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Farinelli and Tibiletti ratio and Stochastic Dominance

Abstract: Farinelli and Tibiletti (F-T) ratio, a general risk-reward performance measurement ratio,

is popular due to its simplicity and yet generality that both Omega ratio and upside potential ratio

are its special cases. The F-T ratios are ratios of average gains to average losses with respect to a

target, each raised by a power index, p and q. In this paper, we establish the consistency of F-T ratios

with any nonnegative values p and q with respect to first-order stochastic dominance. Second-order

stochastic dominance does not lead to F-T ratios with any nonnegative values p and q, but can lead

to F-T dominance with any p < 1 and q ≥ 1. Furthermore, higher-order stochastic dominance (n ≥ 3)

leads to F-T dominance with any p < 1 and q ≥ n − 1. We also find that when the variables being

compared belong to the same location-scale family or the same linear combination of location-scale

families, we can get the necessary relationship between the stochastic dominance with the F-T ratio

after imposing some conditions on the means. Our findings enable academics and practitioners to

draw better decision in their analysis.

Keywords: First-order Stochastic Dominance, High-order Stochastic Dominance, Upside Potential

Ratio, Farinelli and Tibiletti ratio, Risk Measures.

JEL Classification: C0, D81, G10

1 Introduction

Due to its simplicity and easy interpretation, the Sharpe ratio has been widely used in practice

(Sharpe 1966; Leung and Wong, 2008). However, the standard deviation, which is adopted in

the Sharpe ratio, is not a good measure of risk because it penalizes upside deviation as well

as downside deviation. In fact, most investors view upside deviation and downside deviation

differently. They consider negative returns over the target return as risk and positive returns
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over the target return as profit. Downside risks, thus, become important components in the

construction of performance measures. Risk measures based on below-target returns are first

proposed by Fishburn (1977) in the context of portfolio optimization. Classic measures of

downside risk include semi-deviation, (Markowitz, 1959, 1987), Value-at-Risk (Jorion, 2000)

and the conditional Value-at-Risk (Rockafellar and Uryasev, 2000). Farinelli and Tibiletti (F-

T, 2008) propose a general risk-reward ratio, which is suitable to compare skewed returns with

respect to a benchmark. The F-T ratios are essentially ratios of average above-benchmark

returns (gains) to average below-benchmark returns (losses), each raised by some power index,

p and q, to proxy for the investor’s degree of risk aversion. When the power index is equal

to one for both numerator and denominator, the performance measure is the Omega ratio

(Keating and Shadwick, 2002). On the other hand, when the power index is equal to one and

two for numerator and denominator, respectively, the performance measure becomes the upside

potential ratio (Sortino et al. 1999).

This paper focuses on the F-T ratio because of its intuitive simplicity and yet generality

that both Omega ratio and upside potential ratio are its special cases. It is clear that the higher

is an investment’s F-T ratio, the more attractive it is to an investor who cares about downside

risk. We call it F-T dominance. On the other hand, stochastic dominance (SD) theory can be

used to compare different investments without assuming specific form of utility function. This

raises an interesting following question: if we find an investment is preferred compared with

another one by stochastic dominance theory, can its F-T ratios always higher than those of the

other one? Or in another words, could stochastic dominance lead to F-T dominance and vice

versa? In this paper, we show that the answer depends on the order of stochastic dominance.

Specifically, it is proven that first-order stochastic dominance is consistent with the F-T

ratios with any nonnegative values p and q. Second-order stochastic dominance does not lead
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to F-T ratios with all nonnegative values p and q, but can lead to F-T dominance with any p < 1

and q ≥ 1. We present a simple example in this paper to show that second-order stochastic

dominance is not consistent with the F-T ratio at all time. Higher-order stochastic dominance

(n ≥ 3) leads to F-T dominance with any p < 1 and q ≥ n−1. We find that when the variables

being compared belong to the same location-scale family or the same linear combination of

location-scale families, we can get the necessary relationship between the stochastic dominance

with the F-T ratio after imposing some conditions on the means. Our findings enable academics

and practitioners to draw better decision in their analysis.

