However, it is still a challenging problem for
GISC to operate well in the case when β is less than the
Cramer–Rao bound16,17,22.
An alternative but increasingly important approach is

deep learning that is based on data prior assumptions25–27.
Specifically, it has shown that it allows robust GI recon-
struction of high-quality images even when β < 10% with
high computational efficiency28–31. Such GI based on deep
learning (GIDL) technique uses a deep neural network

(DNN) to learn from a large number of input–output data
pairs so as to establish a mapping relationship among
them. The experimental acquisition of such a huge train-
ing set is time consuming and laborious because one needs
at least thousands of measurements for one data pair even
for a 64 × 64 image in a proof-of-principle experiment.
Though the neural network can be trained on simulation
data30, the trained model only works well for the recon-
struction of objects that resemble those in the training set.
This challenge of generalization is one of the big issues
that need to be addressed.
Recently, Ulyanov et al.32 proposed the deep image prior

(DIP) framework that uses an untrained neural network as
a constraint for image processing tasks such as denoising,
inpainting, and super resolution. They demonstrated that
a properly designed generator network architecture itself
has an implicit bias towards natural images and thus can
be used for solving ill-posed inverse problems33. The most
significant advantage of DIP is that a generator network
can be used without training beforehand, and thus elim-
inating the need for tens of thousands of labeled data. A
similar concept has also been used for computational
imaging, such as phase retrieval34,35, CS36,37, and diffrac-
tion tomography38.
Inspired by the idea of DIP, here we propose a new GI

technique that incorporates the physical model of GI
image formation into a DNN. We hypothesize that the
image prior information introduced by an untrained
DNN can be applied to achieve better GI reconstruction
under much lower β. We term the proposed technique
as GI using Deep neural network Constraint (GIDC). It
utilizes an untrained DNN to generate high-quality and
high-resolution results. The only input it requires are a
1D bucket signal sequence I from which one needs to
reconstruct an image, together with the associated stack
of illumination patterns H, which is easily accessible in a
typical GI system [Fig. 1a]. The proposed GIDC tech-
nique is described as follows. First, we correlate the H
[Fig. 1b, top] and I [Fig. 1b, bottom] by differential ghost
imaging (DGI)39,40 and obtain a rough reconstruction of
the image. Second, we feed the resulting DGI recon-
struction into a randomly initialized neural network
(untrained). Third, we take the output of the neural
network as an estimation of a high-quality GI image and
use it to calculate a bucket signal I by using a GI image
formation model. Finally, we update the weights of
the neural network to minimize the error between the
measured and estimated bucket signal [Fig. 1c]. Along
with the error reduction [Fig. 1d], the output of the
neural network also converges to a good-quality image
[Fig. 1e]. Compared with conventional DGI and GISC
[Fig. 1f], the proposed strategy dramatically increases
the quality and resolution of GI under much lower
sampling ratio β. Compared with those state-of-the-art
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deep-learning-based methods, GIDC does not need to
train on any labeled data and thus is more flexible and
does not bias towards a specific distribution. Specifically,
our contributions include:

● We demonstrate that GIDC can reconstruct a
dramatically high SNR GI image at a very low
sampling ratio β.

● We demonstrate that GIDC can enhance the
resolution of the reconstructed image even when
the speckle grain size is larger, suggesting its
potential to break the diffraction limit.

● We perform a comparative study on the base of a
number of challenging real-world scenarios including a
flying drone and synthesized dataset, and demonstrate
that GIDC outperforms other widespread GI methods,
including DGI, GISC, and GIDL.

Results
Sampling ratio
We built a typical Pseudothermal GI system [Fig. 2a] for

data acquisition. Here we show the reconstruction results
of different objects using different methods at different
sampling ratios. The first group of results is plotted in
Fig. 2b. One can clearly see that all the binary objects
have been successfully reconstructed by GIDC, with the
number of measurements as low as 256 (β= 6.25%). We
also take DGI39,40 and GISC13 for comparison. For all the
cases (different objects and β settings), GIDC outperform
DGI and GISC both in terms of visual appearance and
quantitative evaluation index (SSIM). We observe the
same results in the cases that the object is in grayscale
[Fig. 2c]. One can clearly see that the clean and high-
contrast images reconstructed by GIDC, whereas the ones
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Fig. 1 Overview of GIDC. a Sketch of the apparatus. Speckle illumination modes generated by the RGG were divided into a reference path that was
directly measured by a pixelated camera and an object path that was measured by a single-pixel detector after interacting with the sample. b Raw
speckle patterns H (top) and intensity sequence I (bottom) measured by the camera and the single-pixel detector, respectively. c Correlating H and I
one can get a low-quality result by DGI especially when β in our case is as low as 10%. Then, we feed it into the neural networkRθ and keep it fixed.
The output of the neural network is taken as the estimated object, which is then numerically multiplied with H to generate the estimated intensity

sequence ~Ii of ith step. We measure the mean square error (MSE) between I and ~Ii as the loss function to guide the iteration of weights θ in Rθ .

