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Abstract

This paper deals with pricing and modal split in a competitive mass transit/highway system with het-
erogeneous commuters. Two groups of commuters that di�er in their disutility from travel time, schedule
delay and transit crowding, select the transit or auto mode for traveling from a residential area to a
workplace. We compare three pricing schemes: the marginal cost-based transit fare with no-toll (called ÔmÕ
for short), the average cost-based fare with no-toll (ÔaÕ) and marginal cost-based fare with time-invariant
toll for subsidizing transit (ÔsÕ), and derive a socially optimal combination of transit fare and road toll which
minimizes the total social cost of the competitive system meanwhile ensuring no de®cit to the transit side
(ÔoÕ). The main ®ndings from the analytical and numerical results are: (1) the ÔoÕ policy generates the most
total transit usage, then ÔsÕ, ÔmÕ and ÔaÕ in order; (2) the total usage of each mode is independent of the
demand composition when group 1 uses both modes; (3) the group 2Õs aversion to transit crowding does not
a�ect total transit usage; (4) group 2 has relatively larger welfare gains from some changes in pricing policy,
such as changing ÔmÕ to ÔsÕ or to ÔoÕ; (5) the a-policy results in the highest total social cost, then ÔmÕ, ÔsÕ and ÔoÕ
in that order. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The simplest tra�c bottleneck model studies commuting congestion in a highway with a single
bottleneck between a residential area and a workplace, and investigates the e�ects of various road
tolls to alleviate the queue behind the bottleneck. Because the capacity of the bottleneck is ®nite,
each commuter is confronted with a trade-o� between travel time cost relating to queue length
and schedule delay cost of arriving early or late at work. The travel cost experienced by a
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commuter will be determined by his or her departure time from home. Using deterministic
queuing theory, Vickrey (1969) ®rst developed an endogenous departure time choice model, which
leads to an equilibrium of costs on all commuters. Subsequently, his model has been extended by
many others (see a review paper by Arnott et al., 1998).

In many cities there exists an alternative mass commuting mode such as railway or subway
parallel to the road with a bottleneck. We are aware of only one study of a competitive system
with mass transit and highway, that is Tabuchi (1993). He studied the modal split problem under
various pricing regimes. Unlike the road, the mass transit exhibits scale economics in that the
greater the number of transit commuters, the lower its average cost. The average cost may a�ect
the determination of transit fare and the fare will a�ect commutersÕ mode choices. Furthermore,
the trains of a railway normally arrive on time no matter how crowded their carriages may be.
Obviously, the analysis of this system will be signi®cantly di�erent from that of a single mode
system, although the cases having parallel roads in a single mode system also provide commuters
with two or more substitutable choices on routes (Arnott et al., 1990; Braid, 1996; Huang and
Yang, 1996; Mahmassani and Herman, 1984).

There are several points worthy of study beyond TabuchiÕs work. First, it is true that mass
transit can enable people to arrive at work on time, but meanwhile it may bring people discomfort
generated by the body congestion at railway stations and in carriages if they are crowded. 1

Second, the model should consider the heterogeneity of commuters (Arnott et al., 1987, 1988,
1992, 1994; Cohen, 1987; Henderson, 1974, 1981). Commuters of di�erent types will exhibit
di�erent decision-making behavior not only on departure time choices but also on mode choices.
Generally, professional and self-employed workers have high values of times but relatively ¯exible
work hours; in contrast, assembly-line workers and clerks or support sta� in white-collar jobs
have high values of schedule delay times (late in arriving at work) as they have rigid work
schedules. The higher-income people may be more willing to pay out-of-pocket money to avoid
queuing and body congestion (if this exchange is possible) than the lower-income ones. Third, the
welfare e�ects of transit fare and road tolls on di�erent commuting population are worth dis-
cussing (Arnott et al., 1994; Cohen, 1987; Evans, 1992; Glazer, 1981; Small, 1983). Huang et al.
(1997) extended TabuchiÕs (1993) study of modal choice in two directions by introducing crowding
congestion on transit and by admitting two groups of commuters. Introducing crowding con-
gestion, to a certain extent, may relax TabuchiÕs in®nite capacity assumption on transit; the later
implies no schedule delay because trains are very frequent. But, travelers do feel congestion in
carriages when their arrival at the station does not match the trains frequency and carrying ability.
However, these extensions to TabuchiÕs work did not derive the socially optimal combination of
transit fare and road toll that generates su�cient revenue to cover transitÕs ®xed cost although the
integrated pricing policies of this sort have been gaining favor. 2

This paper re®nes the unpublished work by Huang et al. (1997) and derives the socially optimal
combination of transit fare and road toll mentioned above. We examine four pricing schemes,
some of them are commonly encountered in the literature and practice. Through comparing the
analytical and numerical results, we try to ®nd the relative e�ciency of the four pricing schemes in

1 The body congestion also leads to the loss of independence and privacy by transit commuters.
2 I thank R. Lindsey who pointed out this in his reading of the working paper, Huang et al. (1997).
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attracting transit commuters, changing individual travel costs and total social costs under certain
conditions. The time-varying road pricing was also investigated in Huang et al. (1997), but
eliminated in this paper to shorten the paper length. Extending the model to incorporate time-
varying road pricing is not conceptually di�cult, but the algebra is more tedious.

