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Abstract – Data-driven techniques help boost agricul-

tural productivity by increasing yields, reducing losses

and cutting down input costs. However, these techniques

have seen sparse adoption owing to high costs of manual

data collection and limited connectivity solutions. In this

paper, we present FarmBeats, an end-to-end IoT platform

for agriculture that enables seamless data collection from

various sensors, cameras and drones. FarmBeats’s sys-

tem design that explicitly accounts for weather-related

power and Internet outages has enabled six month long

deployments in two US farms.

1 INTRODUCTION

The demand for food is expected to double by 2050,

primarily fueled by an increase in population and upward

social mobility [58]. Achieving this increase in food pro-

duction is even more challenging because of receding wa-

ter levels, climate change and shrinking amount of arable

land. According to International Food Policy Research

Institute, data-driven techniques can help us achieve this

goal by increasing farm productivity by as much as 67%

by 2050 and cutting down agricultural losses [20].

In fact, field trials have shown that techniques that use

sensor measurements to vary water input across the farm

at a fine granularity (precision irrigation) can increase

farm productivity by as much as 45% while reducing the

water intake by 35% [3]. Similar techniques to vary other

farm inputs like seeds, soil nutrients, etc. have proven to

be beneficial [25, 37]. More recently, the advent of aerial

imagery systems, such as drones, has enabled farmers to

get richer sensor data from the farms. Drones can help

farmers map their fields, monitor crop canopy remotely

and check for anomalies. Over time, all this data can

indicate useful practices in farms and make suggestions

based on previous crop cycles; resulting in higher yields,

lower inputs and less environmental impact.

While these techniques for agriculture have shown

promising results, their adoption is limited to less than 20

percent farmers owing to the high cost of manual sensor

data collection (according to US Department of Agricul-

ture [30]). Automating sensor data collection requires es-

tablishing network connection to these sensors. However,

existing connectivity solutions [11, 18] require a cellular

data logger to be attached to each sensor (see Table 1 for a

detailed comparison). These loggers cost around $1000

each in equipment cost with over $100 in subscription

fee. Further, they are limited in the amount of data that

they can send to few kilobytes per day. Clearly, these so-

lutions do not scale up for large farms and cannot support

high bandwidth sensors like cameras and drones, which

rely on sending all their data to the cloud for process-

ing [10,49]. This situation is further worsened by the fact

that farms typically have limited cellular coverage [24]

and are prone to weather-based Internet outages.

In this paper, we present FarmBeats, an end-to-end IoT

platform for data-driven agriculture, that enables seam-

less data collection from various sensor types, i.e., cam-

eras, drones and soil sensors, with very different band-

width constraints. FarmBeats can ensure system avail-

ability even in the face of power and Internet outages

caused by bad weather; scenarios that are fairly common

for a farm. Further, FarmBeats enables cloud connectiv-

ity for the sensor data to enable persistent storage as well

as long-term or cross-farm analytics. We have deployed

FarmBeats in two farms in the US over a period of six

months and used FarmBeats to enable three applications

for the farmer: precision agriculture, monitoring temper-

ature and humidity in food storage, and monitoring ani-

mal shelters. In designing FarmBeats, we solve three key

challenges.

First, to enable connectivity within the farm, Farm-

Beats leverages recent work in unlicensed TV White

Spaces (TVWS) [6, 16, 44] to setup a high bandwidth

link from the farmer’s home Internet connection to an

IoT base station on the farm. Sensors, cameras and

drones can connect to this base station over a Wi-Fi front-

end. This ensures high bandwidth connectivity within

the farm. However, due to the lack of power on the

farm, the base station is powered by battery-backed solar

power which suffers from power unreliability depending

on weather conditions. As shown in past work [22, 51],

cloudy weather can reduce solar power output signifi-

cantly and drain the batteries of the base station to shut

it down. To solve this problem, FarmBeats uses a novel

weather-aware IoT base station design. Specifically, it

uses weather forecasts to appropriately duty cycle differ-

ent components of the base station. To the best of our

knowledge, this is the first weather-aware IoT base sta-

tion design.

Second, Internet connection to the farm is typically

weak making it challenging to ship high bandwidth drone

videos (multiple GBs) to the cloud. Furthermore, farms

are prone to weather-related network outages that last

weeks. Such system unavailability impedes a farmer’s



ability to take adequate preventive actions, do UAV in-

spections and leads to loss of valuable sensor data. Thus,

FarmBeats uses a Gateway based design, wherein a PC at

the farmer’s home serves as a gateway for the farm data.

The FarmBeats Gateway serves two purposes: a) it per-

forms significant computation locally on the farm data

to consolidate it into summaries that can be shipped to

the cloud for long-term and cross-farm analytics, and b)

the gateway is capable of independent operation to han-

dle periods of network outage, thus leading to continuous

availability for the farmer.

Finally, while drones are one of the most exciting farm

sensors today, they suffer from poor battery life. Getting

aerial imagery for a farm requires multiple drone flights

and a long wait time in between when the batteries are be-

ing charged. We use the fact that farms are typically very

windy, since they are open spaces. Thus, we incorporate

a novel path planning algorithm in the FarmBeats gate-

way, that leverages wind to help the drone accelerate and

decelerate, thereby conserving battery. This algorithm is

motivated by how sailors use winds to navigate sailboats.

We use the FarmBeats system to enable precision agri-

culture applications on two farms: one in Washington

state and the other in upstate New York. While traditional

farming treats the farm as a homogeneous piece of land,

precision agriculture adapts the farm inputs over different

parts of the farm depending on the requirement. Preci-

sion agriculture techniques require a precision map with

information about each location in the farm, for example,

the soil temperature, soil moisture, nutrient levels, etc. To

construct this precision map, existing solutions for preci-

sion agriculture require a dense deployment of in-ground

sensors [30]. A dense deployment of sensors becomes

expensive (as well as cumbersome to manage) as the size

of the farm grows. Unless these sensors are deployed

densely within a farm, the estimated precision map can

be very inaccurate, as we show in Section 7. Since Farm-

Beats’s gateway has access to both the drone videos and

sensor data, it enables a novel low-cost mechanism that

uses drone videos in combination with sparse ground sen-

sors to generate precision maps for the farm. To the best

of our knowledge, this is the first system that can com-

bine the temporal data from sensors, with the spatial data

from drones to construct an instantaneous precision map

of the farm, such as the one in Figure 5.

Beyond FarmBeats’s application in precision agricul-

ture, farmers have so far used FarmBeats for two other

applications. First, the farmers have been using Farm-

Beats to monitor temperature and humidity in storage

spaces to ensure that the produce does not go bad. Sec-

ond, the farmers have plugged in cameras at different lo-

cations, to monitor cow sheds, selling stations etc1.