d MSE of I and~Ii along with the iteration steps i from 1 to 1000. e SSIM between the reconstruction results from DGI, GISC (f), GIDC, and ground truth
(g) along with the iteration steps i from 1 to 1000
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recovered by DGI and GISC are dirty or even corrupted
by strong noise in particular when β is low (see first two
columns in Fig. 2c).
We also conducted an outdoor experiment to demon-

strate the effectiveness of GIDC. The data were acquired
by using a homemade GI LiDAR system41. The imaging
target [Fig. 2d, top] is a flying drone (DJI, Phantom 4)
hovering in the air, 50 m away from the GI LiDAR system.
The main results are plotted in Fig. 2d. One can clearly
see that the GIDC can successfully reconstruct the shape
of the drone with very high contrast. The size of the
reconstructed image is 128 × 128, meaning that the sam-
pling ratio β= 9000/16,384 ≈ 55%. The reconstructed
image by DGI and GISC plotted as well for comparison.
One can see that the image reconstructed by DGI or GISC
is corrupted by noise, and the contrast is low.

Resolution
We also experimentally demonstrated the spatial reso-

lution that GIDC can offer. It is known that as an imaging

method based on the second-order (intensity) correlation
of light, the spatial resolution of GI is theoretically limited
by the width of the mutual correlation function of the
illumination speckle patterns, measured at the object
plane42. According to this, we first calculated the nor-
malized correlation function [Fig. 3a] of the recorded
speckle patterns43, namely

gð2Þ xr; x
0
r ¼ 0

� �
¼

H1ðxrÞH2ðx0r ¼ 0Þ
� �

H1ðxrÞh i H2ðx0r ¼ 0Þ
� � ð2Þ

Then, we measured the full-width at half-max (FWHM)
to estimate the value of the speckle grain size on the
object plane. We found that it occupies 7 binned pixels in
both the horizontal and vertical directions [Fig. 3b, c],
suggesting that the diffraction limit of our experimental
GI system is 683.59 μm. More details about the system
configuration toward the GI system can be found in the
section “Methods and Materials.”
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Fig. 2 Experimental comparisons of DGI, GIDC and the proposed GIDC in terms of both sampling ratio and reconstruction SNR.
a Schematic diagram of the experimental setup. b Experiment results for binary objects. Each row in the group represents the results of the same
object reconstructed by different methods, while each column represents the results of different objects reconstructed by the same method. The
GIDC iteration step is S ¼ 500. The pixel resolution is N ¼ 64 ´ 64. c Experiment results for a grayscale object. Each row shows the results obtained by
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N ¼ 128 ´ 128
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A USAF resolution target was used to test the resolution
of different GI reconstruction methods. The main results
are plotted in Fig. 3d–i. As expected, the image recon-
structed by DGI suggests that the elements in Group 0
Element 5 are not resolvable because the linewidth
(629.96 μm) is smaller than the diffraction limit
(683.59 μm). It becomes a little bit better by using GISC,
where some elements with their linewidth smaller than
the diffraction limit (Group 1 Element 1, 500 μm) can be
distinguished. Evidentially, the proposed GIDC has the
best performance in terms of both linewidth and sharp-
ness exhibited in the reconstructed image. As shown in
Fig. 3g–i, the line pairs in Group 1 Element 4 with the
linewidth of 353.55 μm can be successfully reconstructed
by GIDC, but neither DGI nor GISC achieves the same
performance. This suggests that the proposed GIDC has
the capability of enhancing the resolution by a factor of
about 2 (683.59/353.55= 1.93) with respect to the dif-
fraction limit. More evidence can be found in Fig. 3j. In
addition to the advantages of resolution, the image
reconstructed by GIDC has much higher contrast as
evidenced by the clean background.

Discussion
In this section, we make some more in-depth discus-

sions on the performance of GIDC in comparison to DGI
and GISC. GIDL trained on two different datasets were
also considered. For the sake of quantitative evaluation,
we examine on simulation data in this section.