This paper is organized as follows. Section 2 investigates the modal splits and individual travel
costs resulting from three pricing schemes, namely the marginal cost-based fare with no toll on the
road, the average cost-based fare with no road toll, and a marginal cost-based fare with a time-
invariant toll for subsidizing transit. Section 3 shows a socially optimal combination of transit
fare and road toll, which minimizes the total social cost of the competitive system and lets the
transit mode operate without de®cit. Section 4 presents numerical results for comparing the modal
choices, the individual travel costs and the total social costs under the four pricing policies dis-
cussed in this paper. Sensitivity analysis is also made in this section. Section 5 concludes the paper.

2. Modal splits under three pricing policies

Consider a simpli®ed corridor network which contains two modes to provide transportation
service between H (a residential area or home) and W (a workplace). Mode 1 represents a mass
transit (e.g., railway) with an assumed in®nite capacity; mode 2 represents a highway with a single
bottleneck which is located at the entering point of highway and has a deterministic capacity of s
commuters per unit time. To keep the analysis manageable we limit consideration to two groups
of commuters, i.e., we divide all commuters who can either travel on highway by car (i.e., auto
mode, one person per car) or on railway by transit from H to W, into two groups which have
di�erent unit costs of crowding or discomfort on transit (h1, h2), travel time (a1, a2) and schedule
delay time (b1 and b2 for time-early, c1 and c2 for time-late). We assume that h1 > h2,
a1=b1 > a2=b2; c1=b1 � c2=b2 � g, 3 and all commuters have the same o�cial work start time.
These assumptions indicate that group 1 dislikes even more the discomfort resulted from body
congestion in transit and has higher ratio of travel time cost to schedule delay cost than group 2.
Hence, group 1 is more likely to comprise relatively highly paid white-collar workers, with ¯exible
work hours but high values of time, group 2 likely consists of blue-collar workers and clerks or
support sta� in white-collar jobs, with rigid work schedules but relatively lower values of time.

More general cases which may approach closer to reality have been considered by others.
Newell (1987) dealt with a continuous distribution of commuters di�ering in work start time, costs
of travel time and costs of schedule delay. Vickrey (1969) assumed that the work start times are
uniformly distributed in the commuting population over a one-hour interval. This assumption
was adopted by Cohen (1987). Arnott et al. (1994) treated more than two groups of commuters
indexed in order of increasing b/a and having the same c/b and work start time. In this paper, we
consider the case in which two groups di�er in three parameters (h, a, b). This case is represen-
tative of the studies of bottleneck models, as explained by Arnott et al. (1992).

3 The same relationships between the disutility parameters of travel time and schedule delay are used by Arnott et al.

(1987, 1988, 1992, 1994) and Cohen (1987). In addition, the relation bi < ai < ci; i � 1; 2; holds according to the

estimates by Small (1982).

H.-J. Huang / Transportation Research Part E 36 (2000) 267±284 269



For sake of simplicity, in this paper we set the moving times on both modes to be zero. The
moving time is the uncongested travel time from getting through the bottleneck to arriving at W
for auto mode and the in-carriage time plus access (egress) time from H to the railway station
(from railway station to W). Huang et al. (1998) studied the case having di�erent moving times on
both modes but with identical commuters.

We ®rst give the main outputs of the no-tolling bottleneck model with two groups of com-
muters. Let the numbers of auto commuters of group 1 and group 2 be NA1 and NA2, respectively,
and set d1 � b1c1=�b1 � c1� � b1g=�1� g�; d2 � b2c2=�b2 � c2� � b2g=�1� g�. At a no-toll equi-
librium state, all individuals in the same group must experience identical travel cost, no matter
when she or he leaves home. The equilibrium individual travel costs of group 1 and group 2 are

CA1 � d1

NA1 � NA2

s
; �1�

and

CA2 � d2

NA2

s
� a2

a1

d1

NA1

s
; �2�

respectively. A detailed derivation of Eqs. (1) and (2) can be found in Arnott et al. (1990, 1992)
and is described concisely in the attached Appendix A.

We now consider the transit mode. Let NRi be the number of transit commuters of group i
(i � 1; 2), and de®ne the individual travel cost experienced by group i as

pR � hig�NR�; �3�

where pR is the transit fare and g(NR) represents the discomfort degree generated by body con-
gestion at railway stations and in carriages. To simplify, we use a linear function in this paper, i.e.,
g�NR� � NR � NR1 � NR2 (equivalents), where `equivalent' is the unit of the function value.

In the following subsections, we let NA1, NA2, NR1 and NR2 become endogenous variables to be
determined in a competitive system with transit and auto modes. This paper does not consider the
elasticity of travel demand by each group, so lets the total number of commuters in each group,
i.e., N1 and N2 for group 1 and group 2, respectively, be given. We then have NA1 � NR1 � N1 and
NA2 � NR2 � N2. Therefore, we are in fact studying the interaction between commuter heteroge-
neity and mode choice. A similar study was done by Arnott et al. (1992) focusing on route choice.
In Arnott et al. (1992), the ratio of congestion coe�cients of the linear cost functions on two
routes was assumed to be identical. This assumption does not hold in our study, 4 hence the
formulae derived in this paper cannot be reproduced simply by applying Arnott et al.Õs (1992)
reduced form equation.