1Supplementary Material includes detailed description of Farm-

Beats applications and usage.

Contributions: To summarize, FarmBeats makes the

following key contributions:

• Long-term large scale deployment: Our deployments

have run over 6 months in each of the farms and collected

over 10 million sensor measurements, 1 million camera

images and 100 drone videos

• Novel Weather-Aware IoT Base Station Design:

Adding weather awareness into the IoT base station re-

duced the base station down time to zero as opposed to

greater than 30% downtime during the same month in the

previous year in an earlier version of our deployment

• Novel Inference Techniques for Compression of

Aerial Imagery Data: FarmBeats’s gateway achieved a

median compression of 1000 times from an aerial drone

video to the sensor summaries sent to the cloud. Further,

the gateway remained available even when the Internet

connectivity to the farm faced a week-long outage

• Wind-Assisted Drone Flight Planning Algorithm:

FarmBeats’s flight planning algorithm improves the area

covered by a single drone flight by 30%

2 IOT PLATFORM: OBJECTIVES

In building FarmBeats, we target the following goals:

• Availability: The platform should have negligible down-

time. When there is an outage (for example, due to

power or network failure), data collection from the sen-

sors should not stop and the platform should continue to

deliver services to the farmers.

• Capacity: It should support sensors with widely vary-

ing requirements: pH sensors reporting few bytes of data

to drones sending gigabytes of video. Similarly, the sys-

tem should be capable of supporting end-user applica-

tions with varying needs: from a precision irrigation ap-

plication that needs the latest sensor data for the entire

farm to a crop suggestion application that needs just high

level productivity data but across several growing seasons

• Cloud Connectivity: Several farming applications, such

as crop cycle prediction, seeding suggestions, farming

practice advisory, etc. rely on long term data analytics.

Besides, a farmer may want to access some applications

even when he is not on the farm. Thus, the IoT platform

must enable pushing data to the cloud.

• Data Freshness: Stale sensor data from the farm can

make applications suggest incorrect courses of action to

the farmer. Gaps in historical data can also cause appli-

cations to misbehave. Moreover, stale data leads to bad

user experience. Thus, the platform must strive to main-

tain maximum data freshness.

3 THE FARMBEATS IOT PLATFORM

While these objectives have been fairly successfully

achieved by home IoT platforms like Amazon Echo,

achieving these objectives in an agricultural setting in-

troduces several challenges for two main reasons: access

and environmental variability. As discussed before (and
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Figure 1: FarmBeats System Overview

as shown in Table 1), farms do not have access to power

and high-bandwidth Internet connectivity unlike indoor

IoT systems. Furthermore, energy harvested from the en-

vironment and weak network connectivity to the farm is

susceptible to failures due to weather variability. So, the

key question for the design of FarmBeats is: how does

one design an IoT platform to meet the objectives in a

highly variable, resource constrained environment?

3.1 Design Decisions

An overview of the system is given in Figure 1. Here,

we discuss the main design decisions.

To achieve farm connectivity over long range, we

leverage recent work in the TV White Spaces [6, 16, 44]

to setup a high-bandwidth connection from the farmer’s

home to the farm. However, sensors, drones and cameras

typically do not support TVWS. Thus, in order to main-

tain compatibility with sensors along with long-range

high bandwidth connectivity, we deploy a two-layer hy-

brid network. We use a TVWS link to connect the

farmer’s home Internet connection to a few IoT base sta-

tions on the farm. Since it is a high bandwidth backhaul

link, each base station can accommodate sensors, as well

as cameras and drones. At the second layer, the IoT base

station provides a Wi-Fi interface for connections from

sensors and other devices. The Wi-Fi interface ensures

that the farmer can not only connect most off-the-shelf

farming sensors, cameras and drones; but they can also

use their phone to access farming productivity apps. 2

Variability in harvested solar energy leads to IoT base

station downtime in overcast conditions. In fact, in our

early deployments, power failures due to environmental

factors were the major cause of unavailability. While past

work has dealt with this problem in the context of single

sensors [22,51,59] by duty cycling the sensors, the same

2Future iterations of the systems would add multiple interfaces to

the base station to enable compatibility with more sensor types.

approach does not work for a base station. Specifically,

the base station has multiple components with different

power requirements and duty cycling costs. For exam-

ple, a farmer is typically inactive at night and is unlikely

to check the farm data. So, turning the TVWS device

off (which consumes 5x more power than the rest of the

base station) can enable the base station to collect data

(in a cache) from the sensors more frequently. Further,

FarmBeats enables the farmer to turn the base station on

to access Wi-Fi for productivity applications, while they

are on the farm. This adds another layer of uncertainty

in the duty cycling plan. Thus, we propose a novel duty

cycle policy (in Section 4) wherein the different compo-

nents of the base station are duty cycled at different rates;

while explicitly accommodating these constraints.

Finally, given the weak internet connectivity to the

farm, a naive approach of pushing all the data to the cloud

does not work. We make the key observation that the data

requirements of the farming applications can be broadly

classified into two main categories: immediate detailed

data and long-term summarized data. Table 2 summa-

rizes how the industrial and research applications of farm

data can be classified into these two categories. This cate-

gorization enables a gateway based IoT design for Farm-

Beats. The local gateway sits at the farmer’s home at the

other end of the White Space link and performs two func-

tions: a) creates summaries for future use and ships them

to the cloud and b) delivers applications that can be pro-

vided locally. The summaries are several orders of mag-

nitude lower in size than the raw farm data (3-4 orders

of magnitude smaller in case of the precision agriculture

application discussed later) and hence, respect the harsh

bandwidth constraints.

3.2 Architecture

The FarmBeats system has the following components:

Sensors & Drones: FarmBeats uses off-the-shelf sen-

sors for its applications. Each sensor measures specific
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Technology Cost Data Restriction

Cellular Connection

(Decagon Devices)

Per sensor fee: 1000$ + 100$ annual fee Restricted to sensor data; Uploads

every 15 mins at best

Mesh Networks

(Ranch Systems)

Base station: 3500$ + 750$ annual fee; Per sensor

fee: 1100$ + 60$ annual fee

Maximum 25 mesh nodes per base

station

Satellite (Iridium) Per sensor fee: 800$ + 100$ monthly fee Restricted to 2.5 Kbps

Table 1: Cost Comparison of Farm Sensor Networking Solutions

Data Requirement Applications

Immediate De-

scriptive Data

Precision irrigation, virtual

walkthroughs, productivity

apps, farm monitoring, ...

