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Abstract. We present an efficient and simple modifica-
tion of the standard transport algorithm used in explicit
eulerian fixed polar grid codes, aimed at getting rid of
the average azimuthal velocity when applying the Courant
condition. This results in a much larger timestep than the
usual procedure, and it is particularly well-suited to the
description of a Keplerian disk where one is traditionally
limited by the very demanding Courant condition on the
fast orbital motion at the inner boundary. In this modi-
fied algorithm, the timestep is limited by the perturbed
velocity and by the shear arising from the differential ro-
tation. FARGO stands for “Fast Advection in Rotating
Gaseous Objects”. The speed-up resulting from the use of
the FARGO algorithm is problem dependent. In the exam-
ple presented here, which shows the evolution of a Jupiter
sized protoplanet embedded in a minimum mass proto-
planetary nebula, the FARGO algorithm is about an order
of magnitude faster than a traditional transport scheme,
with a much smaller numerical diffusivity.
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1. Introduction

We want hereafter to model the hydrodynamical (HD)
evolution of a disk described on a fixed polar eulerian grid.
For the sake of simplicity we are only going to deal with
a two dimensional Keplerian disk, but the algorithm can
be extended with little additional effort to any gaseous
thin or thick disk in differential rotation. Usually in this
kind of numerical simulations the timestep is limited by
the Courant Friedrich Levy (CFL) condition at the in-
ner boundary, where the motion is fast and the cells are
narrow. Indeed, the ratio of the distance swept by the
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material in one timestep to the cell width must be lower
than unity over the whole grid, otherwise a numerical in-
stability occurs (i.e. non physical short-wavelength oscil-
lations appear, grow exponentially and spoil the model).
In a Keplerian disk this ratio (which we call hereafter the
CFL ratio) decreases as r−3/2. Since in most cases the “in-
teresting region” of the grid is located much further than
the grid inner boundary, the CFL ratio in the region of
interest is much smaller than unity, which corresponds to
a waste of computing time, and, as we are going to see be-
low, to an enhanced undesirable numerical viscosity. The
most obvious solution to get rid of such a limitation is to
work in the comoving frame. Unfortunately, most finite-
difference HD eulerian codes require an orthogonal system
of coordinates (Stone & Norman 1992), which makes them
unsuitable if one wants to work in the comoving frame in
a differentially rotating disk, and even a non-orthogonal
grid eulerian code would be unable to track accurately the
fluid motion after a few orbits, due to the strong wind-
ing of the coordinate system. On the other hand, one can
adopt a Lagrangian description of the disk (Whitehurst
1995), but the implementation is much more tricky and
difficult. Furthermore, the geometry of an accretion disk
provides a polar mesh as a natural grid. We describe here-
after a simple method which enables one to work on a
fixed polar grid and to get rid of the CFL condition on
the average azimuthal velocity at each radius.

2. Notations and standard method

We consider a polar grid composed of Ns sectors, each
one ∆θ = 2π

Ns
wide, and Nr rings, with separations at

radii Ri(0≤i≤Nr) . The inner boundary is then located at
the radius R0, and the outer one at the radius RNr .
The density (and the internal energy if needed by
the equation of state) is centered in the cells, and is
denoted (Σij)(i,j)∈[0,Nr−1]×[0,Ns−1]. The radial velocity
is denoted vr

ij , and is considered centered in azimuth
and half-centered in radius (applied at radius Ri,
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i.e. at the interface between the cells [i, j] and [i − 1, j]).
In a similar way, the azimuthal velocity is denoted vθij ,
and is considered centered in radius and half-centered
in azimuth (i.e. at the interface between the cells [i, j]
and [i, j − 1]; throughout this paper the algebra on
the j coordinate is meant in Z/NsZ to account for the
periodicity in azimuth). Usually in a finite difference
code the timestep is split in two main parts (Stone &
Norman 1992). The first part is composed of eulerian
substeps which consist in updating the HD quantities
through the source terms in the evolution equations,
and which include all the physical processes at work:
pressure, gravity, viscosity, etc., and which can formally
be described by the transformation ξ

E→ ξa, ξ being any
HD field on the grid. The second part is the transport
substep, in which the quantities are conservatively moved
through the grid according to the flow [(vr

ij)
a, (vθij)

a], and

which can be formally represented as ξa R→ ξb
T→ ξ+,

where ξ+ denotes any HD field after a whole timestep is
completed, and R and T denote respectively the radial
and azimuthal transport operators, which can be alter-
nated every other timestep. The CFL condition comes
both from the source part and the transport part, and
the most stringent restriction is given by the T -substep,
due to the unperturbed azimuthal flow. Classically, the
azimuthal transport can be written as:

ξ+
ij = ξbij +

∆t
∆yi

(
ξ
b,∗/vθa
ij vθaij − ξ

b,∗/vθa
ij+1 vθaij+1

)
(1)

where ∆yi = Ri+Ri+1
2 ∆θ is the “mean azimuthal width”

of a cell. Equation (1) expresses the balance of the arbi-
trary conservative quantity ξ in the cell [i, j] by computing
the difference of its inflow at the [i, j − 1]/[i, j] interface
with the velocity vθaij and its outflow at the [i, j + 1]/[i, j]
interface with the velocity vθaij+1. Actually we consider the
flux of the upwinded interfacial quantity ξb,∗/v

θa

, where
the “∗/vθa” operator depends on the numerical method
(donor cell, van Leer, PPA, see e.g. Stone & Norman 1992)
and on the velocity field vθa.

3. New azimuthal transport algorithm

3.1. Overview

Let us take as an example the angular momentum conser-
vation equation:
∂J

∂t
+

1
r

∂(vθJ)
∂θ︸ ︷︷ ︸

azim. transport

+
1
r

∂(rvrJ)
∂r︸ ︷︷ ︸

rad. transport

= Source terms (2)

where J = ρrvθ . The transport equation of any HD quan-
tity ξ will look the same as the L.H.S. of Eq. (2).

Now without loss of generality we can rewrite Eq. (2)
as:
∂J

∂t
+

1
r

∂[(vθ − u)J ]
∂θ

+
u

r

∂J

∂θ
+

1
r

∂(rvrJ)
∂r

= Source terms (3)

where u can be any quantity which does not depend on
θ. No assumption has been made on the behavior of J
up to this point, and Eqs. (2) and (3) are strictly equiva-
lent. If we take u to be the average azimuthal velocity vθ,
then Eq. (3) can be described as a composition of different
steps, and each of them can be worked out independently
with the well-known operator splitting technique:
– a source step;
– a radial transport step;
– an azimuthal transport step with the velocity vθ − vθ,

which we are going to call the azimuthal residual
velocity;

– and an additional step which corresponds to the
following PDE:

∂J

∂t
+
vθ

r

∂J

∂θ
= 0. (4)

It is an easy matter to check that the solution of this
last equation can be written in a general way as:

J(θ, t) = J

(
θ −

∫ t
0 v

θdt
r

, 0

)
(5)

which means that the solution of this equation at any
time t looks like the initial profile (t = 0), except
for a shift −

∫ t
0
vθdt/r in azimuth. It should be noted

that this is true whatever the profile of J , which can
even contain discontinuities (i.e. shocks). In particular
no assumption has to be made on the linearity of the
flow (i.e. on the relative amplitude of the perturbed
quantities).

A qualitative reason of why such a decomposition is valid
is that the time evolution of the HD quantities can be de-
scribed either by an observer sitting on a ring of radius
r which rotates at any instant in time with the average
azimuthal velocity, or by an observer at rest in an inertial
frame. Now the time evolution of the system is of course
observer-independent, which is why their observations are
reconciled through the simple shift described by Eq. (5).

The idea on which the FARGO algorithm is based on
is precisely to evolve the HD quantities through opera-
tors which mimic in a discrete way the different terms of
Eq. (3). The source step, the radial transport step and the
residual azimuthal velocity transport step are performed
in a standard way (see e.g. Stone & Norman 1992). Now
the last step in the operator-splitting described above,
which corresponds to a simple shift which amounts to be
vθ∆t/r in one timestep, can be implemented in such a
way that the matter can sweep an arbitrary number of
cell widths in one timestep.