Accuracy
Two different β settings were studied here, i.e., β=

12.5% and β= 25%, corresponding to the number of
measurements M= 512 and 1024, respectively. The
results are shown in Fig. 4. Apparently, the images
reconstructed by GIDC have the best fidelity for all the
sample objects we studied here. In the case of β ¼ 12:5%,
we observed that the reconstructed grayscale images are
not as good as the reconstructed binary images even using
GIDC. This is probably because a grayscale image con-
tains too much unknown information to be determined,
and it seems to be unfeasible to achieve a good recon-
struction with a small sampling ratio. However, the
reconstructed images are much better when β ¼ 25%,
which is in consistence with the optical experimental
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results shown in Fig. 2. In order to quantitatively evaluate
the results obtained by different methods, we calculated
the SSIM value for each reconstructed image with respect
to the corresponding ground truth. The SSIMs are listed

in Table 1. It is clearly seen that GIDC has the highest
metrics values in most of the cases, suggesting that the
reconstruction accuracy of GIDC outperforms the others.
The performance of GIDL, however, depends strongly on

objects

DGI GISC
GIDL-
MNIST

GIDC

512 measurements 1024 measurements

GIDL-
CIFAR10

DGI GISC
GIDL-
MNIST

GIDC
GIDL-

CIFAR10
0 1

Character “Wang”

Character “@”

Musical symbol

Character “�”

 “House”

“Lake”

“Priate”

“Mandril”

Fig. 4 Comparison of different GI reconstruction methods under different β ¼ 512=4096 ¼ 12:5% and β ¼ 1024=4096 ¼ 25%. For GIDL,
50,000 data pairs generated by MNIST and Cifar10 associated with different βs were used to train the neural network, respectively. The network
architecture is the same as that we used in GIDC. The models were trained 60 epochs with a learning rate of 0.001. In this way, four trained models
associated with different training sets and βs were obtained. The iteration step of GIDC is 1000. The image size is 64 × 64

Table 1 The metrics of different GI reconstruction methods on SSIM when β ¼ 512=4096 ¼ 12:5% and
β ¼ 1024=4096 ¼ 25%

Number of measurements 512 1024

Objects\Methods DGI GISC GIDL-MNIST GIDL-CIFAR10 GIDC DGI GISC GIDL-MNIST GIDL-CIFAR10 GIDC

Character “Wang” 0.158 0.298 0.819 0.303 0.870 0.209 0.423 0.809 0.342 0.917

Character “@” 0.109 0.187 0.858 0.220 0.971 0.130 0.252 0.866 0.226 0.978

Musical symbol 0.109 0.179 0.827 0.177 0.898 0.131 0.232 0.843 0.215 0.889

Character “π” 0.089 0.138 0.836 0.193 0.993 0.100 0.208 0.866 0.237 0.995

“House” 0.179 0.397 0.016 0.452 0.653 0.218 0.502 0.102 0.470 0.790

“Lake” 0.177 0.431 0.075 0.423 0.606 0.254 0.634 0.119 0.468 0.697

“Priate” 0.267 0.513 0.130 0.412 0.504 0.337 0.657 0.189 0.493 0.726

“Mandril” 0.229 0.463 0.132 0.407 0.641 0.332 0.573 0.196 0.476 0.712

Bold values indicates the highest quantitative metrics (SSIM)
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the training set and the task in hand. For instance, rela-
tively good performance can be achieved when using
GIDL trained on MNIST to reconstruct binary characters.
In contrast, the reconstructed images are severely cor-
rupted in the cases of grayscale due to the limited gen-
eralization. Although this can be slightly relieved by
training it on an alternative dataset such as Cifar1044, it
affects the accuracy of the reconstructed binary characters
images as suggested by results shown in the fifth and
tenth columns in Fig. 4. By contrast, GIDC is a general
method that can be used to reconstruct different types of
objects usually with a high accuracy and a low β.