Long-term Sum-

marized Data

Crop suggestions, seed distri-

bution, yield monitoring, finan-

cial management, animal health

statistics, ...

Table 2: Application classification based on requirements

characteristics of the farm, such as soil moisture and soil

pH, and reports this data to the IoT base station over a

Wi-Fi connection. In addition to soil sensors, FarmBeats

supports cameras for farm monitoring and drones. The

cameras are either connected to the IoT base station over

Ethernet or report data over Wi-Fi. They take periodic

snapshots and transmit this data to the IoT base station.

UAV flights are either periodically scheduled or manually

initiated using the FarmBeats app on the farmer’s phone.

IoT Base Station: The IoT base station on the farm is

powered by solar panels, backed by batteries and has

three components:
• The TVWS device ensures that the base station on the

farm can send the data to the gateway, which then, sends

it up to the cloud.

• The sensor connectivity module establishes a connection

between the base station and the sensors deployed on the

farm. In FarmBeats’s current implementation, this mod-

ule is just a Wi-Fi router.

• Finally, the Base Station Controller is responsible for two

functions. First, it serves as a cache for the sensor data

collected by the sensor module and syncs this data with

the IoT gateway when the TVWS device is switched on.

Second, it plans and enforces the duty cycle rates depend-

ing on the current battery status and weather conditions.
IoT Gateway: As mentioned before, the goal of the

IoT gateway is to enable local services and create sum-

maries from existing data to be sent to the cloud. We

use a PC form factor device as the FarmBeats gateway,

which is typically placed in the farmer’s house or office,

whichever has Internet access. The gateway provides an

interface for applications to run and create summaries to

be sent to the cloud as well as to post data to the local

web server. Furthermore, it includes a web service for the

farmer to access detailed data when they are on the farm

network. This also ensures that FarmBeats remains avail-

able even when the cloud connection is not present. Fi-

nally, it includes built-in algorithms for drone path plan-

ning and for compressing drone data before being sent to

the cloud (described in Section 5). We illustrate in Sec-

tion 5.3 how applications function on the gateway with

the example of precision agriculture applications.

Three aspects of the FarmBeats gateway differentiate

it from prior IoT gateways. First, the FarmBeats gate-

way implements a web service, providing unique ser-

vices that are different from the FarmBeats web service

in the cloud. Second, the gateway can operate offline,

and still offer the most important services. Finally, as

shown later in the context of precision agriculture, hav-

ing access to data from multiple types of sensors enables

unique feature-based summarization technologies for the

drone videos and sensor data.

Services & the Cloud: The Gateway ships data sum-

maries to the cloud, which provides a storage system for

long-term data and a web interface for the farmer. The

cloud enables three functions: data access outside the

farm network (e.g. when traveling), long term applica-

tions like crop suggestions, and cross-farm analytics.

4 DUTY CYCLING THE BASE STATION

As discussed before, FarmBeats’s solar-powered IoT

base station on the farm is duty cycled to explicitly ac-

count for weather forecasts and current charge state of the

batteries. Two aspects of the base station make this prob-

lem challenging: a) The sensor connectivity module has

significantly lower power requirements than the TVWS

device. Thus, we need to intelligently proportion power

between these components to achieve optimum perfor-

mance. b) FarmBeats allows farmers to manually turn the

base station on to connect to the Internet to use productiv-

ity apps on their phone. This adds a variable component

to power consumption.

4.1 Duty Cycling Goals

The key goals for the duty cycling algorithm are:

• Energy Neutrality: Like past work in the context of

duty-cycling sensors backed by energy harvesting sensor

systems [22,59], FarmBeats aims to achieve the objective

of energy neutrality. For a given planning period, the goal

is to consume at max as much power as can be harvested

from the solar panels.

• Variable Access: FarmBeats allows farmers to access

Wi-Fi connectivity on-demand. This power consumption
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Figure 2: Duty Cycling Approach: The shaded region shows the

feasibility region of Equations 2 and 4. The latency is minimized when

both the equations are satisfied on the boundaries.

is usage-driven and varies across days. FarmBeats must

plan ahead for this variable delay.

• Minimize Data Gaps: We use the term ‘Data Gaps’

to denote continuous time-intervals with no sensor mea-

surements available. Such gaps need to be minimized

to avoid missing out on interesting data trends. So,

FarmBeats’s duty cycling algorithm aims to minimize the

length of the largest data gaps, under the constraints of

energy neutrality and variable access.

4.2 Power Budget

The sole power source for the base station is a set of so-

lar panels (backed by a battery). The solar power output

varies with the time of day and the weather conditions.

We use standard methods [51] to estimate the output of

the solar panels, given the weather conditions. Let us

say that the energy output from the solar panels over the

next planning period is SI . Because the estimation is not

perfect and there is usage variability, there maybe some

credit or debit from the previous planning period. Let us

denote this credit by CI . So, the total power budget for

the base station over the next planning period is SI +CI .

4.3 Duty Cycling Approach

The duty cycle decisions are made on the order of a

planning period, Tp. Since our deployments use solar

powered base stations, we set Tp to be one day. We de-

fine the average energy loss due to battery leakage and the

very low power base station controller during one Tp to

be ED. For the farmer to have on-demand Wi-Fi access,

we allocate a fixed time budget of Tv. If we denote the

power consumption of the TVWS device by PT and the

power consumption of the sensor connectivity module by

PS, then, we need to allocate Tv(PT +PS) for variable Wi-

Fi access. Now the key question is, how do we proportion

the remaining power budget?

Duty Cycling the TVWS device: The TVWS module is

needed to sync the data in the base station cache with the

gateway. Let us assume that we have a schedule, S, the set

of sync times advised for the base-station to sync with the

FarmBeats gateway. This could depend on the farmer’s

usage patterns, sensor types and can be either manually

programmed or automatically inferred. The sync times in

the set S have a corresponding set of weights given by set

W . An example of a high-weighted sync time could be

sunrise, as that is when the farmer begins their day. Thus,

they would like to access the latest sensor data when the

activities of the day are planned.

To ascertain the subset of syncs that need to be per-

formed, we make a simple observation. If the sensors

haven’t sent any data to the base station, the base station

need not turn on the TVWS device. Specifically, it uses

the following greedy algorithm to identify the syncs to be

executed. Let us denote by, S1 ⊂ S, the subset of syncs

that are to be executed. This subset is initialized as an

empty set. FarmBeats starts by adding the highest prior-

ity sync to S1. After it has done that, it subtracts |S1|PT TS

from the power budget, where |.| denotes set cardinal-

ity and TS denotes the time to perform a sync operation.

