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ABSTRACT 

Recent efforts to develop rice cultivars with drought-tolerance (DT) traits have resulted in the release of 

several varieties that demonstrate significant resilience to drought stresses. This paper addresses the 

previously unanswered question of whether the private sector might play a future role in developing 

similar strains through applications of advanced biotechnology, and whether their research and 

development efforts would benefit poor and vulnerable farmers in hazard-prone ecosystems. We employ 

discrete choice experiments to examine farmers’ preferences for DT traits and explore heterogeneity in 

these preferences using primary data collected in rural Bihar, India. Using different modeling approaches 

to capture preference heterogeneity, our results show that farmers value the reduction in yield variability 

offered by DT cultivars but are willing to pay even more for rice seed that offers yield advantages even 

under normal conditions. We demonstrate that risk aversion and loss aversion are important components 

of farmer utility, as these behavioral parameters not only significantly influence choice probabilities but 

also affect the way farmers value different seed attributes. 

Keywords:  choice experiments, drought tolerance, risk, rice, India 

JEL Codes: Q12, Q16, O33 
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1.  INTRODUCTION 

Droughts represent a significant constraint to rice production in much of India. Roughly 20 percent of 

India’s total land area is drought prone, including 16 million hectares (ha) of rainfed lowland rice and 6.3 

million ha of upland rice. When droughts occur, there are significant negative impacts on rice production, 

both in reductions in area cultivated and in lower yields, resulting in lower rice production and lower farm 

incomes. In addition to these immediate, farm-level consequences, there are often significant secondary 

household impacts such as indebtedness, asset depletion, and health consequences that perpetuate already 

high levels of poverty and deprivation in India (World Bank 2008). Even broader and economywide 

impacts include rapid increases in rice prices that can increase vulnerability among food-insecure 

households and strains of fiscal expenditures required to offset price increases and operate social 

protection schemes. This situation is disconcerting since evidence suggests that droughts have been 

occurring with greater frequency in India since the beginning of the twentieth century (World Bank 

2008). 

Recent efforts to develop rice cultivars with drought-tolerance (DT) traits have resulted in the 

release of several varieties that demonstrate significant resiliency to drought stresses with no yield penalty 

under normal conditions.1 Simulation exercises aimed at assessing the impacts of DT rice suggest that the 

successful development and delivery of these varieties will produce significant benefits across south Asia, 

well in excess of the investments necessary to develop the technology (Mottaleb et al. 2012). Although 

this holds potential promise for both public- and private-sector research efforts, Lybbert and Bell (2010) 

argue that development of DT cultivars does not necessarily imply that DT varieties will be widely 

adopted with the same speed as other recent improvements (for example, crops genetically engineered to 

contain the Bacillus thuringiensis toxin, thereby making crops virtually impervious to insect infestation) 

due primarily to the nonmonotonic nature of the benefits associated with drought tolerance and their 

effect on social learning and technology diffusion. 

In this paper, we use discrete choice experiments to examine farmers’ preferences for DT traits 

embodied in different rice backgrounds (hybrid and varietal) and explore heterogeneity in these 

preferences. This distinction is motivated by differences in the potential avenues or scenarios through 

which such traits could be embodied in seed technologies. 

In the scenario that characterizes most of India’s innovation in rice to date, public research 

institutions (for example, Indian state agricultural universities or institutes of the Indian Council of 

Agricultural Research) develop inbred cultivars with desirable traits such as higher yield, shorter duration, 

or drought tolerance. These inbreds are then distributed through various channels as low-cost seeds that 

small-scale, resource-poor farmers can save and replant each season. In an alternative scenario that is 

much less common in rice, it is the private, profit-maximizing firm (for example, crop-science company 

or seed company) that develops these desirable traits, typically by introducing them in a hybrid, rather 

than inbred, background that allows the firm to maintain control over the gains afforded by its innovation. 

We examine this in greater detail below and simply highlight here the idea that multiple scenarios may 

play out in the development of drought-tolerant rice, each with implications for the potential impacts on 

poverty and productivity in countries such as India. 

The remainder of this paper is organized as follows. In Section 2, we provide background about 

rice production in India, paying specific attention to the challenges wrought by frequent droughts in key 

rice-growing regions. In Section 3, we describe the empirical methodology used in analyzing farmer 

preferences and demand heterogeneity. In Section 4, we describe the data used in this study, including the 

geographic and socioeconomic context of our sample area. In Section 5, we present the results of our 

empirical analysis. Finally, we offer some concluding remarks in Section 6.