In order to lay down the basic mechanism by which
FARGO works, let us take the following concrete exam-
ple. We assume that, after the classical substeps (which
are the source step, the radial transport and the residual
azimuthal velocity transport), the material at a given ra-
dius r has to be shifted by 4.7 cells in one timestep (which
means that vθ∆t/r∆θ = 4.7). What is actually done is
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that 4.7 is decomposed as 4.7 = −0.3 + 5, i.e. the nearest
integer and a remainder which by construction is lower or
equal to 0.5 in absolute value. In the first substep of this
shift step the material is shifted by this remainder (here
−0.3), which can be achieved through a classical trans-
port method since the remainder is lower or equal to 0.5
in absolute value (it has to be ≤ 1 in order for the stan-
dard transport method to be possible), with the additional
simplicity that the corresponding velocity field is uniform
(which is actually why shift and transport happen to co-
incide in this special case, since there is no compression
in the corresponding flow). The second substep just cor-
responds to an integer number of cells shift, which is done
in our example simply by copying the content of cell j into
cell j + 5, for any j.

A more formal and detailed description of the FARGO
algorithm is given in the next section.

3.2. Mathematical formulation of each step of the
FARGO algorithm

In the modified algorithm, the azimuthal transport
substep is split in several parts. We assume that the
timestep ∆t has already be chosen, and defer discussion of
the timestep constraints until Sect. 3.3. We first compute
the average azimuthal velocity at each radius:

vθi =
1
Ns

Ns−1∑
j=0

vθaij . (6)

We then introduce the residual velocity: vθres
ij = vθaij − vθi ,

and the “shift number” at each radius:

ni = E

[
vθi

∆t
∆yi

]
(7)

where E[X ] denotes the nearest integer to the real X . We
define the constant residual velocity to be:

vθcr
i = vθi − ni

∆yi
∆t
· (8)

Hence the total velocity can be expressed as:

vθaij = vθSH
i + vθcr

i + vθres
ij (9)

where the “shift velocity” vθSH
i = ni

∆yi
∆t corresponds to a

uniform shift of ni cells over one timestep.
We first transport the HD quantities according to the

flow vθres:

ξcij = ξbij +
∆t
∆yi

(
ξ
b,∗/vθres
ij vθres

ij − ξb,∗/v
θres

ij+1 vθres
ij+1

)
(10)

then to the uniform flow vθcr:

ξdij = ξcij +
∆tvθcr

i

∆yi

(
ξ
c,∗/vθcr
ij − ξc,∗/v

θcr

ij+1

)
. (11)

We split the first part of the transport into two parts (vθres

and vθcr) instead of using a single transport step with the
velocity vθres + vθcr, in order to ensure (as can be checked
below given the timestep constraints) that in each of these
transport substeps the material sweeps at most half a cell

(it could sweep up to one cell, but for reasons which will
become clear in Sect. 4, we prefer to take a half cell lim-
itation), and in order for the continuity considerations of
Sect. 3.4 to apply. Finally, the quantities are transported
along the vθSH uniform flow:

ξ+
ij = ξdij−ni . (12)

Only the first two parts of this transport step introduce
some numerical diffusion. The last one, given by Eq. (12),
which in many cases corresponds to the largest part of
the motion, does not introduce any numerical error, since
it just corresponds to a circular permutation of the grid
cells, or in other words it is just an integer discrete version
of the shift given by Eq. (5).

A precise quantification of the lower numerical dif-
fusivity of FARGO is beyond the scope of this paper
though. An extremely rough estimation can be done in
the case of the comparison of a standard method (in
which the effective CFL ratio is a sizable fraction of one)
and a FARGO method for which ni 6= 0. If we assume
that numerical effects will behave in azimuth as a phys-
ical viscosity would do, then the effective numerical vis-
cosity in FARGO is about ni/C0 times lower than the
standard method’s one, where C0 is the CFL standard di-
mensionless limitation factor, which is detailed in the next
section. Nevertheless a variety of numerical experiments
can be found below which all show that FARGO’s numer-
ical diffusivity is smaller than the standard method’s.

3.3. Timestep limitation

In the standard transport method, the timestep
limitation arises from the combination of four differ-
ent constraints (see e.g. Stone & Norman 1992), namely
the fact that a flow advected test particle in cell [i, j]
should not sweep a distance longer than ∆yi in azimuth
nor longer than Ri+1 − Ri in radius over one timestep
(which introduces the limit timestep δt2 and δt3 in Stone
& Norman’s paper), and that the wavefront of any wave
present in the system should not travel across a whole
cell over one timestep (Richtmyer & Morton 1957), which
corresponds to the limit timestep δt1 in Stone & Norman’s
paper. The last constraint comes from a stability limit
arising from the viscosity (numerical or physical). With
the modified azimuthal transport algorithm, the con-
straint on the azimuthal motion has to be modified
slightly. Following Stone & Norman’s notation, instead of
writing δtij3 = ∆yi/vθaij , we write:

δtij3 =
∆yi

vθaij − vθi
=

∆yi
vθres
ij

(13)

which means that the timestep limitation comes now from
the perturbed azimuthal velocity, which results in a much
higher absolute value of δt3. Another limitation arises
from the shear. Indeed we do not want the shear to
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disconnect the two neighboring cells [i, j] and [i + 1, j]
after one timestep. We write this condition as:

δtijshear =
1
2

(
vθaij
∆yi
−

vθai+1j

∆yi+1

)−1

. (14)

Following Stone & Norman’s notations, we finally adopt:

∆t = C0/

{
max
ij

[
(δtij1 )−2 + (δtij2 )−2 + (δtij3 )−2

+(δtij4 )−2 + (δtijshear)
−2
]1/2}

· (15)

3.4. Continuity

At each timestep, Nr values of ni (with i ∈ [0, Nr − 1]),
used in Eq. (12), are computed using Eq. (7). These inte-
ger values scale roughly as R−3/2

i . The shift on the central
parts generally amounts to several cells over one timestep,
while in the outer parts ni is small, and possibly zero.
One can wonder whether or not problems may arise at
the radii Ri where ni 6= ni−1 (i.e. at radii where the az-
imuthal shift corresponding to the third substep of the
transport step is discontinuous). More generally we want
to examine the question of the continuity of ξ+

ij with re-
spect to vθi∆t. In order to check for this continuity, we
assume vθi =

(
N + 1

2 + ε
)

∆yi
∆t , where N is an integer, and

we work out the behavior of ξ+
ij(ε) in the vicinity of ε = 0.

Since we have to use the explicit form of the “∗/vθa” op-
erator, we adopt the van Leer algorithm (van Leer 1977),
which is widely used. Some straightforward algebra leads
to:

ξ+
ij = ξcij−N−1 +

(
1
2
− ε
)

(ξcij−N − ξcij−N−1)

−
(

1
4
− ε2

)
∆yi

2
(dξcij−N − dξcij−N−1) (16)

both for ε > 0 and ε < 0 provided |ε| < 1
2 and where the

operator “dξ” is the van Leer slope. Equation (16) shows
that the field ξ+

ij is a continuous function of ε and hence
of vθi . In particular no special problem is to be expected
from the discontinuities of ni across the disk.

3.5. Operators swapping

As we said in Sect. 2, it is a common practice to alternate
the radial R and azimuthal T transport operators every
other timestep. In this modified algorithm, R should usu-
ally be applied first, unless the velocity field is updated
just after applying the T operator from the new momenta
and new density fields, or unless special care is devoted
to the j indices. Indeed swapping blindly the R and T
operators would result in moving radially the matter with
the radial velocity it actually has ∼ ni cells upwards, and
would quickly end in a non-physical staggering everywhere
ni 6= 0.

4. Mono-dimensional tests

4.1. General considerations

In order to validate this modified transport algorithm, we
present some 1D tests, and we compare the results of the
standard method and of the FARGO method on a realistic
test problem. We solve simultaneously the continuity and
Navier Stokes equation for an isothermal gas (which has
a non-vanishing but small kinematic viscosity):
∂ρ

∂t
+
∂(ρv)
∂x

= 0 (17)

∂v

∂t
+ v

∂v

∂x
= −c

2
s

ρ

∂ρ

∂x
+ ν

∂2v

∂x2
· (18)

We assume that at rest the system has a uniform density
ρ0 and sound speed cs. The waves which can propagate in
this system have the following dispersion relationship:

ω = ±
√
k2c2s −

k4ν4

4
− ik

2ν

2

or: ω = ±kcs − i
k2ν

2
if ν � νlim =

2cs
k

(19)

which reduces to the standard dispersion relation for an
undamped acoustic wave ω = ±kcs provided the sys-
tem is evolved for a time small compared to the damping
timescale τ = 2

νk2 . This will be the case for the results we
are going to present below, so that any apparent damping
of the waves has a numerical origin. We do the following:

1. We first analyze the propagation of a sound wave in
the matter frame, i.e. we take as initial conditions:

ρ(x) = sρ0 cos(kx) and v(x) = scs cos(kx) (20)

where s is the wave relative amplitude. The polariza-
tion adopted corresponds to a rightwards propagating
wave. According to Eq. (19), it propagates with a phase
velocity which is <

(
ω
k

)
= cs. We study this propaga-

tion with the standard transport algorithm (we are
in the matter frame so there is no systematic average
x-velocity, hence no need for a FARGO algorithm). We
check that in this case the solution we get is accurate
by varying the timestep and checking that the solution
has converged.