The rest of this paper is organized as follows. Section 2 gives a brief introduction of SD

theory. Section 3 contains our main result. Section 4 concludes the paper.

2 Definitions and Notations

Investors are called the j-order risk averters if their utility u ∈ Uj = {u : (−1)iu(i) ≤ 0 , i =

1, · · · , j} and called the j-order risk seekers if u ∈ UR
j = {u : u(i) ≥ 0 , i = 1, · · · , j} for any

integer j in which u(i) is the ith derivative of u. For any integer j, we define the j-order integral,

F
(j)
Z , and the j-order reverse integral, F

(j)R
Z , of Z to be

F
(j)
Z (η) =

∫ η

−∞

F
(j−1)
Z (ξ)dξ ,

F
(j)R
Z (η) =

∫

∞

η

F
(j−1)R
Z (ξ)dξ , (2.1)

respectively, with F
(0)R
Z = F

(0)
Z = fZ to be the probability density function (pdf) of Z for

Z = X and Y . When j = 1, F
(1)
Z = FZ is the cumulative distribution function (cdf) of Z.

Following the definition of stochastic dominance (SD), see, for example, Hanoch and Levy

(1969), Levy (2015) and Guo and Wong (2016), prospect X first-order stochastically dominates

prospect Y , denoted by

X ≽FSD Y if and only if F
(1)
X (η) ≤ F

(1)
Y (η) for any η ∈ R, (2.2)
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and prospect X nth-order stochastically dominates prospect Y , denoted by

X ≽nSD Y if and only if F
(n)
X (η) ≤ F

(n)
Y (η) for any η ∈ R, and F

(k)
X (∞) ≤ F

(k)
Y (∞) (2.3)

with 2 ≤ k ≤ n. Here, FSD and nSD stands for first- and nth-order stochastic dominance. For

n = 2, 2SD can also be written as SSD (second-order SD). It is well known that

if X ≽nSD Y for any n ≥ 1 , then µX ≥ µY . (2.4)

We need this property in the proofs of the theorems we developed in our paper.

Now, we follow Li and Wong (1999), Levy (2015), Guo and Wong (2016), and others to

define risk-seeking stochastic dominance (RSD)1 for risk seekers. Prospect X second-order

risk-seeking stochastically dominates prospect Y , denoted by

X ≽SRSD Y if and only if F
(2)R
X (η) ≥ F

(2)R
Y (η) for any η ∈ R. (2.5)

Here, SRSD or 2RSD denotes second-order RSD.

We turn to define Farinelli and Tibiletti (F-T) ratio. Formally, for any prospect X, its F-T

ratio φFT,X(η) is defined as:

φFT,X(η) =
(E[(X − η)p+])

1/p

(E[(η −X)q+])
1/q

. (2.6)

Here, x+ = max{0, x} and η is called the return threshold. For any investor, return below her

return threshold is considered loss and return above is gain. Furthermore, p and q are positive

values to represent investor’s degree of risk aversion. Thus, the F-T ratio is the ratio of average

gain to average loss, each raised by some power index to proxy for the investor’s degree of risk

aversion.

As an illustration, we first consider Omega ratio, first discussed by Keating and Shadwick

(2002). In fact, if we take p = q = 1, the above defined F-T ratio reduces to the Omega ratio:

OX(η) =
E[(X − η)+]

E[(η −X)+]
.

1Levy (2015) denotes it as RSSD while we denote it as RSD.
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Readers may refer to Guo, et al. (2017) to know more properties for the Omega ratio.

We turn to discuss the upside potential ratio (Sortino, et al., 1999). In fact, if we take p = 1

and q = 2, the F-T ratio defined in (2.6) becomes the upside potential ratio, which is defined

as:

UX(η) =
E[(X − η)+]

√

E[(η −X)2+]
.

According to Proposition 1 in Ogryczak and Ruszczyński (2001), we have

F
(n+1)
X (η) =

∫ η

−∞

F
(n)
X (x)dx =

1

n!
E[(η −X)n+].

Further, we note that

F
(2)R
X (η) =

∫

∞

η

(1− FX(ξ))dξ =

∫

∞

η

∫

∞

ξ

fX(x)dxdξ

=

∫

∞

η

∫ x

η

dξfX(x)dx =

∫

∞

η

(x− η)fX(x)dx = E[(X − η)+].