Then, FarmBeats computes the corresponding duty-cycle

rate for the sensor connectivity module. If this rate en-

sures that the second highest weighted sync in S will have

additional data from the sensors to sync with the gateway,

it adds this sync operation to the set S1. It repeats this pro-

cess in decreasing order of weights until it reaches a state

where one of the syncs in S1 has no new data to share. As

we add more sync operations to S1, the power budget for

the sensor connectivity modules decreases. With a lower

power budget, the sensor connectivity module can collect

data from the sensors less often and hence it becomes less

likely for frequent syncs to see new data. Thus, the al-

gorithm implicitly regulates the sync operations between

the gateway and the base station.

Duty Cycling the Sensor Connectivity Module: We

denote the duty cycling rate for the sensor connectiv-

ity module by γ . In particular, it is turned off for a

time period, To f f , followed by an on period of, Ton

and γ = Ton/To f f . Using the notation we have estab-

lished so far, the energy expenditure of the system is

ED +(PS +PT )Tv +PT TS|S1|+PSTpγ . Since the goal of

the planning algorithm is to estimate Ton and To f f such

that the energy expenditure does not exceed the energy

budget during the planning period, this imposes the fol-

lowing constraint:
SI +CI ≥ ED +(PS +PT )Tv +PT TS|S1|+PSTpγ (1)

=⇒ γ ≤
SI +CI −ED − (PS +PT )Tv −PT TS|S1|

PSTp

(2)

Let us denote Tconnect as the time taken for the sensor

connectivity module to turn on and establish a connection

to the sensors. Further, let Tsensor be the time that it takes

for all the sensors to wake up and transmit to the base

station. Since the ON time of the module has to be long

enough for the sensors to be able to communicate their

data to the base station, this imposes a further constraint:
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TON ≥ Tconnect +Ttrans f er (3)

=⇒ γTo f f ≥ Tconnect +Ttrans f er (4)

Since our goal is to minimize the data gap under the

power constraints imposed by Equations 2 and 4, we aim

to minimize To f f . The inequalities from Equations 2 and

4 define a convex region in the 2-dimensional space of

(γ,To f f ), shown as the shaded region in Figure 2. Since

the cost function To f f is linear, the minimum occurs on

a corner of the intersection region defined by the two in-

equalities. Specifically, the minimum latency is achieved

when the two inequalities are exactly met. The solution

is shown graphically in Figure 2.

4.4 Discussion

At this point, it is worth noting that:

• By explicitly accounting for the credit term, CI , the for-

mulation absorbs the variability in on-demand Wi-Fi us-

age patterns. If the on-demand Wi-Fi usage patterns are

stable, the term CI goes down to zero.

• By incorporating flexibility in sync times between the

gateway and the base station, FarmBeats can easily adapt

to farm applications with different requirements.

• We have not yet discussed the duty cycling of sensor

nodes. In our implementation, we set the duty cycle off

time for sensors to be less than Ttrans f er to ensure that

the sensor can transfer data when the sensor connectiv-

ity module is on. An alternative implementation would

allow the base station to send wake-up times to sensors.

Our design choice was motivated by the availability of

very low-power sensors that consume 3-4 orders of mag-

nitude less power than the base station on average.

5 THE FARMBEATS GATEWAY

In this section, we discuss two key components of the

FarmBeats gateway: UAV path planning and stitched im-

agery (orthomosaic) generation from UAV videos. We

also illustrate how the FarmBeats gateway implements a

precision agriculture application.

5.1 UAV Path Planning

Most UAVs operate in line sweep patterns. Specif-

ically, given a sequence of waypoints defined by their

GPS coordinates, they move from one waypoint to the

next, in order. However, in the context of agriculture, our

objective is to optimize for the area covered in a single

flight. Thus, we aim to minimize the time taken to cover

a given area. To that end, we make the observation that

increasing the number of waypoints to cover the same

area increases the time taken to cover it, even though the

total path length may be the same. This is because the

quadrotor has to decelerate at each waypoint and come to

a halt before it can turn around and accelerate again. We

present a novel flight planning algorithm that minimizes

the number of waypoints required to cover a given part of

the farm.

Existing commercial systems like Pix4D [42],

DroneDeploy [15], etc. offer area coverage services,

these systems cover a given area using an east-to-west

flight path, without any regards to the number of way-

points required. Recent research proposals like [17] do

not guarantee the minimum number of waypoints either.

Our area coverage algorithm Min-waypoint described be-

low guarantees that the UAV covers an area with the min-

imum number of waypoints:

• Given an area, construct its convex hull.

• Determine the direction of sweeping lines. For each edge

and its antipodal (diametrically opposite) vertex [50],

draw two parallel lines and measures the distance be-

tween them. The slope of the edge corresponding to the

minimum distance between the edge and the antipodal

vertex becomes the direction of the sweeping lines.

• Determine the waypoints depending on the flight altitude,

the camera’s field of view, and desired image quality.

• Given a start-point and end-point of the flight path, order

the waypoints to minimize the total travel distance.

Adaptive Wind-assisted Yaw Control: Since farms

are large open spaces and typically very windy, we ob-

served that quadrotors that have an asymmetric physi-

cal profile can exploit the wind either for more efficient

propulsion or deceleration. Figure 3(b) shows an ex-

ample of a quadrotor (DJI Inspire 1) that has an asym-

metrical profile, where its front and the side are consid-

erably different; thus, it can exploit the wind similar to

sailboats. Intuitively, when the quadrotor is flying down-

wind (i.e. wind is helping the quadrotor), the side profile

of the quadrotor should face the wind since the side pro-

file has a larger area and hence, will be able to extract the

maximum assistance from the wind. In our experiments

on the farm, the quadrotor requires significantly more en-

ergy (80% higher at 4m/s) to maintain its speed upwind

in comparison to the downwind flight.

To leverage this observation, we designed a novel yaw

control algorithm to exploit the wind energy on the farm.

Specifically, yaw is the angle of the quadrotor with re-

spect to the vertical axis. While we don’t describe the al-

gorithm in detail, on a high level, Figure 3 describes how

the yaw control algorithm would operate for a quadrotor

that has a larger area on the sideways profile. For the

downwind segment from the start point to the first way-

point, the adaptive control starts by making the yaw per-

pendicular to the flight path, thereby maximally utilizing

the favorable wind as the quadrotor accelerates. How-

ever, as the velocity increases, the air drag generated by

the quadrotors profile also increases. Consequently, once

the quadrotor accelerates the yaw is reduced so as to max-

imally exploit the wind, while minimizing the parasitic

drag due to the side profile. Similarly, the deceleration
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Figure 3: FarmBeats’s path planning algorithm uses the asymmetry in front and side profiles of a drone like DJI Inspire 1 (in (b)) to leverage

wind to its advantage

phase can very effectively exploit the air drag by making

its yaw perpendicular to the flight path. This action is

analogous to the action that a skier takes to stop.