4 For group 1, the own congestion coe�cient for road travel is d1/s, and the cross-congestion coe�cient is also d1/s, as

shown in (1). The corresponding coe�cients for taking transit are both h1. The ratios of the road coe�cients to the

transit coe�cients are both d1/(sh1), and hence the same. But for group 2 the ratios are not the same, i.e., the ratio of the

own congestion coe�cients for taking two modes is d2/(sh2) while the ratio of the cross-congestion coe�cients is a2d1/

(a1sh2).
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2.1. Marginal cost-based fare on transit with no-toll on road

Denote c as the marginal (variable) cost of transit, which mainly comprises the expenses on
labor, fuel, electricity and routine materials by the transit operator. In reality, most of these
expenses are independent of the number of passengers carried. We assume that the coe�cient, c,
used in this paper covers the portions that do vary with the load. The pricing policy considered in
this subsection sets the transit fare on the marginal cost basis, i.e., pR � c. The equilibrium of
travel costs for group 1 individuals, if they select both modes, can be expressed by

c� h1�N m
R1 � N m

R2� � d1

N m
A1 � Nm

A2

s
; for N m

R1 > 0; N m
A1 > 0; �4�

similarly, the cost equilibrium for group 2 individuals is

c� h2�N m
R1 � N m

R2� � d2

N m
A2

s
� a2

a1

d1

N m
A1

s
; for Nm

R2 > 0; N m
A2 > 0: �5�

In Eqs. (4) and (5), the superscript m represents the Ômarginal cost-based fare on transit with no-
toll on roadÕ policy. Note that what we study here is not the classical marginal cost-based con-
gestion pricing for transit. The classical one requires that transit fare for each group should be the
di�erence between the marginal social cost of an individual in the group and the travel cost that
the individual bears him/herself. The fare works out, for both groups, to c� h1NR1 � h2NR2. 5

Solving Eqs. (4) and (5) with the conservation conditions N m
A1 � N m

R1 � N1 and N m
A2 � N m

R2 � N2,
we get the modal split in equilibrium

Nm
A1 �

d2 � h2s
d2 ÿ �a2=a1�d1

cs� h1s�N1 � N2�
d1 � h1s

�
ÿ cs� h2s�N1 � N2�

d2 � h2s

�
; �6a�

Nm
A2 �

cs� h1s�N1 � N2�
d1 � h1s

ÿ N m
A1; �6b�

and Nm
R1 and N m

R2 calculated by conservation conditions. The total number of commuters who
choose transit as their travel mode is

Nm
R � Nm

R1 � Nm
R2 � �d1�N1 � N2� ÿ cs�=�d1 � h1s�; �7a�

and the total number of auto commuters is

Nm
A � Nm

A1 � Nm
A2 � �cs� h1s�N1 � N2��=�d1 � h1s�: �7b�

Eq. (7a) shows the number of transit commuters is inversely proportional to h1. This indicates that
the number of transit commuters will increase if the railway sector improves the service quality
and it is recognized by higher-income people (i.e., h1-value decreases). Another interesting point
showed by Eqs. (7a) and (7b) is that the total transit or highway usage is independent of pa-
rameter h2 although the modal split in each group is related to both h1 and h2. The reason is as

5 The total social cost of the transit system is �c� h1NR�NR1 � �c� h2NR�NR2. The marginal social costs for group 1

and group 2 are c� h1NR � h1NR1 � h2NR2 and c� h2NR � h1NR1 � h2NR2, respectively. The marginal private costs for

group 1 and group 2 are h1NR and h2NR, respectively.
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follows: according to (4), for a given total usage (N1 � N2) the cost equilibrium for group 1 re-
quires a given total transit usage (NR); this equilibrium condition is una�ected by a change in
group 2Õs preferences (h2), so total transit usage cannot depend on h2.

The above explanation also applies to why the total transit or highway usage does not depend
on the composition of demand but the total (N1 � N2), as shown in (7a) and (7b). Certainly, so do
the equilibrium individual costs. This conclusion holds only when an interior solution exists. The
same phenomena will be observed in the following two subsections as the modal splits in both
groups are functions of N m

A and N m
R . When an interior solution does not exist, the demand

composition will a�ect the total transit usage, as demonstrated by the numerical example pre-
sented in Section 4 (see for example, Fig. 5 corresponding to case 2).

So far we have assumed that the equilibrium occurs at an interior point. Existence of an interior
solution requires that 0 < N m

A1 < N1 and 0 < Nm
A2 < N2. From (6a) and (6b), we know that these

inequalities hold only when the values of parameters (including the demands in two groups) are in
certain ranges. Otherwise, corner solutions, i.e., one group chooses exclusively one mode, have to
be produced. For example, the modal split that group 2 chooses transit only while group 1
chooses both modes, implies

c� h2�N m
R1 � N2� < a2

a1

d1

N m
A1

s
; �8a�

and

c� h1�N m
R1 � N2� � d1

N m
A1

s
: �8b�

Combining Eqs. (8a) and (8b) leads to

�a1 ÿ a2�c� �N m
R1 � N2��h2a1 ÿ h1a2� < 0: �9�

Inequality (9) may hold when h2a1 ÿ h1a2 < 0, N2 is su�ciently large and c is su�ciently small. In
our numerical examples used in Section 4, h2a1 ÿ h1a2 < 0. Similarly, the modal split that would
lead group 1 to choose transit exclusively while group 2 chooses both modes, requires
�d2 ÿ d1�c� �N m

R2 � N1��h1d2 ÿ h2d1� < 0. Clearly, this inequality cannot hold when d1 < d2, then
the modal split will not occur (as in our numerical examples).