2. We then turn to a case where the setup is slightly mod-
ified. We take:

ρ(x) = sρ0 cos(kx) and v(x) = v0 + scs cos(kx)(21)

where v0 is a constant, which we choose much bigger
than cs (which would correspond to the conditions of a
thin keplerian disk, for example). The evolution of the
system from this setup ought to be the same as before,
since it merely corresponds to the same physical situa-
tion, but described from a frame moving at a constant
speed −v0 wrt the first one, so one can invoke Galilean
invariance to conclude that the wave profile evolution
has to be the same. So any “good” algorithm should
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approach as closely as possible the results of the matter
frame simulations. We show that this is not quite the
case with the standard transport method, which suf-
fers from quite a high numerical dissipation, whereas
FARGO behaves much better (not to mention its much
faster execution). As a side result we also show that
in this problem taking a CFL effective ratio (for the
standard transport method) bigger than 1

2 leads to an
artificial and non-linear increase of the wave profile,
and hence has to be avoided.

4.2. 1D numerical results

We deal with a 1D grid composed of Ns = 200 cells,
with periodic boundary conditions. The cell width is
∆x = 0.0314, the isothermal sound speed is cs = 0.04. The
equilibrium density is Σ0 = 6 10−4. These parameters cor-
respond roughly to the ones used in the numerical study
of a protoplanet on a circular orbit at 5 AU embedded in
a minimum mass protoplanetary disk (Hayashi et al. 1985
or Bryden et al. 1998), that are described in Sect. 5), when
the central star mass and the protoplanet orbit radius are
taken to be respectively the units of mass and distance.
We present the results of different test runs in Fig. 1. The
thick solid line represents the initial profile, which cor-
responds to a rightward propagating acoustic wave, with
wavelength λ = 40∆x = 1.256. The relative amplitude of
this sound wave is s = 10−2. The thick dashed line rep-
resents the density profile at time t0 = 220, i.e. after the
wave has traveled cst0/λ = 7 times its own wavelength,
when studied in the matter frame, i.e. when the velocity
at t = 0 is set to be only the perturbed velocity associated
to the sound wave. The thick dashed profile is obtained
with the standard transport algorithm (there is no need
for the modified one in this case since we work in the
matter frame), with a timestep ∆t = 5 10−3. The curves
obtained by choosing a much smaller timestep appear to
coincide exactly with this one, hence we can consider this
thick dashed line as the actual state the system must have
at the date t0. This profile does not exactly coincide with
the initial one because t0 is ∼ 1

7 of the profile steepening
time tps ∼ λ

2css
.

Now if we just change the initial velocity by uniformly
adding 1.0 to them at t = 0, which means that we are no
more in the matter frame, and we still work with the stan-
dard transport algorithm, then we get the dotted profile,
which has ∼ 1/5 the amplitude obtained from the com-
putation in the matter frame. In this run the CFL ratio
is v∆t/∆x = 0.16. In order to check the timestep de-
pendency of this result, we redo this test with twice as
smaller a timestep (∆t = 2.5 10−3) and we get the dash-
dotted profile, which has about twice as smaller a density
contrast than the previous curve. Note that if this effect
were to be due to a physical kinematic viscosity ν, then
its value should be: ν ∼ λ2 log 5

2π2t0
∼ 5.8 10−4, much higher

Fig. 1. Compared evolution of an acoustic wave evolved with
the standard transport algorithm and with the modified trans-
port algorithm. We plot only two of the five wavelengths, i.e.
80 cells out of 200. Due to numerical effects the phase velocity
of all these profiles do not exactly coincide with cs, so that af-
ter a time t0 their phases do not coincide. For this reason the
profiles have been shifted so that they have all approximately
the same phase in order to improve the clarity of the plot