Resolution
Here we will analyze the experiment result on resolution

enhancement shown in the section “Resolution.” First we
compare the resolution of the images reconstructed by

GIDC and other widespread GI algorithms from the same
set of simulation data. We generated five groups of illu-
mination speckles [Fig. 5a1–a5] with the grain size xs ¼
λz=D varying from 3 to 11 μm [Fig. 5b1–b5] to encode the
object which was a triple-slit pattern shown in Fig. 5f. We
set β ¼ 410=4096 � 10%. We found that the DGI cannot
distinguish the slits well when xs > 5 μm. As expected,
GISC can enhance the resolution. As evidenced in
Fig. 5d3, the slit pattern can still be recognized when xs is
as large as 7 μm. However, GISC fails when xs � 9 μm. By
contrast, the proposed GIDC reconstructs an almost
perfect image under the same condition. Even when xs is
as large as 11 μm, the GIDC still provide a very good result
[Fig. 5e5]. The cross-section of the reconstructed image
when xs ¼ 7 μm and xs ¼ 11 μm was plotted in Fig. 5g, h,
respectively. From the results, one can clearly conclude
that the proposed GIDC can provide dramatically
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Fig. 5 Comparison of GI resolution using different reconstruction algorithms. a1–a5 One of the speckle patterns used for generating the bucket
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unit is μm. c1–c5, d1–d5, and e1–e5 The DGI, GISC, and GIDC results using the corresponding speckles. f The real object. g, h Line plots show image
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resolution enhancement compared with DGI and GISC,
in high consistence with the experimental results pre-
sented in Fig. 3.
Note that in the studies of phase imaging using

untrained neural networks34,35, we did not observe such a
phenomenon of resolution enhancement. So it must have
something to do with the imaging modality of GI. There
are three unique features that GI possesses in comparison
to phase imaging. First, the object is illuminated by a
random beam. Second, the light scattered from the object
is recorded with a bucket detector. Third, GI relies on the
second-order correlation of the light field45, whereas
phase imaging relies on the first order. Each imple-
mentation of the random illumination can shift some of
the high-spatial frequency components to the lower
band46. This means that the associated information
beyond the diffraction limit can be efficiently encoded and
transmitted to the detector. A similar concept has been
introduced in microscopy to achieve super resolution as
well47. In the case of GI, however, the decoding of
those high-frequency components is not so trivial due to
the fact that they are highly compressed in the 1D bucket
signal. Indeed, as shown in Fig. 5, none of those wide-
spread GI algorithms can do this job. In contrast, GIDC
endeavors to find a feasible solution that can reproduce
the acquired bucket signal. Such a feasible solution has to
contain those high-frequency components encoded in the
bucket signal in order to decrease the loss function.

Robustness
The robustness is evaluated by examining the effect of

noise in the detection to the reconstructed image. There
are different kinds of noise in the detection process48,
but the noise effect can be modeled as an additive
Gaussian distribution with the standard deviation δ as a
whole20,49. Thus, one can define the detection SNR
(dSNR) as follows50:

dSNR ¼ 10log10
Ih i
δ

ð3Þ

to describe the degradation of the detected signal. Two
cases were examined in our studies. In the first case, we
fixed the dSNR to 26 dB, and see how the reconstructed
image would be under different sampling ratio conditions.
In the second one, we fixed the sampling ratio to be
60% for different dSNRs. In this analysis, eight standard
grayscale images (Supplementary Fig. S1) were used as the
target. We again used SSIM to measure the quality of
the reconstructed image from the contaminated bucket
signal. The results are plotted in Supplementary Fig. S2;
one can clearly see that GIDC has the best performance
among all the three, in particular when the noise level is
high. For DGI, the SSIM value of the reconstructed image
is linearly increased with the sampling ratio β as the SNR

of the reconstructed image is linearly proportional to the
number of measurements39,40. In addition, we observed
that the averaged SSIM in this case is around 0.46 when
β ¼ 60%. This noise-independence effect is highly con-
sistence with the theoretical prediction39,40. On the
contrary, GISC is more sensitive to the detection noise15

as the SSIM drops from 0.862 to 0.544 when the dSNR is
decreased from 30 to 22 dB. Some visualization results
can be found in Supplementary Fig. S3.

Priors
The effect of priors is also examined here. Two types of

priors were used in GIDC, the physical prior, i.e., DGI,
and the total variation (TV) regularization. Here we
analyze the effect of DGI and TV independently and in
combination. When either DGI or TV is not used, the
associated SSIM values are plotted as the bars in green
and turquoise, respectively, in Supplementary Fig. S2. One
can see that, in all the cases, the SSIM values are slightly
less than the one associated with GIDC (orange). This
suggests that the use of priors does have contribution to
the quality of the reconstructed image. This can be more
clearly seen by the yellow bars, which are associated with
the cases that neither of them was used. But even in this
case the reconstructed image is still far better than the one
obtained from DGI alone, suggesting that the GIDC fra-
mework has good robustness performance. Some visua-
lization results can be found in Supplementary Fig. S3.