2.2. Average cost-based fare on transit with no-toll on road

Let F be the ®xed cost of transit, which consists of facility costs and ®xed operating costs. Set
the transit fare on average cost basis, i.e., pa

R � c� F =�N a
R1 � N a

R2�, here the superscript a repre-
sents the Ôaverage cost-based fare on transit with no-toll on roadÕ policy. In Eq. (4), replacing c by
pa

R, modal split variables by N a
R � N a

R1 � N a
R2 and N a

A � N a
A1 � N a

A2 � N1 � N2 ÿ N a
R, solving the re-

vised Eq. (4), we then obtain a stable solution 6

6 There are two candidates for equilibrium solutions in a quadratic equation. One is unstable against small

perturbations whereas the other is stable.
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N a
R �

N m
R

2
�

���������������������������������������
Nm

R

2

� �2

ÿ Fs
d1 � h1s

s
; �10a�

N a
A �

N1 � N2

2
� N m

A

2
ÿ

���������������������������������������
N m

R

2

� �2

ÿ Fs
d1 � h1s

s
; �10b�

where N m
R and N m

A are given by (7a) and (7b). From Eq. (10a) we have N a
R < N m

R and then
N a

A > N m
A , which is easy to understand because the number of transit commuters will certainly

decrease with the fare increase. An interesting feature is that the number of transit commuters is
still inversely proportional to h1-value under average cost-based fare policy. For interpreting this,
we consider any two di�erent h1-values with 0 < h01 < h1. Eq. (10a) gives

N a0
R

N a
R
� N m0

R

N m
R

1�
�����������������������������������������������������
1ÿ 4Fs=��N m0

R �2�d1 � h01s��
q

1�
����������������������������������������������������
1ÿ 4Fs=��Nm

R �2�d1 � h1s��
q : �11�

As shown before, Nm
R � �d1�N1 � N2� ÿ cs�=�d1 � h1s�, hence N m0

R > N m
R . And, h01 < h1 leads to

�d1�N1 � N2� ÿ cs��2=�d1 � h01s� > �d1�N1 � N2� ÿ cs��2=�d1 � h1s�; �12a�
which equals

�N m0
R �2�d1 � h01s� > �N m

R �2�d1 � h1s�: �12b�
Combining (11) and (12b), we then conclude N a0

R > N a
R. Note that N a0

R > N a
R still holds if the ®xed

cost F rises to F 0 for improving service quality but F 0=F < �d1 � h1s�=�d1 � h01s�. This point is
important since it veri®es that mass transit can still attract more commuters if the additional
investment for enhancing service quality is controlled in certain content, although this investment
is counted in the fare.

Using (5) with the substitution of average cost for marginal cost, and (10) that we just obtained,
we get the modal split by groups:

N a
R1 �

1

d2 ÿ �a2=a1�d1

cs
�
� Fs

N a
R
� �d2 � h2s�N a

R ÿ d2N2

�
� a2

a1

d1N1

��
; �13a�

N a
A1 � N1 ÿ N a

R1; �13b�
N a

R2 � N a
R ÿ N a

R1; �13c�
N a

A2 � N2 ÿ N a
R2: �13d�

Denote Cm
1 and Cm

2 as the individual costs of group 1 and group 2, respectively, under the mar-
ginal cost-base fare policy studied in Section 2.1, Ca

1 and Ca
2 as that under current a-policy, we

have

Ca
1 ÿ Cm

1 �
d1

s
N m

R

2

0@ ÿ
���������������������������������������

N m
R

2

� �2

ÿ Fs
d1 � h1s

s 1A > 0; �14a�
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Ca
2 ÿ Cm

2 �
d1

s

�
� h1 ÿ h2

�
Nm

R

2

0@ ÿ
���������������������������������������

N m
R

2

� �2

ÿ Fs
d1 � h1s

s 1A > 0: �14b�

Eqs. (14a) and (14b) show the individual costs of both groups increase, but the rising size of group
2 is larger than that of group 1 (since h1 > h2�. This implies group 2Õs utility loss is more than
group 1Õs from the action of increasing transit fares.

Up to now, we summarize that the marginal cost-base fare policy attracts more commuters
than the average cost-based fare policy, results in lower individual costs on both groups, but yields
a de®cit with the value of F on transit side. It is thus of strong interest to investigate the policy that
uses the revenue generated by a road toll to subsidize mass transit when transit fare is set on the
marginal cost-based fare. This is done in the following section.

2.3. Marginal cost-based fare with uniform toll for subsidizing transit

Assume that there exists a time-invariant or uniform road-use toll which can generate revenue
to cover the ®xed cost of transit, such a toll should equal F/NA. The uniform road-use toll does
not change the distribution of auto commutersÕ departure time choices and their costs relating to
waiting times, so the individual costs in equilibrium, referring to (1) and (2), become
d1N s

A=s� F =N s
A for group 1 and d2N s

A2=s� �a2=a1�d1N s
A1=s� F =N s

A for group 2, respectively, here
the superscript s represents the Ômarginal cost-based fare with uniform toll for subsidizing transitÕ
policy. Denote the modal split as �N s

R; N s
A� � �N s

R1 � N s
R2; N s

A1 � N s
A2�, the equation describing the

equilibrium of group 1Õs individual costs is

c� h1N s
R � d1

N s
A

s
� F

N s
A

; for N s
R > 0; N s

A > 0; �15�

with N s
R � N s

A � N1 � N2. We solve this equation with the following stable solution:

N s
R �

N1 � N2

2
� N m

R

2
ÿ

���������������������������������������
N m

A

2

� �2

ÿ Fs
d1 � h1s

s
; �16a�

N s
A �

N m
A

2
�

���������������������������������������
Nm

A

2

� �2

ÿ Fs
d1 � h1s

s
; �16b�

where N m
R and N m

A are given by (7a) and (7b). Eq. (16b) shows that N s
A < N m

A and then N s
R > N m

R .
So, we get an important result about the total usage of each mode under the three kinds of pricing
policies discussed in this section

N s
R > N m

R > N a
R and N s

A < N m
A < N a

A: �17a�
We also ®nd

Cs
1 ÿ Cm

1 � h1�N s
R ÿ N m

R � > 0 and Cs
2 ÿ Cm

2 � h2�N s
R ÿ Nm

R � > 0; �17b�
where Cs

1 and Cs
2 are the individual travel costs of group 1 and group 2 generated by current s-

policy. Note now that the rising size of group 2Õs individual cost from m- to s-policy is less than
that of group 1 since h2 < h1. However, the analytical comparisons between Cs

i and Ca
i (i � 1; 2)
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cannot be carried out because of their too complex formulae. Section 4 will demonstrate this by
numerical results.

Using the equilibrium condition on group 2Õs individual costs, i.e.,

c� h2N s
R � d2

N s
A2

s
� a2

a1

d1

N s
A1

s
� F

N s
A

; for N s
A1 > 0; N s

A2 > 0; �18�

as well as (16a) and (16b), we get the modal split by groups

N s
A1 �

1

d2 ÿ �a2=a1�d1

d2N s
A

�
ÿ h2sN s

R ÿ cs
�
ÿ Fs

N s
A

��
; �19a�

N s
R1 � N1 ÿ N s

A1; �19b�
N s

A2 � N s
A ÿ N s

A1; �19c�
N s

R2 � N2 ÿ N s
A2: �19d�

The uniform toll is

ws
A � F =�N s

A1 � N s
A2�: �20�

3. Optimal combination of transit fare and road toll

We now derive a socially optimal combination of transit fare and road toll which minimizes the
total social cost of the competitive system while ensuring no de®cit to the transit side. The road-
use tolling is still time-invariant as assumed in Section 2.3. Denote po

R and wo
A as the transit fare

and road toll, respectively, here the superscript o represents the Ôoptimal combination subject to
the mentioned breakeven constraintÕ policy. We construct a minimization model for the title
problem of this section

min TSC�No
R1;N

o
A1;N

o
R2;N

o
A2; p

o
R;w

o
A� � N o

A1

d1

s
�N o

A1 � N o
A2� � No

A2

d2

s
N o

A2

�
� a2

a1

d1

s
N o

A1

�
� N o

R1�h1�N o
R1 � N o

R2� � c�
� N o

R2�h2�N o
R1 � N o

R2� � c� � F ; �21�
subject to

po
R � h1�N o

R1 � N o
R2� �

d1

s
�N o

A1 � N o
A2� � wo

A; �22a�

po
R � h2�N o

R1 � N o
R2� �

d2

s
N o

A2 �
a2

a1

d1

s
N o

A1 � wo
A; �22b�

�po
R ÿ c��N o

R1 � N o
R2� � wo

A�N o
A1 � N o

A2� � F ; �22c�

No
R1 � No

A1 � N1; �22d�
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N o
R2 � N o

A2 � N2; �22e�
and all variables are non-negative. The total social cost of the transit/highway system is given by
the objective function (21) in which the ®rst two terms are the total social cost of the highway side
and the last three terms are the total social cost of transit. Constraints (22a) and (22b) represent
the equilibrium of individual costs for group1 and group 2, respectively. Eq. (22c) means the total
revenue generated by transit fares and road tolls minus the total variable cost of transit, equals the
®xed cost of transit. The revenue made by road tolls is used to subsidize transit. The conservation
conditions of demands are described by (22d) and (22e).

The solution of the model is

N o
R � N o

R1 � N o
R2 �

d1�N1 � N2� ÿ cs
d1 � h1s

� �h1 ÿ h2�N2s� cs
2�d1 � h1s� ; �23a�

N o
A � N o

A1 � N o
A2 �

�h1 � h2�N2s� 2h1N1s� cs
2�d1 � h1s� ; �23b�

N o
A1 �

�d1 � d2�N o
A ÿ s�h1�N1 ÿ N o

A� � h2�N2 � N o
R� � c�

d2 ÿ �a2=a1�d1

; �23c�

po
R �

F � cNo
R � �d1=s��N o

A�2 ÿ h1�N o
R N o

A�
N1 � N2

; �23d�

wo
A �

F � cN o
R ÿ �d1=s��No

R N o
A� � h1�N o

R�2
N1 � N2

; �23e�

and N o
R1, N o

A2 andN o
R2 computed by Eqs. (22d)±(23c). Comparing (23a) and Nm

R �
�d1�N1 � N2� ÿ cs�=�d1 � h1s� obtained in Section 2.1, we see that N o

R > N m
R . But, we do not know

whether N o
R is larger than N s

R. Also, we are unable to compare the individual costs resulted from
current policy with that by other pricing schemes analytically. So, we investigate these by nu-
merical analyses in next section.