than the expected viscosity in a minimum mass protoplan-
etary disk (ν ∼ 10−5 in our dimensionless units). Now,
instead of decreasing the timestep, we increase it and set
∆t = 2.0 10−2 (hence the CFL ratio is about 0.64). We
then get at time t0 the dot-dot-dot-dashed profile, which is
not numerically damped but slightly amplified. With such
a large timestep, we can use the modified transport algo-
rithm, which in that case corresponds to a rightwards one
cell shift and a leftwards normal transport with a remain-
ing CFL ratio of 1− 0.64 = 0.36. In that case we get the
thin long-dashed profile. If we use the modified FARGO
transport algorithm, we can still increase the timestep.
The thin solid profile and the thin short-dashed profile
have been obtained respectively with ∆t = 4 10−2 (effec-
tive CFL ratio ∼ 1.3) and ∆t = 1.2 10−1 (effective CFL
ratio ∼ 3.8). We clearly see from these results that the
FARGO transport algorithm leads to less numerical dis-
sipation than the standard transport. From the first two
tests in the non-comoving frame, one can conclude that
increasing the number of timesteps over a given time in-
terval with the standard transport algorithm increases the
numerical dissipation (if the grid is moving wrt the matter
frame with a velocity v0 6= 0 and if the main part of the ve-
locity comes from v0). A simple explanation for the lower
numerical dissipation of the FARGO algorithm is that it
requires less iterations as the timestep increases, and since
most of the distance swept is achieved through an exact
shift (a circular permutation), the numerical dissipation
has to decrease as the timestep increases.



170 F. Masset: FARGO

5. Two-dimensional example: The embedded protoplanet
problem

We show in this section the validity of the modified trans-
port algorithm when applied to the interaction of a Jupiter
sized protoplanet with a minimum mass protoplanetary
disk in which it is embedded. The perturbed potential as-
sociated with the planet excites spiral density waves in the
disk, which propagate away both inwards and outwards,
with a pattern frequency equal to the planet orbital fre-
quency. The spiral waves interact with the disk and give
it the angular momentum they removed from the planet,
and eventually open a gap centered on the planet orbit,
provided the planet mass is high enough (Papaloizou &
Lin 1984). We present a run with a one solar mass pri-
mary, one Jupiter mass protoplanet initially on a fixed
circular orbit at r0 = 5 AU embedded in a standard proto-
planetary nebula whose parameters have been mentioned
above. The grid has an inner radius at 2 AU and an outer
radius at 12.5 AU. The sequence (Ri)i∈[0,Nr] is equally
spaced, with Nr = 49; The grid has Ns = 143 sectors, it is
fixed in a non-Galilean non-rotating frame centered on the
primary. Its outer boundary is rigid and its inner bound-
ary allows outflow but no inflow. The disk aspect ratio is
set to 4 10−2 everywhere. The planet perturbed potential
is smoothed on a length scale which amounts to 40% of
the Roche radius. In Eq. (14) we choose C0 = 0.5. We

plot in Fig. 2 the quantity eij = vθaij ∆t

∆yi
after 2.86 orbits.

This quantity represents the effective CFL ratio. With the
standard transport algorithm this ratio is bounded by C0.

Fig. 2. Number of cells crossed during one timestep. See text
for parameters. The inner boundary is at the left (high values)
and the outer boundary at the right (low values)

We see that the innermost ring sweeps almost four cells
on one timestep, hence the use of the FARGO transport
algorithm in this case results in a speed-up by a factor ∼ 8
of the computation. One can note that the difference in eij
between the innermost ring and its immediate neighbor is
0.5, which is the maximum allowed by Eq. (14). Indeed the
timestep in this run is shear-limited, and the constraint on
the residual velocities only would lead to an even bigger
timestep, since as one can see the residuals of the distance
swept over one timestep amounts to far less than 1/2, even
in the vicinity of the planet. Indeed, runs performed with
a logarithmic polar grid (i.e. with Ri+1/Ri constant),
which have a smaller value of Ri+1−Ri in the inner part,
have shown to allow a speed-up by a factor ∼ 30 wrt the
standard method.