Computational efficiency
It is necessary to compare the computational time for

different approaches. Different image sizes were con-
sidered when β is set to 6.25%. Compared with DGI and
GISC, GIDC provides the best results in terms of both
visualizations [Supplementary Fig. S4a] and quantitative
metrics [Supplementary Fig. S4c] under all pixel-
resolution settings. However, as shown in Supplemen-
tary Fig. S4b, GIDC needs the longest time to optimize.
For a 128 × 128 image, it needs about 5 min to restore a
feasible result, while DGI and GISC only needs 0.221 and
12.29 s, respectively. Thus, the previous GISC and our
GIDC are both not suitable for real-time applications, at
least on the current computing platform. Despite this, for
applications that allow post-processing offline but require
fast data acquisition, GIDC yields the highest image
fidelity at the lowest sampling ratio. The reconstructed
image is associated with a SSIM value of 0.9 even when β
is down to 6.25%. We also noticed that the computational
time dramatically increases along with the increase of
the image size. There are mainly two reasons for this.
First, the width of the network will increase accordingly to
accept the image as its input, process it and produce an
output. Thus, it takes more time to forward infer during
each iteration. Second, the size of the measurement
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matrix H that is used to generate the estimated bucket
signal will increase. Thus, it takes more time to calculate
the gradient and update the network parameters.
There are several strategies that one can take into

account to improve the GIDC computational efficiency.
These include better design of the neural network archi-
tecture, the implementation of depth-wise convolution51,
the employment of better initialization52 and learning53

strategy. In addition, from a practical application point of
view, the implementation of GIDC on a faster computing
platform together with hardware speedup by using mul-
tiple GPUs will also help to significantly increase the
computational efficiency.

Methods and materials
Formation of the reconstruction algorithm
For an object Oðxt ; ytÞ, the measurements of the pseu-

dothermal GI system are the 1D bucket signal

Im /
X
xt ;yt

Hmðxt; ytÞOðxt ; ytÞ ð4Þ

measured by a single-pixel detector in the test arm, and
the corresponding stack of random illumination patterns
Hmðxt ; ytÞ, where m ¼ 1; 2; ¼ ;M, measured by a high-
resolution camera in the reference arm. The conventional
GI algorithm reconstructs the object image by computing
the intensity correlation between Hm and Im

OGI ¼ HmImh i � Hmh i Imh i ð5Þ

where �h i denotes the ensemble average approximately
defined as Hm ¼ 1

M

PM
m¼1 Hm and Im ¼ 1

M

PM
m¼1 Im.

For DGI39,40, one uses Sm ¼
P
xt ;yt

Hmðxt ; ytÞ to normalize
the illumination patterns so as to improve the SNR

ODGI ¼ HmImh i � Hmh i
Smh i SmImh i ð6Þ

For the proposed GIDC, the reconstruction of the
object image is formulated as the following objective
function

Rθ� ¼ argminθ2Θ
XM
m¼1

k
X

HmRθðODGIÞ � Im k2

ð7Þ

where Rθ is the DNN defined by a set of weights and
biases parameters Θ. The goal of GIDC is to find a good
configuration θ� 2 Θ for the neural network that forces
its output OGIDC ¼ Rθ� ðODGIÞ to produce a 1D sequence
~I according to the GI image formation physics (Eq.4) that
resembles the experimentally acquired bucket signal I. As

it is an ill-posed problem, especially when M � N , there
are in principle an infinite number of configurations that
satisfies the objective function. Therefore, it is necessary
to add prior information about the object so as to select
a feasible solution from all the configurations. For
example, in GISC, the prior information is about an
assumption that the object is sparse in a certain domain.
Different from GISC, the proposed GIDC is based on an
untrained DNN prior. Although the theory for this
has yet to be perfected, existing works has empirically
suggested that a properly designed DNN with randomly
initialized weights has an inherent bias toward natural
images32,34–38. We thus hypothesize that the DNN prior
can be used to solve the ill-posed problem described by
Eq. (7). We also argue that adding a conventional
regularization terms such as the TV38 in the GIDC
framework would help improving the reconstruction
results. So the final objective function (loss function) of
GIDC is reformulated as follows:

Rθ� ¼ argminθ k HRθðODGIÞ � I k2 þξT ½RθðODGIÞ	
ð8Þ

where T stands for TV and ξ is its strength.
For comparison, it is worthy of pointing out that GIDL

uses a DNN as well. But it attempts to learn the mapping
functionRθ from a large number of labeled data pairs in the
training set ST ¼ fðOk