4. Numerical examples

Now, we use numerical results to support our analyses made above and to gain some insights
into the characteristics of the pricing polices that the analyses cannot provide. The basic pa-
rameters are: �c1; a1;b1� � �3:0; 1:2; 0:6� (HK$/min), �c2; a2;b2� � �3:5; 1:0; 0:7� (HK$/min),
�h1; h2� � �0:02; 0:01� (HK$/discomfort equivalent), s � 5 (veh/min), c � 6:0 (HK$/commuter)
and F � 100 (HK$). It should be pointed out that these data do not correspond to reality but
illustrate the logic required by the models presented in this paper. Arnott et al. (1990) in their
numerical example used a group of data, which is relatively close to reality. We investigate the
modal splits, individual travel costs and the total social costs resulted from the four pricing polices
presented in this paper in three cases. Case 1 allows the total number of commuters to change
from 150 to 250 while keeping the relative shares of the two groups unchanged, i.e.,
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N1 � N2 � 0:5�N1 � N2�. Case 2 lets the portion of group 1 in the total number of commuters
change from 0.1 to 0.9, the total is set to be 250. In Case 3, the relative strength of aversion to
transit crowding by the two groups, measured by h1/h2, varies from 1.1 to 2.0 with given h2 � 0:01
and N1 � N2 � 250. For Case 1, all numerical results concerning modal split, individual travel
cost, total social cost and pricing level are shown in Figs. 1±4, respectively. For cutting down the
paper length, we only investigate the modal splits for Case 2 and Case 3, as shown in Figs. 5 and 6.

Fig. 1 shows the number of commuters joining the transit mode versus the total number of
commuters under various pricing policies (the four pricing policies are indicated by m, a, s and o
in the legend, respectively). For each policy, the total transit usage increases with the total demand
(this has been proved by the analytical solutions) and approaches the same point at higher levels
of congestion. This convergence is because F is held ®xed, hence its in¯uence wanes as total usage
and congestion grows. The four pricing regimes will yield identical solutions if the ®xed costs are
zero. Arranging the four pricing schemes in order of inducing total number of transit commuters,
we have o, s, m and a, from the most to the fewest. Such order is still kept for group 1.

Fig. 2 shows the individual travel costs of the two groups versus the total demand. We ®rst note
that this ®gure coincides with the results given by (14a), (14b) and (17b), and all curves ascend
monotonously with total demand except that of the a-policy. For each group, the largest indi-
vidual cost is caused by a-policy; but the lowest is by m-policy for group 1 and by o-policy for
group 2. From m to s, the rising size of group 1Õs individual cost is a bit larger than that of group
2, so group 1 loses more than group 2 in this policy change. From m to o, group 1Õs individual cost
increases while group 2Õs decreases. Therefore, group 2, which likely consists of blue-collar
workers, would welcome these policy changes, such as from m to s or to o. Note that in this ®gure
the individual travel costs in regime m do not include the ®xed cost, F.

Fig. 1. Number of transit commuters versus total demand under four pricing regimes.
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Fig. 3 shows the total social cost versus the total demand. The total social cost de®ned in this
paper is the sum of all costs borne by transit operator and all commuters, but excluding fares and
tolls. This ®gure shows that the a-policy generates the highest total social cost as it induces the

Fig. 2. Individual travel cost versus total demand under four pricing regimes.

Fig. 3. Total social cost versus total demand under four pricing regimes.
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fewest transit commuters (see Fig. 1). The o-policy generates the lowest total social cost as it
induces the most transit commuters. Fig. 4 depicts the transit fares and road tolls corresponding
to the four pricing schemes. The fare under a-policy and the toll under s-policy decreases with the

Fig. 5. Number of transit commuters versus the proportion of group 1 in total demand.

Fig. 4. Transit fare and road toll versus the total demand.
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total demand, as the ®xed cost F is limited. Under the o-policy, the transit fare goes up gradually
and the road toll comes down along with the total demand. Although this phenomenon is di�cult
to be analytically explained because of the complex expressions given by Eqs. (23d) and (23e), we
try to give an intuitive explanation as below. The total level of pricing (fare plus toll, for example)
should come down along with the total demand since the o-policy is subject to a breakeven
constraint associated with a given ®xed cost F. We note that the s-policy is subject to such a
constraint too, by ensuring no de®cit to transit, and Fig. 4 shows ÔaÕ more quickly decreasing
along with the total demand on road toll by o than by s. Hence, the transit fare by o must go up
gradually in order to make up an increasing part of total revenue because the revenue generated
from road tolls cannot cover the whole ®xed cost of transit.

In Fig. 5, an obvious fact is that corner solutions appear when the portion of group 1 in total
demand is less than 0.3, i.e., no commuters of group 1 select mass transit as their travel mode.
When the portion exceeds 0.4, the total transit usage remains unchanged except that by the o-
policy. This has been explained in Section 2.1. The total number of transit commuters induced by
the o-policy falls as group 1 grows in relative size; this is simply because h1 > h2 and the total
demand is ®xed. In addition, according to the analytical solutions derived before, we can easily
show that under the m-, a-, or s-policy, the derivative of the transit usage in group 1 to N1 equals
1.0 when the total demand is given. This is because the highway usage of group 1 depends on the
total value of the demand rather than its composition, as shown in (6a) for example, and the
transit usage equals N1 minus the highway usage. So, we see in Fig. 5 that the transit usage in
group 1 increases linearly with the portion (>0.4), where the slope is 250 in fact.