5.2 Generating Orthomosaics from UAV Videos

UAVs generate a prohibitive amount of video that is

difficult to transfer to the cloud due to poor network con-

nectivity on farms. For example, a 4 minute flight with a

UAV capturing 1080p video at 30 frames per second gen-

erates almost a Gigabyte of video data. We make the ob-

servation that the unit of interest for the farmer is not the

drone video itself, but an overview of the farm that can be

provided by a geo-referenced panoramic overview, which

is one-two order of magnitude more compact than the full

resolution video (see Figure 4). The stitched orthomo-

saic generated from the drone video provides a high res-

olution visual summary of the farm from a low altitude

vantage point, revealing minute details. In fact, existing

agricultural drone solutions ( [10, 49]) ship the videos to

the cloud and convert them into orthomosaics to show to

the farmer. Thus, we incorporate the orthomosaics pro-

cessing pipeline into the FarmBeats Gateway, to process

the drone videos locally.

Broadly speaking, the panoramic views can be con-

structed from the UAV video using two approaches,

based on either (i) aerial 3D mapping [42, 48] or (ii) im-

age stitching and mosaicking [4, 7, 36, 53, 56]. While

the aerial 3D mapping is a general-purpose method to

reconstruct high resolution 3D surface maps of the envi-

ronment from aerial videos, the image stitching methods

treat the world as planar and simply stitch the different

images together by finding their relative positions.

Computing high-resolution surface maps is both com-

pute and memory intensive and is not suitable for the

resource-constrained farm gateway. On the other hand,

while image stitching methods can be incorporated into

the gateway, the planar terrain assumption becomes in-

valid on the farm. Uneven ground geometry, trees, ani-

mals or man-made structures observed in the video gen-

erates parallax which cannot be handled by the image

registration algorithms that assume a planar scene. As

we show later in Section 7 and as observed in prior work

[27], existing image stitchers – Microsoft ICE [36], Au-

toPano [4] tend to produce distorted orthomosaics in such

scenarios. This presents us with an uncomfortable trade-

off: either fly high such that the farm appears planar and

sacrifice fine details of the farm, or ship the large aerial

videos to the cloud for processing.

Our approach: In order to break this tradeoff, we

have developed a hybrid technique which combines key

components from both 3D mapping and image stitching

methods. On a high level, we use techniques from the

aerial 3D mapping systems, just to estimate the relative

position of different video frames; without computing the

expensive high resolution digital surface maps. Since this

process can be performed at a much lower resolution, this

allows us to get rid of the harsh compute and memory re-

quirements, while removing the inaccuracies due to non-

planar nature of the farm. Once these relative positions

have been computed, we can then use standard stitching

software (like Microsoft ICE) to stitch together these im-

ages. The performance achievements of this hybrid ap-

proach are evaluated further in Section 7.

5.3 Generating Precision Maps

As discussed before, precision agriculture relies on ac-

curate precision maps of the farm that indicate the distri-

bution of a specific characteristic throughout the farm.

The FarmBeats gateway naturally enables a novel ap-

proach to precision map generation that can use the aerial

imagery from drones to perform spatial inference of sen-

sor values from sparsely deployed sensors.

Specifically, FarmBeats uses the orthomosaic gener-

ated from the drone videos together with the sensor val-

ues observed by the sensors planted in the soil, and gener-

ates predictions for the entire farm. For example, sensors

that observed soil temperature at the discrete locations

can inform the machine learning pipeline to make pre-

dictions about every location in the farm by considering

spatial proximity as well visual similarity of the locations

to the sites with the sensors.

FarmBeats’s gateway embeds a machine learning

pipeline that draws on probabilistic graphical models that

embed Gaussian processes [43]. The key intuition in the

proposed model is spatial and visual smoothness: areas

that are similar should observe similar sensor readings.

Specifically, the model relies on two kinds of similarities:
• Visual Smoothness: Areas that look similar have simi-

lar sensor values. For example, a recently irrigated area
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Figure 4: Orthomosaic Generation: The high resolution orthomosaic generated by FarmBeats for a 5 acre patch in the large farm reveals

important visual details to the farmer, such as those shown in the insets – puddles that can make part of the land unavailable for agriculture, cow

excreta that becomes manure and enriches the soil, location of individual cows grazing on the farm and their distance from the nearby electric fence.

would look darker and hence, has more moisture.

• Spatial Smoothness: Since we are measuring physical

properties of the soil and the environment, the sensor

readings for locations that are nearby should be similar.

We encode these two intuitions into a graphical model

using standard techniques and formulate it as a Gaussian

process regression model [43].

In our current design, FarmBeats uses the precision

maps as units of summarization for the UAV data and

ships them to the cloud. This has two advantages over

the using orthomosaics as the unit of summary. First, they

incorporate sensor data from the farm into drone videos.

Second, they can be compressed to two to three orders

of magnitude smaller size than a orthomosaic. So, while

the orthomosaic is good for giving the farmer a detailed

overview of the farm, precision maps are better for long

term storage and shipping. We envision that for other

machine learning applications as well, feature maps like

the precision maps of the field would be the summaries

that get shipped to the cloud, while the descriptive data

delivers short-term applications on the gateway.

6 DEPLOYMENT

We deployed FarmBeats in two farms located in Wash-

ington (WA) state and in upstate New York (NY), with an

area of 5 acres and 100 acres, respectively. The farmer in

WA grows vegetables that he sells in the local farmers

market. The farm in upstate NY follows the community

supported agriculture (CSA) model, and grows vegeta-

bles, fruits, grains, as well as dairy, poultry, and meat.

Our deployments consist of: sensors, cameras, UAV, the

IoT base station, a gateway PC, the cloud service and a

dashboard (mobile app and a web page).

Sensors: Each farm was equipped with sensors that

measure soil temperature, pH, and moisture. In case of

sensors without Wi-Fi support, we interfaced them with

Arduinos, Particle Photons or NodeMCUs to add Wi-Fi

capability. While the exact number of sensors varied over

the deployments and the application of interest, we have

deployed over 100 different sensors. Additionally, We

deployed Microseven IP [33] cameras in different parts

of the field to monitor the farm, as well as to capture IR

images of crops. To avoid potential damage from envi-

ronmental impacts, each sensing platform was encased in

a weatherproof box. An example of a sensor deployment

can be seen in Figure 6(a).