In order to see how numerical viscosity affects the disk
response in both cases, we plot in the Fig. 3 the disk den-
sity after 28.6 orbits, obtained from different algorithms.
The left plot corresponds to a non-rotating frame stan-
dard transport run, while the middle plot represents a non-
rotating frame FARGO transport run, and the right plot
represents a standard transport run in a frame corotat-
ing with the planet (hence the planet is fixed with respect
to the grid, so we expect from the results of Sect. 4 the
density response in the vicinity of the planet to be given
with a high accuracy). Note that special care has to be
devoted to the treatment of the Coriolis force in that case
in order to conserve exactly the angular momentum and
then to avoid a spurious outwards transport in the disk
(Kley 1998). We clearly see that the global spiral pattern
excited by the protoplanet in the disk is identical in the
three cases, though the response in the immediate vicinity
of the planet is much more spread out in the non-rotating
frame standard accretion case (left plot), and that the
most sharply peaked response is achieved through the use
of a corotating frame (right plot), as expected. Indeed, we
plot in Fig. 5 a cut of the disk density at the planet radius
in the three cases. The solid line represents the FARGO
transport result, and the dot-dashed line the corotating
frame result. They both have the same width, though the
maximum of the density in the corotating case is higher.
The dashed curve represents the result of the standard
transport in a non-rotating frame. Its width is about twice
as large as the other curves’ width, and we also see that
numerical effects in that case lead to additional leading
and trailing material (near cells number 65 and 77), and
to a smaller density peak value.

The FARGO plot in Fig. 3 exhibits at its inner bound-
ary an oscillatory behavior which originates from three
combined effects. First, this is a shear-limited run — see
Eq. (14) and Fig. 2 —; if we change the 0.5 factor in
Eq. (14) to 0.3, this oscillatory behavior disappears (hence
in any high resolution run, where the algorithm is most
likely to be residual velocity limited rather than shear-
limited, it never turns up). Second, the inner grid has
strongly radially elongated cells. If we take a log-grid



F. Masset: FARGO 171

Fig. 3. Disk density Σij ; j is in abscissa and i in ordinate. The left plot has been obtained by a non-rotating frame standard
method, the middle one by a non-rotating frame FARGO transport method and the right one by a corotating frame standard
method. Since each of these plots is approximately square, any circular feature in the disk should appear on the plots as a 1:3
vertical ellipse. This is not quite the case of the material surrounding the planet in the left panel, which leads to the conclusion
that in a non-rotating frame standard transport method, the matter is artificially elongated along the orbital motion. The
FARGO case, in the middle panel, shows much better behavior, and the coorbital material has a distribution which looks very
much like the right panel one

Fig. 4. Disk density Σij ; j is in abscissa and i in ordinate, for the log-grid runs described in the text. The left plot has been
obtained by a non-rotating frame standard method, the middle one by a non-rotating frame FARGO transport method and the
right one by a corotating frame standard method. The same comments as in Fig. 3 apply here. On this specific example, the
FARGO run turned out to be 17 times faster than the standard run in the non-rotating frame, and 15 times faster than the
standard run in the co-rotating frame

(see e.g. Nelson 1999, or the example below), where the
cells are almost “square” everywhere, this behavior is not
observed, even if the run remains shear-limited. And fi-
nally, we have a steep density gradient close to the inner
boundary. If the inner boundary was closed and hence if
we had no density gradient, this oscillatory behavior would
never appear. In all the cases where it was observed this
behavior always disappeared after a few tens of dynamical
times.

It should be noted that the numerical damping
observed in the non-stationery frame in Sect. 4 occurs
both in the non-rotating frame and corotating frame
(far from the coorbital region) standard method runs.
Hence the amplitude of the protoplanet triggered density
wave is marginally higher in a FARGO run at the inner
boundary. Both this reason and the effect we noticed in
the previous paragraph lead to a marginally higher mass
loss through the inner boundary, at least during the first

stages of the evolution of the system, which results in the
darker band at the inner boundary in the middle panel of
Fig. 3.

We present in Fig. 4 the results of three runs
(non-rotating standard and FARGO, and corotating
standard), which describe the same physical system as
before after the same amount of time, but with a grid for
which Nr = 70, Ns = 180, Rmin = 0.25 and Rmax = 2.5,
and with a geometric sequence for (Ri)i∈[0,Nr] (hence it is
a log-grid, and everywhere its cells are almost “square”).
One can check on these plots that there is no oscillatory
behavior in the FARGO results (this time the cells are no
radially elongated near the inner boundary), whereas the
run is still shear-limited. Furthermore, as stated above,
a careful look at the inner spiral structure shows that it
has a slightly higher amplitude in the FARGO case.