Fig. 6 shows that for each pricing policy and with a ®xed value of h2, the total transit usage
decreases as the value of h1/h2 rises. This is what we predict. In addition, the ®gure also shows that

Fig. 6. Number of transit commuters compared to group 1 versus group 2Õs aversion to transit crowding.
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group 1Õs transit usage is declining faster than the total transit usage. This is because h1 is rising
while h2 is held ®xed, with the result that group 2Õs transit usage is actually increasing.

5. Conclusions

In this article we studied pricing and modal split in a competitive mass transit/highway system
with heterogeneous commuters. Two groups of commuters were considered that di�er in their
disutility from travel time, schedule delay and transit crowding. We investigated four pricing
schemes, namely the marginal cost-based fare with no-toll (m), the average cost-based fare with
no-toll (a), the marginal cost-based fare with time-invariant toll for subsidizing transit (s) and the
socially optimal combination of transit fare and road toll subject to a breakeven constraint as-
sociated with transitÕs ®xed cost (o).

Through this study, we understand how di�erent charging policies a�ect the mode choice be-
havior of the commuters in di�erent groups, the e�ciency gains or losses of individuals and the
total social cost. We gained some insights from the sensitivity analyses with the aid of numerical
tests. Our ®ndings may highly bene®t the design and operations of transit fare and road toll in a
competitive transportation system for some purposes such as encouraging transit modeÕs use. The
analytical solutions and simulations reported in the paper lead us to the following conclusions:
1. According to the total number of transit commuters generated, the four pricing schemes are

arranged in order of o, s, m and a, from the most to the fewest.
2. When group 1 uses both modes, the total usage of each mode is independent of the demand

composition.
3. The total transit usage is independent of group 2Õs aversion to transit crowding.
4. The individual travel cost, from highest to lowest, ranks the four pricing polices as: a, s, o and

m for group 1, and a, s, m, o for group 2. Group 2, which likely consists of blue-collar workers,
would have relatively larger welfare gains from some changes in pricing policy, such as chang-
ing m to s or to o.

5. The a-policy results in the largest total social cost, then m, s and o in that order.
The above results rely heavily on numerical solutions for speci®c functional forms and pa-

rameter values. Hence, the generality of the results is restricted to some extent. However, our
study provides a starting point for evaluating various pricing schemes, which are associated with a
competitive system with transit and highway. The current research may be extended by including
time-varying road pricing as mentioned before, more than two groups, work start time window,
and stochastic mode choices.
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Appendix A

The individual travel cost of group i which is determined by the waiting time in queue and
schedule delay (time-early or time-late in arriving at W), without road-use tolling, can be ex-
pressed as

CAi�t� � ai�q�t�=s� � bi�t� ÿ �t � q�t�=s�� for t 2 �tq; t0�;
� ai�q�t�=s� � ci��t � q�t�=s� ÿ t�� for t 2 �t0; tq0 �;

�A:1�

where i � 1; 2. In Eq. (A.1), q(t) is the queue length at departure time t, s the capacity of the
bottleneck, t* the o�cial work starting time, t0 the departure time at which an individual can
arrive at the workplace on time, and [tq; tq0 ] is the rush hour to be determined. Eq. (A.1) employs a
linear form of the schedule delay costs; a non-linear and more ¯exible form was used by Braid
(1996). An equilibrium means that the individuals in the same group, no matter when she or he
leaves home, must experience identical travel cost, hence dCAi�t�=dt � 0. This yields

dq�t�=dt � bis=�ai ÿ bi� for t 2 �tq; t0�;
ÿcis=�ai � ci� for t 2 �t0; tq0 �; i � 1; 2:

�
�A:2�

The queue length evolves according to Eq. (A.2) only when group i is departing.
From Eq. (A.2), we know that the queue length is a piecewise linear function of the depar-

ture time t. There exist three slope turning points between tq and tq0 , one at t12 2 �tq; t0�, one
at t21 2 �t0; tq0 � and one at t0, since b1s=�a1 ÿ b1� 6� b2s=�a2 ÿ b2�;ÿc1s=�a1 � c1� 6� ÿc2s=�a2 � c2�
and bis=�ai ÿ bi� 6� ÿcis=�ai � ci�. Due to b1s=�a1 ÿ b1� < b2s=�a2 ÿ b2� and c1s=�a1 � c1�
< c2s=�a2 � c2� associated with the assumptions a1=b1 > a2=b2 and c1=b1 � c2=b2 � g, to mini-
mize the individual costs, group 1 should have commuting at the beginning of the rush hour and
again at the end while group 2 should travel at the middle of the rush hour. In other words, group
1 leaves home during [tq, t12] and [t21, tq0], and group 2 during [t12, t21].