Drones: We used the DJI Phantom 2, Phantom 3 and In-

spire 1 for our drone flights.3 We created an auto-pilot

application using the DJI Mobile SDK [12] to interface

with FarmBeats. The user can use the app to first select

the flight altitude and determine the area to be covered on

an interactive map. FarmBeats’s app then plans a flight

path using the algorithm proposed in Section 5.1. After

the drone completes its mission, it automatically returns

to its home position and transfers the video recording dur-

ing the flight to the gateway, through the IoT base station.

IoT Base Station: At each IoT base station deploy-

ment, we set up a TVWS network using the FCC certified

Adaptrum ACRS 2 radios [2] operating at 20 dBm, and

11 dBi directional antennas with 90 degree sectors. The

internet connectivity was provided by the home internet

connection of the farmers. To power the base station we

setup a solar charging system, which comprised of two 60

Watt solar panels connected to a solar charge controller.

The powering system is backed by four 12V-44Ah batter-

ies connected in parallel. The power output goes through

an 8-port Digital Logger PoE switch [28]. This provides

us the capability to turn on or off individual components

of the base station. A Raspberry Pi 3 with 64 GB SD

3We received an exemption from the FAA to fly the UAV.
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Figure 5: Precision Maps: (a) A 40 MPixel orthomosaic created from a 3 minute flight over 2 acre area of a farm. Our system infers dense

sensor measurements from very few sensors deployed on the farm (indicated by white circles). (b) The predicted soil moisture map (our sensors

measures moisture on a scale of 1 to 5). Note that the top left region in the image where the ground appears wet was correctly predicted to have

high moisture even though no moisture sensors were present in that part of the farm. (c) The predicted pH map (pH is measured from 0-14, 7 is

neutral and 0 is the most acidic). Our system identified that the whole field is slightly acidic, but the bottom left/center is more acidic than the rest.

(d) The predicted soil temperature map (in Fahrenheit scale).

card serves as the base station controller. The sensors in-

terfaced with the base station through a 802.11b router,

with a range of over 100 m.

Gateway: The gateway is a Lenovo Thinkpad in the WA

farm and a Dell Inspiron laptop in the upstate NY farm.

Cloud: We use the Azure IoT Suite ( [34]) for Farm-

Beats. The sensor readings, camera images, and drone

video summaries are populated through the Azure IoT

Hub ( [35]), to storage. We use blobs for images, and

tables for the sensor readings. Although in our current

implementation, the different farms share the Azure ac-

count, with table-level access control, we plan to have

different cloud service accounts for the different farms,

as FarmBeats scales up.

7 RESULTS

We evaluate the components of FarmBeats below:

7.1 Weather Aware Base Station

The FarmBeats base station leverages the algorithm in

Section 4 to duty cycle different components. It uses

the OpenWeather API [40] to get the weather forecasts

and plans the duty cycling scheme for the next day. The

weather information gives us the cloudiness percentage

for each period of three hours. The cloudiness percent-

age over three days is plotted in Figure 7(a).

Over this set of three days, we compare three power-

awareness schemes. We define the start of the day as

6AM local time. We periodically record the state-of-

charge of our solar power backed batteries. First, we let

the base station be always on. As shown in Figure 7(b),

the battery charge goes up during a sunny day and down

during the night. While the base station remains energy

neutral during the first day, during subsequent days its

battery drains because of cloudy weather, leading to un-

availability on the third day. Then, we evaluate the alter-

nate approach. We set the base station to a conservative

duty cycling period. While this ensures that the base sta-

tion is available on cloudy days, the base station battery

charges up to 100% during the sunny days thus wasting

solar power that could have been utilized. Moreover, its

duty cycling interval collects 15 times less data than the

optimal FarmBeats solution, plotted in 7(d).

FarmBeats collects data on the first two days more fre-

quently owing to high availability of solar power. How-

ever, on the third day, it switches to a conservative duty

cycling schedule to save power. Of the 15x gain in data

collection frequency achieved over a fixed duty cycle, a

factor of 2 is because of the TVWS client being duty cy-

cled at a different rate than the Wi-Fi router. An earlier

version of our deployment which did not duty cycle the

base station faced a downtime of 30% in a cloudy month

as opposed to zero downtime for our power-aware design

in the same month. Thus, FarmBeats’s power-aware de-

sign achieves its goal of maximizing data-freshness while

maintaining energy neutrality.

7.2 UAV Flight Planning

As mentioned in Section 5.1, we use an efficient area

coverage algorithm in addition to leveraging wind assis-

tance to extend drone battery life. To understand the im-

pact of area coverage algorithms on drone flight time,

we compare performance of FarmBeats in covering a

given area as compared to the state-of-the-art East-to-

west algorithm (used by Pix4D, DroneMapper, etc.). As

shown in Figure 6(b), the east-to-west algorithm gener-

ates sweeping patterns from the east to the west or vice-

versa regardless of the area shape. However, FarmBeats

generates a path that minimizes the number of waypoints.

Next, we compare the time taken to complete flights

planned by the two algorithms to cover a given area. The

maximum speed was set to 10m/s and the altitude was

set to 20m. Figure 6(c) plots the time taken to complete

a flight with the two algorithms in different area geome-
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Figure 7: Power-aware Base Station: The cloudiness percentage over 3 days. (b) With no duty-cycling, the base station shuts down on a cloudy

day. (b) A fixed conservative duty cycle can prevent the base station from going down, but it collects 15 times less sensor data. (d) FarmBeats’s

Power-aware basestation can keep the base station on by reducing the duty-cycling on days are expected to be cloudy.

tries defined by their height to width ratio, where height

is the distance along the North-South direction and width

is measured along East-West. As expected, the gain

achieved by FarmBeats increases as the height-width ra-

tio increases. This is because FarmBeats algorithm gen-

erates fewer waypoints to cover the same area. In gen-

eral, for the average case of our deployments, FarmBeats

reduced the time taken to cover an area by 26%.

Finally, we evaluate the impact of our yaw control al-

gorithm under different wind conditions. The maximum

speed was set to 10m/s and the altitude was set to 30m.

For every flight, we fully charged the battery. We mea-

sure the percentage of time saved by FarmBeats’s yaw

control algorithm for each flight and plot it in Figure 6(d).

As seen in the figure, FarmBeats can save up to 5% time

depending on the wind velocity. Moreover, as the north-

south component (the principal direction of motion for

this set of experiments) of the wind increases, FarmBeats

can leverage it better.

7.3 Orthomosaic Generation

The novel orthomosaic generation algorithm proposed

in this paper advances the state-of-the-art on two fronts.

First, our approach of combining sparse 3D reconstruc-

tion techniques from video with image stitching tech-

niques is more robust than existing techniques based on

either aerial 3D mapping or aerial image stitching. In

addition, our approach is computationally more efficient

and runs considerably faster than Pix4D [42], an aerial

3D mapping-based tool catering to Precision Agriculture.