DGI ;O
kÞjk ¼ 1; 2; ¼ ;Kg, by solving

Rθ� ¼ argminθ2Θ k RθðOk
DGIÞ � Ok k2; 8ðOk

DGI ;O
kÞ 2 ST

ð9Þ

GIDL learns to map the low-quality reconstructed images
to a high-quality ones from the statistics of the training set
ST . Once trained, the neural net can be used directly to
reconstruct objects that are similar with those in ST .
By contrast, GIDC learns the mapping function through

updating the weights and biases θ in the neural network
to minimize the model-based fidelity term, which can be
seen as an interplay between the GI physical model H and
the DNN Rθ. In this way, one can obtain a feasible
solution OGIDC ¼ Rθ� ðODGIÞ without using any training
data. That is to say, GIDC is an untrained method and
does not bias toward any particular dataset. We note that
the input of the neural network used in GIDC can be a
coarse image recovered by any conventional GI algo-
rithms20,34,39,40,46 or even random noise32,35,38, here we
use the result of DGI for convenience.

Network architecture and hyper parameters
The network architecture we employed in this work

was derived from the U-net54. More details of the net-
work structure are provided in Supplementary Fig. S5.
We adopted the Adam optimizer with a learning rate of
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α ¼ 0:05, β1 ¼ 0:5, β2 ¼ 0:9, and ϵ ¼ 10�9 to update the
weights in the neural network. We also used an expo-
nential decay with a decay rate of 0.9 and decay steps of
100. The momentum and epsilon parameters in the batch
normalization were 0.99 and 0.001, respectively. The leak
parameter of Leaky ReLU was 0.2. The regularization
parameter of the TV was 10−10. The code was run on a
computer with an Intel Xeon CPU E5-2696 V3, 64 GB
RAM, and an NVIDIA Quadro P6000 GPU. The main
progress is illustrated in Algorithm 1. For the sake of
comparison, we use the same network model for GIDC
and GIDL. We also released our code at https://github.
com/FeiWang0824/GIDC.

Experimental details
Figure 2a presents the optical system we built for the

experimental demonstration. Lt , Lr and Lc are lenses with
focal length of 136.8, 30, and 75mm, respectively.
Detector 1 works as a single-pixel detector, whereas
Detector 2 is a high-resolution camera. The light source is
a solid-state pulsed laser with a λ ¼ 532 nm center-
wavelength, and a 10 ns pulse width at a repetition rate of
1 kHz. The pulsed beam emitted from the laser irradiated
a RGG to produce pseudothermal light. The beam dia-
meter on the RGG was D and can be adjusted by an
optical stop (stop1). The distance between the RGG and
the other optical stop (stop2) is about z ¼ 180 mm. The
shape of stop2 is a square with a side length equal to
5 mm. Owing to the RGG, a speckle field is fully devel-
oped at the plane of stop2. Then the speckle field is
divided by a beam splitter into a test and a reference arms.
In the test arm, we use an imaging lens Lt to project the
speckle field at the stop2 plane to the surface of the object.
The side length of the objects is about L ¼ 25 mm (the
magnification of Lt is 5). The transmitted light is collected
by a lens Lc (Nikon AF-S NiKKOR 85mm f/1.4 G) and
finally recorded by a single-pixel detector (in our experi-
ment, we actually used an AVT F504B camera to record
the transmitted intensity, and generated the bucket signal
by summing all the pixel values). In the reference arm, we
use an image detector 2 (AVT F504B, with the pixel size

ps of 3.45 μm) mounted with an imaging lens Lr to take a
high-resolution image of the speckle pattern on the
stop2 plane.
Three different types of objects were used to test the

GIDC performance, i.e., transparent slices of various
characters with binary value and of natural scenes in
grayscale (a film after exposure a standard test image
“house”), and a physical USAF resolution chart. The
spatial resolution of our GI system can be adjusted by
changing D as z is fixed through xs ¼ λz=D. In addition,
different pixel resolution N can be obtained by setting

different resize factor q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=ð

ffiffiffiffi
N

p
psÞ

q
so that the bin-

ned pixel size is q2ps. We set the resize factor of 10.64,
7.52, and 5.32 for binary characters, grayscale object, and
USAF resolution chart to meet the pixel resolution of 64,
128, and 256, respectively. Then the binned pixel size is
390.63, 195.31, and 97.66 μm, respectively. For the
experiment of USAF resolution chart, we set D=
0.70 mm to meet the spatial resolution of 683.59 μm
(683.59/97.66= 7 binned pixels).
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