The ®rst and last individuals of group 1 face no queuing time and have the same schedule delay
costs, i.e., b1�t� ÿ tq� � c1�tq0 ÿ t�). The bottleneck operates at capacity s during rush hour, so
tq0 ÿ tq � �NA1 � NA2�=s. These facts lead to

tq � t� ÿ d1�NA1 � NA2�=�b1s� � t� ÿ g �NA1 � NA2�=��1� g�s�; �A:3�

tq0 � t� � d1�NA1 � NA2�=�c1s� � t� � �NA1 � NA2�=��1� g�s�; �A:4�
and the individual cost of group 1

CA1 � d1

NA1 � NA2

s
: �A:5�

It remains to ®nd the values of t12 and t21, and the individual cost of group 2.
Let the queue lengths at time t12 and t21 be q(t12) and q(t21), respectively. An individual of group

1 leaving home at time t12 has cost CA1�t12� � a1q�t12�=s� b1�t� ÿ t12 ÿ q�t12�=s�, and cost
CA1�t21� � a1q�t21�=s� c1�t21 � q�t21�=sÿ t�� � CA1�t12� at time t21. Similarly, for individuals of
group 2 leaving home at time t12 and time t21, they have costs CA2�t12� � a2q�t12�=
s� b2�t� ÿ t12 ÿ q�t12�=s� � CA2�t21� � a2q�t21�=s� c2�t21 � q�t21�=sÿ t��. Subtracting equation
CA1�t12�=b1 � CA1�t21�=b1 from equation CA2�t12�=b2 � CA2�t21�=b2 leads to q�t12� � q�t21�. This fact
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shows that t21 ÿ t12 � NA2=s. Utilizing the slopes of the queue length curve given by (A.2), we have
q�t12� � �t12 ÿ tq�b1s=�a1 ÿ b1� � q�t21� � �tq0 ÿ t21�c1s=�a1 � c1�. Combining these relations and
the de®nition of t0, i.e., t0 � q�t0�=s � t�, we obtain

t12 � t� ÿ g
1� g

NA2

s
ÿ b1

a1

g
1� g

NA1

s
; �A:6�

t21 � t� � 1

1� g
NA2

s
ÿ b1

a1

g
1� g

NA1

s
; �A:7�

t0 � t� ÿ b2

a2

g
1� g

NA2

s
ÿ b1

a1

g
1� g

NA1

s
; �A:8�

and the individual cost of group 2

CA2 � d2

NA2

s
� a2

a1

d1

NA1

s
: �A:9�

Eqs. (A.5) and (A.9) are the main results that we use frequently in this paper.

References

Arnott, R., de Palma, A., Lindsey, R., 1987. Schedule delay and departure time decisions with heterogeneous

commuters. Research Paper No. 87-8, Department of Economics, University of Alberta, Edmonton, Canada.

Arnott, R., de Palma, A., Lindsey, R., 1988. Schedule delay and departure time decisions with heterogeneous

commuters. Transportation Research Record 1197, 56±67.

Arnott, R., de Palma, A., Lindsey, R., 1990. Departure time and route choice for the morning commute.

Transportation Research B 24, 209±228.

Arnott, R., de Palma, A., Lindsey, R., 1992. Route choice with heterogeneous drivers and group-speci®c congestion

costs. Regional Science and Urban Economics 22, 71±102.

Arnott, R., de Palma, A., Lindsey, R., 1994. The welfare e�ects of congestion tolls with heterogeneous commuters.

Journal of Transport Economics and Policy 28, 139±161.

Arnott, R., de Palma, A., Lindsey, R., 1998. Recent developments in the bottleneck model. In: Button, K.J., Verhoef,

E.T. (Eds.), Road Pricing, Tra�c Congestion and the Environment: Issues of E�ciency and Social Feasibility,

Aldershot, Edward Elgar, pp. 79±110.

Braid, R.M., 1996. Peak-load pricing of a transportation route with an unpriced substitute. Journal of Urban

Economics 40, 179±197.

Cohen, Y., 1987. Commuter welfare under peak-period congestion tolls: who gains and who loses? International

Journal of Transport Economics 14, 239±266.

Evans, A.W., 1992. Road congestion pricing: when is it a good policy? Journal of Transport Economics and Policy 26,

213±243.

Glazer, A., 1981. Congestion tolls and consumer welfare. Public Finance 36, 77±83.

Henderson, J.V., 1974. Road congestion: a reconsideration of pricing theory. Journal of Urban Economics 1, 346±365.

Henderson, J.V., 1981. The economics of staggered work hours. Journal of Urban Economics 9, 349±364.

Huang, H.J., Yang, H., 1996. Optimal variable road-use pricing on a congested network of parallel routes with elastic

demand. In: Lesort, J.-B. (Ed.), Proceedings of the 13th International Symposium on Transportation and Tra�c

Theory, Elsevier, Amsterdam, pp. 479±500.

Huang, H.J., Bell, M.G.H., Yang, H., 1997. Bottleneck congestion and modal split: extensions of TabuchiÕs work.

Unpublished Working Paper, School of Management, Beijing University of Aeronautics and Astronautics, China.

H.-J. Huang / Transportation Research Part E 36 (2000) 267±284 283



Huang, H.J., Bell, M.G.H., Yang, H., 1998. Pricing and modal split in a competitive system of mass transit and

highway. Journal of Management Sciences in China 1 (2), 17±23 (in Chinese).

Mahmassani, H., Herman, R., 1984. Dynamic user equilibrium departure time and route choice on idealized tra�c

arterials. Transportation Science 18, 362±384.

Newell, G.F., 1987. The morning commute for non-identical travelers. Transportation Science 21, 74±88.

Small, K.A., 1982. The scheduling of consumer activities: work trips. American Economic Review 72, 467±479.

Small, K.A., 1983. The incidence of congestion tolls on urban highways. Journal of Urban Economics 13, 90±111.

Tabuchi, T., 1993. Bottleneck congestion and modal split. Journal of Urban Economics 34, 414±431.

Vickrey, W.S., 1969. Congestion theory and transport investment. American Economic Review 59, 251±261.

284 H.-J. Huang / Transportation Research Part E 36 (2000) 267±284