In the above argument, the order of integration is changed by Fubini’s theorem. Consequently,

we can further rewrite the upside potential ratio as

UX(η) =
E[(X − η)+]

√

E[(η −X)2+]
=

F
(2)R
X (η)

√

2!F
(3)
X (η)

.

Thus, we consider the following general F-T ratio in our paper since the F-T ratio can be

rewritten as:

φFT,X(η) =
(E[(X − η)p+])

1/p

(E[(η −X)q+])
1/q

=
(E[(X − η)p+])

1/p

(q!F
(q+1)
X (η))1/q

. (2.7)

Another class of performance measurement is called Kappa ratio, which is first developed

by Kaplan and Knowles (2004) as follows:

K
(q)
X (η) =

µX − η

(E[(η −X)q+])
1/q

. (2.8)

Thus the denominators of Kappa ratio and F-T ratio are the same, while the numerators of

these two ratios are different. Compared with Kappa ratio, the numerator of F-T ratio measures

5



the average above-benchmark returns. Readers may refer to Niu, et al. (2017) to know more

properties for the Kappa ratio. More discussions about the differences and relationships between

these two ratios can be found from Leon and Moreno (2017).

We state the following dominance rule by using the F-T ratio:

Definition 2.1 For any two prospects X and Y with F-T ratios, φFT,X and φFT,Y , respec-

tively, X is said to dominate Y by the F-T ratio, denote by

X ≽FT Y if φFT,X(η) ≥ φFT,Y (η), for any η ∈ R. (2.9)

3 The Theory

Is mean-risk rule consistent with stochastic dominance rule? Markowitz (1952) defines a mean-

variance rule for risk averters and Wong (2007) defines a mean-variance rule for risk seek-

ers. Wong (2007) further establishes consistency of mean-variance rules with second-order SD

(SSD) rules under some conditions. Ogryczak and Ruszczyński (1999) show that under some

conditions the standard semi-deviation and absolute semi-deviation make the mean-risk model

consistent with the SSD. Ogryczak and Ruszczyński (2002) establish the equivalence between

TVaR and the second-order stochastic dominance. In addition, Leitner (2005) further shows

that AV@R as a profile of risk measures is equivalent to the SSD under certain conditions. Ma

and Wong (2010) showed the equivalence between SSD and the C-VaR criteria.

3.1 Sufficient Conditions

Is F-T ratio consistent with SSD? This paper explores answer for this question. We first

establish the following property to say the relationship between F-T ratio and SSD:

Property 3.1 F-T ratio is not consistent with SSD for all positive p and q in the sense that

for any two prospects X and Y with F-T ratios φFT,X and φFT,Y , respectively, the following
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statement does not hold:

X ≽SSD Y ⇒ X ≽FT Y for all positive p, q. (3.1)

We construct the following example to support the argument stated in Property 3.1.

Example 3.1 Consider two prospects X and Y with the following distributions:

X = 10 with prob. 1 and Y =







1 with prob. 2/3

11 with prob. 1/3
. (3.2)

We have µX = 10 and µY = 13/3 and obtain the following

F
(2)
X (η) =







0 if η < 10

η − 10 if η ≥ 10
, F

(2)
Y (η) =















0 if η < 1

2(η − 1)/3 if 1 ≤ η < 11

η − 13/3 if η ≥ 11

,

F
(2)R
X (η) =







10− η if η < 10

0 if η ≥ 10
, F

(2)R
Y (η) =















13/3− η if η < 1

(11− η)/3 if 1 ≤ η < 11

0 if η ≥ 11

.

It is easy to observe that F
(2)
X (η) ≤ F

(2)
Y (η), for all η ∈ R; that is, X ≽SSD Y . However, for

any 10 ≤ η < 11, we have F
(2)R
X (η) ≡ 0 < F

(2)R
Y (η). Recall the definition of UX(η), we can

conclude that UX(η) ≡ 0 < UY (η) for any 10 ≤ x < 11.