Qualitative Results: We show two representative ortho-

mosaics constructed by FarmBeats and Microsoft ICE in

Figure 4 and 8(b) respectively. Figure 8(a) shows what

the farm looked like in Google Earth in the past. The

orthomosaic generated by Microsoft ICE failed in this

case, while our result is consistent and accurate. Our geo-

referenced image covers about 5 acres of farmland and

provides a detailed visual summary to the farmer. By vi-

sually inspecting the high-resolution image, they can dis-

cover anomalies such as the water puddle that can render

a part of the field unsuitable for agriculture for a couple

of seasons. Moreover, the farmer can see where cows

are grazing during the day and make a decision about

whether they want to move them to another spot for the

next day. The decision is based on how much grass they

want to leave on the field to be converted into manure.

Processing Time: As shown in Figure 8(c), our im-

plementation is 2.2 times faster than Pix4D on average.

Specifically, our method took 14 minutes to construct an

orthomosaic on average whereas Pix4D took 32 minutes

on average on a set of videos captured by our drones at

1080p resolution at 30 frames per second. This demon-

strates the improved running time of our method.

Finally, the orthomosaic generated by our system are

approximately 5 times smaller than the original video

size at full resolution (in .png format) before applying

lossy compression. A single pixel in the geo-referenced

orthomosaic is about 2 cm in size which is equivalent to

a single penny on the ground. The image resolution and

compression quality are parameters that can be tuned to

meet any target file size.
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Figure 8: Orthomosaic Generation: (a) The Google Earth image for the farm in Figure 4. (b) Microsoft ICE image stitching pipeline fails to

reconstruct it accurately. (c) Pix4D takes about 2.2x longer on average compared to our approach.

7.4 Generating Precision Maps

As described in Section 5.3, FarmBeats uses the vi-

sual features from the orthomosaic overview to extrap-

olate the sensor values and generate precision maps for

soil temperature, soil moisture and pH.

Qualitative Evaluation: We show a representative set of

these precision maps in Figure 5. As shown in the figure,

based on sensor values in the rest of the farm, the mois-

ture prediction pipeline can estimate that the top left part

of the farm has high moisture content even though that

part has no sensor there. Similarly, the pH map gener-

ates an actionable input in the sense that the bottom left

and center of the farm have very low pH and are highly

acidic. As a result of this map, the farmer applied lime to

enhance the pH and make the soil more neutral.

Note that the pH of the farm varies within the farm at

fine granularity. As seen in Figure 5, within a couple of

acres, the pH can vary from 4 (very acidic) to 7 (neutral).

Soil moisture variance is even higher, with variance seen

within a few meters. Precision maps generated by Farm-

Beats capture this variance accurately, by using the drone

videos to extrapolate the sensor data.

Quantitative Evaluation: In order to evaluate the ac-

curacy of the precision maps generated by FarmBeats

using the approach described in Section 5.3, we evalu-

ated our system on 5 datasets constructed from the drone

videos and sensor data. Each dataset corresponds to a

drone flight over the farm (covering 2 acres) and one

set of sensor measurements from the sparse sensor de-

ployment. The hyperparameters are learned by doing 5

fold cross validation. As an accuracy metric, we measure

the correlation between the predicted sensor values and

the ground truth sensor values to see how well the varia-

tions in the field are captured by FarmBeats. We compare

against two techniques, which do not use the drone video

based extrapolation of the sensor values:

• Nearest Neighbor (SensorsNN): We assign the value

from the nearest sensor to each point in the field.

• Inverse Distance based Interpolation (SensorsInterp):

We linearly interpolate known sensor values in the field,

by using inverse distance as a weight. This technique has

been previously been proposed in the context of precision

agriculture [14, 55].

For all the analysis, we use leave-one-out evaluation, i.e.,

we generate a precision map after leaving one of the sen-

sors out of the training set and evaluate the map on the

left out sensor. We repeat this process for all the ground

sensors and report the averaged results.

The comparison of correlation across the different

schemes is shown in Figure 9(a). As shown in the fig-

ure, FarmBeats outperforms existing sensor based inter-

polation techniques. In particularly, FarmBeats can accu-

rately estimate the variations of the different sensor val-

ues in the field. While sensor based methods do not mir-

ror the variations and hence have nearly zero correlation

with the sensor values, FarmBeats’s estimates have high

positive correlation with the true sensor values, thus indi-

cating the utility of using the drone video in conjunction

with the drone estimates. Finally, the precision maps gen-

erated by FarmBeats are 3 orders of magnitude smaller in

size on average than the video and can be easily shipped

to the cloud during periods of connectivity.

7.5 Other Applications

Figure 9 highlights two other applications that the

farmers used FarmBeats for. First, the farmer in NY

used FarmBeats sensors to monitor his storage freezers.

The temperature in these freezers is carefully regulated

below 10◦ F to prevent produce from going bad. As

shown in Figure 9(b), an employee leaving the door open

could lead to this temperature going up causing loss to the

farmer. This problem is solved by FarmBeats by enabling

automated notifications based on these sensor readings in

the FarmBeats phone application.

Second, the farmers plugged in cameras at different

locations like cow sheds and connected them to the near-

est FarmBeats base station. One frame of the camera

is shown in Figure 9(c). While the intent of the cur-

rent application is to manually monitor the cows, one can

potentially build an application that can detect anoma-

lies in cow behavior or use cow motion to track animal

health [38]. As a preliminary result, we ran a deep neural

network based cow detector on the data. The identifica-

tion boxes are overlaid on the figure.

7.6 End-to-end Deployment Statistics

Data Aggregation: FarmBeats’s deployments at both

farms have been running for over six months. Over these

deployments, FarmBeats interfaced with around 10 dif-

ferent sensor types, three different camera types, three

versions of drones and the farmers’ phones. It collected
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more than 10 million sensor measurements, half million

images and 100 drone surveys.

Resilience to Outages: FarmBeats’s deployments faced

one week-long Internet outage due to a thunderstorm and

several smaller term Internet outages. The FarmBeats

gateway continued to be available during these times.

Cost: The TVWS client radios cost $200,4 and there are

no additional data charges, than the farmer’s existing in-

ternet connection. The Particle Photons cost about $20

and can add Wi-Fi support to each sensor. Thus, use of

the hybrid networking approach reduces the system cost

by an order of magnitude as compared to existing sys-

tems which cost over $1000 in equipment cost per sensor

and over 100$ annual subscription fee (see Table 1).

Applications: Farmers used FarmBeats’s precision agri-

culture system to guide their precision irrigation units.