From the results depicted in Figs. 3, 4 and 5, one
can deduce that the FARGO transport algorithm on this
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Fig. 5. Disk density cuts at the planet radius. The solid line
represents the FARGO transport case, the dashed line repre-
sents the standard case, and the dot-dashed line represents the
corotating frame result. The dotted line indicates the unper-
turbed surface density. Note that the local maxima at j ' 46
and j ' 94 correspond to a temporary residual accumulation of
material at the L4 and L5 Lagrange points of the protoplanet

particular problem is much closer than the usual standard
transport algorithm to the exact solution (which must
closely resemble the results given by the corotating frame
run, at least in the coorbital region, since in Sect. 4 we
have seen that one needs to be in the comoving frame in
order to get accurate results even in the limit of a van-
ishing timestep). Another quantitative evaluation of the
FARGO algorithm consists in monitoring the accretion
rate onto the planet as a function of time. We present
in Fig. 6 the accretion rate onto a one Jupiter mass pro-
toplanet embedded in a minimum mass protostellar disk
with no initial gap. The disk parameters are the same
as before, as well as the grid resolution (arithmetic ra-
dial spacing with Nr = 49 and Ns = 143). Three runs
are presented with three different schemes: the standard
method in the rotating frame, which gives, according to
Sect. 4, the most accurate results, the standard method
in the non-rotating frame, and the FARGO method in the
non-rotating frame. We use a slightly different accretion
procedure than the one described by Kley (1999). We see
from the curve obtained in the corotating frame that the
accretion rate is about 1.6 10−3 MJ orbit−1 after 400 or-
bits. This is in relatively good agreement with Kley’s re-
sults, who gets slightly more than 2.0 10−3 MJ orbit−1

after 400 orbits in a similar run, but with a different grid
resolution and a slightly different accretion protocol. We
see from Fig. 6 that the accretion rate in the non-rotating
frame, with a standard method, is smaller than in the ro-
tating frame run, by a factor ' 2. The fact that the accre-
tion rate is slower in this case was to be expected from the
curves of Fig. 5. Now the run with the FARGO algorithm
leads to an accretion rate which is between the rotating

Fig. 6. Accretion rate as a function of time onto a one Jupiter
mass protoplanet with three different methods. See text for
details

frame results and the non-rotating frame standard trans-
port results, and which are closer to the rotating frame
results. From these considerations again we see that the
FARGO transport leads to a smaller error wrt the rotat-
ing frame results. The point here is that the FARGO
transport algorithm is about one order of magnitude or
more faster than the corotating frame standard transport
run, and that the corotating frame is suitable only to the
study of a protoplanet on a fixed circular orbit. From these
remarks it clearly appears that the FARGO transport al-
gorithm is particularly well suited to the study of the pro-
toplanet orbit long-term evolution. FARGO has already
been used to study the migration and mass accretion of
a Jupiter sized protoplanet in a protoplanetary disk. It
has been extensively tested against existing independent
codes, which use the standard transport algorithm. It has
proven to give very similar results, and the slight differ-
ences which remain between these codes and FARGO can
all be understood in terms of FARGO’s lower numerical
diffusivity (Nelson et al. 1999).

6. Conclusion

The FARGO algorithm for the azimuthal transport turns
out to be able to speed up by about an order of magnitude
the numerical simulation of a differentially rotating disk,
with a smaller numerical viscosity than the usual trans-
port algorithm. It has been validated by many tests on the
embedded protoplanet problem. It is worth mentioning
that the FARGO transport algorithm must be used with
a good understanding of the physical processes at work in
the system. In particular, the timestep given by Eq. (15)
must be short compared to all the physical time scales
relevant for the system. In the case we have presented
in this paper this is automatically ensured by the set of



F. Masset: FARGO 173

Eqs. (13) to (15), but if additional physics is to be added
(magnetic field, radiative transfer, etc.), the timestep limit
needs to be carefully worked out. Furthermore, no advan-
tage is gained in using FARGO in problems where the
perturbed velocity is comparable to the rest velocity. It is
the case for instance of the gas flow in a galactic bar. This
does not mean that the FARGO algorithm leads to wrong
results in that case, but simply that it will not be better
than a standard method, both in terms of numerical diffu-
sivity and execution time. On the other hand, the FARGO
algorithm appears to be very well suited to all the cases
where the perturbed velocities in any differentially rotat-
ing disk are small compared to the unperturbed velocities,
which does not mean that the problem under considera-
tion has to be linear; indeed the relative perturbed ampli-
tude can be arbitrarily high (see e.g. Sect. 5 in which the
protoplanet wake generates shocks in the disk). More gen-
erally the FARGO algorithm can be used to describe the
HD evolution of any sheared fluid on a fixed orthogonal
eulerian grid.
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