Thus, Example 3.1 shows that SSD is not sufficient to imply the F-T ratio dominance rule for

all p and q. However, if we restrict the range of p and q, it can be shown that SSD can lead

to F-T ratio dominance rule. While FSD is always consistent with the F-T ratio rule for any p

and q. We state the results in the following Theorem:

Theorem 3.1 For any two returns X and Y with F-T ratios φFT,X(η) and φFT,Y (η), respec-

tively,

1. if X ≽FSD Y, then X ≽FT Y for any nonnegative values p and q; .

2. if X ≽SSD Y, then X ≽FT Y for any p < 1 and q ≥ 1;
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3. if X ≽nSD Y, n ≥ 3 then X ≽FT Y for any p < 1 and q ≥ n− 1.

Here, p and q are defined in either (2.6) or (2.7)

3.2 Necessary Conditions

We turn to study the necessary condition between SD and F-T ratio. We first show that the

F-T ratios are strictly increasing functions of the Sharpe ratio for the location-scale family. To

be precise, we obtain the following theorem:

Theorem 3.2 Suppose that X belongs to a location-scale family, with its mean µX and

standard deviation σX > 0. Then φFT,X(η) increases monotonically with (µX − η)/σX .

Theorem 3.2 proves the monotonicity of the Sharpe ratio and the F-T ratios when return

follows a location-scale (LS) family, a family of univariate probability distributions parameter-

ized by a location and a non-negative scale parameters, with several well-known distributions

in finance including Cauchy, exponential, extreme value distribution of the maximum and the

minimum, each of type I, Laplace, logistic and half-logistic, Maxwell-Boltzmann, normal and

halfnormal, uniform distribution, etc.

Based on Theorem 3.2, we obtain the following result:

Theorem 3.3 For any two returns X and Y that belong to the same location-scale family or

same linear combination of location-scale families with means, µX and µY , standard deviations,

σX and σY , and F-T ratios, φFT,X(η) and φFT,Y (η), respectively, we have

1. if µX > µY and

(a) if there exists at least one η satisfying η ≥ µX such that φFT,X(η) ≤ φFT,Y (η) for any

p, q > 0, then E [u(X)] ≥ E [u(Y )] for any risk-averse investor with utility function

u ∈ Uk for any k ≥ 2; and
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(b) if there exists at least one η satisfying µY ≥ η such that φFT,X(η) ≤ φFT,Y (η) for

any p, q > 0, then E [u(X)] ≥ E [u(Y )] for any risk-seeking investor with utility

function u ∈ UR
k for any k ≥ 2; and

2. if µX = µY = µ and

(a) if there exists at least one η satisfying µ ≥ η such that φFT,X(η) ≥ φFT,Y (η) for any

p, q > 0, then E [u(X)] ≥ E [u(Y )] for any risk-averse investor with utility function

u ∈ Uk for any k ≥ 2; and

(b) if there exists at least one η satisfying η ≥ µ such that φFT,X(η) ≥ φFT,Y (η) for any

p, q > 0, then E [u(X)] ≥ E [u(Y )] for any risk-seeking investor with utility function

u ∈ UR
k for any k ≥ 2.

4 Conclusions

In practice, investors care about losses more than gains of similar magnitude. The gains and

losses are relative to specified benchmarks. Returns below the benchmarks are considered as

losses and returns above as gains. The F-T ratio encodes both of these features in a simple

way.

We have shown that the simplicity of the F-T ratio belies its intimate connection with ex-

pected utility theory for all non-satiated investors (first-order stochastic dominance). However,

the second-order stochastic dominance is, in general, not consistent with F-T ratio. A simple

example is presented to illustrate this point. However, we find that second-order stochastic

dominance can lead to F-T dominance with any p < 1 and q ≥ 1. Further higher-order

stochastic dominance (n ≥ 3) leads to F-T dominance with any p < 1 and q ≥ n− 1.

We find that when the variables being compared belong to the same location-scale family

or the same linear combination of location-scale families, we can get the necessary relation-
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ship between the stochastic dominance with the F-T ratio after imposing some conditions on

the means. Our findings enable academics and practitioners to draw better decision in their

analysis.
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