The precision pH maps generated were used by farmers

to apply lime in the more acidic regions. As mentioned

before, farmers also used FarmBeats for storage monitor-

ing with sensors and animal shelter monitoring, selling

station monitoring with cameras. Beyond that, farmers

also used FarmBeats base stations to access Wi-Fi while

on the farm to run productivity applications like Trello.

8 RELATED WORK

FarmBeats builds on past work in wireless sensor net-

works, precision agriculture and ICTD.

Wireless Sensor Networks: Past work has used multi-

hop networks [5, 19, 23, 26, 39, 45, 57, 60] to gather data

from sensors in the farm. However, all these systems suf-

fer from bandwidth constraints that make them unable

to support sensors, cameras and drones. Further, these

systems do not account for constraints imposed by weak

cloud connectivity and weather related power and Inter-

net outages. The same is true for recent advances in LP-

WAN technologies [29, 52]. In contrast, FarmBeats in-

cludes support for sensors, cameras and drones; is backed

4With the standardization of IEEE 802.11af [1] standard, we expect

the price to the client and base station to be similar to Wi-Fi, of less

than 10$. We are testing one such multi-mode TVWS/Wi-Fi chip from

a major Wi-Fi vendor.

by cloud connectivity and has mechanisms to adapt to

weather variability.

Agriculture: Agronomists have studied various aspects

of precision agriculture, from defining more accurate

management zones [31], to improving prescription [37],

to leveraging soil science [54] and plant physiology [8]

techniques. Prior work has also looked at applications of

precision agriculture to irrigation, variable seeding, nutri-

ent application, and others. There has been prior work on

developing technology for enabling precision agriculture.

Researchers have built specialized sensors for measuring

nutrients [25], water levels [21], and other such sensors,

and we build on top of this work. FarmBeats’s work is

complementary to this body of work as it facilitates the

automation of data collection using these sensors and en-

ables the precision agriculture systems.

ICTD: ICTD solutions focus on user interfaces to make

existing technologies more accessible [13] enhanced ac-

cess to information [9] and better communications. The

mechanisms of data collection is manual in most sce-

narios. The few attempts at automated data collection,

like [9], fall into the same pitfalls as discussed before.

We believe FarmBeats is complimentary to this work and

will aid the proliferation of ICTD by enabling end-to-end

IoT connectivity in weakly connected scenarios.

9 CONCLUSIONS & FUTURE WORK

FarmBeats is a low-cost, highly available IoT platform

for agriculture. It supports high bandwidth sensors us-

ing TVWS, which is a low-cost, long range technology.

FarmBeats uses a weather-aware solar-powered IoT base

station, and an intelligent Gateway that ensure that ser-

vices are available in the Cloud and offline. It also incor-

porates new path-planning algorithms that extend drone

battery life. We have deployed the system in two farms,

and the farmers are already using it for three applica-

tions: precision agriculture, animal monitoring, and stor-

age monitoring. Moving forward, we are working with

the farmers to develop several other applications on top

of FarmBeats. Further, we plan to make anonymized data

available for researchers to enable more agricultural ap-

plications.
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10 SUPPLEMENTARY MATERIAL

10.1 FarmBeats Applications and Usage

The goal of FarmBeats is to serve as a substrate for

multiple sensing modalities on the farm. Sensors with

varying data requirements can plug-in to FarmBeats and

operate seamlessly. This allows farmers to use Farm-

Beats for various applications. Our primary target has

been to deliver a class of applications that fall under the

category of precision agriculture. Precision agriculture is

a technique to improve yield by treating the farm as het-

erogeneous land, and uses variable treatment throughout

the farm, such as variable seeding, fertilizer application,

lime application, irrigation, and many other agricultural

services. In principle, precision agriculture is good for

the overall farming ecosystem [37]. It improves yield,

reduces the operating expenses for the farmer [47], and

is also good for the environment.

In contrast to existing systems which divide the farm

into large static management zones [14, 41] and fail to
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Figure 10: Leveraging Wind Assistance: When the ef-

fective velocity,~ve f f , aids the UAV motion, then the yaw

is set to be perpendicular to the UAV motion (left), other-

wise the yaw is aligned with the effective wind velocity

to minimize air drag (right).

capture temporal and climatic variations [32, 46], Farm-

Beats delivers near real-time and fine-grained precision

maps to farmers for soil characteristics like pH, moisture,

etc. As described in section 5.3, FarmBeats uses a com-

bination of aerial imagery and sparse sensor deployment

to deliver these maps. They are currently being used by

farmers to monitor and amend irrigation, and lime appli-

cation practices in their farms.

In addition to precision agriculture applications, farm-

ers have used FarmBeats for monitoring cattle using cam-

eras in barns and for using sensors to monitor tempera-

ture in storage units. This functionality was suggested

by farmers and later added to the system. Future appli-

cations suggested by farmers include monitoring the net

carbon footprint of the agricultural production cycle, net

nutrient usage for each crop cycle, crop suggestions using

long-term data and flood monitoring.

10.2 Leveraging Wind to Assist UAV Path Planning

Algorithm 1 Pseudo-code for determining UAV yaw

based on wind speed

⊲ Input: Wind velocity (~vW ), UAV velocity (~vUAV ), in-

tended acceleration (~aUAV )

⊲ where all inputs are measured with respect to the

earth reference frame

⊲ Output: UAV yaw (y)

Compute wind velocity w.r.t the UAV: ~ve f f = ~vW −
~vUAV

if~ve f f .~aUAV > 0 then

Set the yaw perpendicular to~aUAV

y = 6 ~aUAV + π

2
else

Align the yaw with~ve f f to minimize drag

y = 6 ~ve f f

end if

Here, we describe the algorithm to leverage wind to as-
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sist in UAV path planning. On a high level, the algorithm

works in two steps:

• Compute the effective wind velocity, ~ve f f . The effective

wind velocity is the wind velocity in the reference frame

of the UAV. Specifically, if the velocity of the UAV with

respect to the ground is ~vUAV and the wind velocity with

respect to the ground is ~vW , then ~ve f f =~vW −~vUAV . An

example of this vector computation is shown in figure 10.

• If ~ve f f has a component that can aid the UAV motion,

then we make the yaw perpendicular to the direction of

intended acceleration, otherwise, we align it with the di-

rection of ~ve f f to minimize air drag. For instance, as

shown in figure 10, if the UAV wants to accelerate and

the UAV velocity is large such that the effective wind ve-

locity has no component that aids acceleration, then the

algorithm aligns the UAV yaw with the effective wind

velocity, minimizing the air drag.

Algorithm 1 describes the pseudo-code for Farm-

Beats’s approach.
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