1 Recent research has involved improvements in terms of both drought tolerance and drought resistance. Although the terms 

are often used interchangeably, they in fact describe different physiological phenomena. Drought tolerance involves enduring 

periods with scanty or deficient water supplies. Drought resistance, on the other hand, generally involves mechanisms by which 

plants protect themselves from the harsh drying sun during drought conditions. Throughout the remainder of this paper, we will 

use the term drought tolerant as a generic term describing crops that are both drought tolerant and drought resistant.  
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2.  BACKGROUND ABOUT RICE PRODUCTION IN INDIA  
AND THE CHALLENGES ASSOCIATED WITH DROUGHTS 

During the Green Revolution, the introduction of modern agricultural inputs such as improved seeds, 

fertilizers, and pesticides—along with supportive policies and investments in credit, pricing, research, and 

infrastructure—greatly increased agricultural production in India (see, for example, Hazell 2010). 

However, the Green Revolution’s impacts in India were largely confined to the country’s main irrigated 

areas and favorable agroecologies, most notably the western Indo-Gangetic plains (Punjab, Haryana, and 

western Uttar Pradesh) where irrigation infrastructure was most developed and where the provision of 

credit and fertilizers was particularly concentrated (Evenson and Gollin 2003; Kumar et al. 2008). 

In other parts of India, including the eastern reaches of the Indo-Gangetic plains (including 

eastern Uttar Pradesh, Bihar, and West Bengal) where irrigation was slow to develop, the innovations 

associated with the Green Revolution are still being introduced today. Even despite such investments, the 

rate of yield growth for rice across India has decelerated in recent decades alongside a similar 

deceleration in wheat yields. Although some estimates of food supply do not suggest an impending 

Malthusian crisis (for example, Ganesh-Kumar et al. 2012), there is still a need for increased investment 

in new and innovative technologies that improve yield, conserve scarce natural resources used in 

production, and resist both biotic and abiotic stresses associated with changing climate patterns. 

Droughts represent one of the most pressing constraints to rice yields in unfavorable and rainfed 

ecosystems (Pandey, Bhandari, and Hardy 2007; Serraj et al. 2009). Since the early 1960s, there have 

been 15 instances in which total rice production in India failed to exceed the production level from the 

previous year. Not coincidentally, the majority of these have coincided with significant droughts in key 

rice-growing regions. The dynamics of drought impacts involve a complex interaction between climate, 

weather, infrastructure, and human behavior. The ultimate agricultural and societal impacts of droughts 

are dependent on factors such as the timing and severity of the drought. For example, the 2002 drought 

was particularly destructive to rice production, affecting some 300 million people across India, some in 

the most important rice-producing states in India such as Uttar Pradesh, Andhra Pradesh, Punjab, Orissa 

(now Odisha), and Tamil Nadu. For the country as a whole the monsoon season rainfall was roughly 20 

percent below the historical average, mainly due to a significant dry spell in July, during which rainfall 

was 49 percent below the long-run average, the largest monthly rainfall deficiency in recorded history 

(IMD 2002). 

Questions remain as to whether existing technologies—combined with improved crop 

management practices—can meet the demands of growing populations under these increased stresses. 

The development of DT traits for a variety of crops has been seen as a potential avenue through which 

human livelihoods can be at least partially insulated from the effects of droughts. However, drought 

resistance has, until recently, received relatively little attention from plant breeders.2 Despite significant 

challenges and early setbacks, research on drought tolerance is proceeding in both the public and the 

private sectors and at both global and national levels. Many agricultural scientists and development 

practitioners agree that DT varieties present a means of avoiding the increasing threat of droughts. An ex 

ante assessment by Mottaleb et al. (2012) suggests that the development of such rice varieties would 

provide significant benefits in both economic benefits to farmers and nutritional benefits to consumers, 

concluding that the monetized benefits of these advances exceed the costs of research and development 

necessary to bring these varieties to market. 

  

2 For an early example of the failure to marshal resources around research on drought resistance, see Doering (2005). 
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This is not to say that the dissemination and adoption of DT rice varieties, once developed, will 

be rapid or straightforward processes. Lybbert and Bell (2010) argue that the nature of drought—and crop 

responses to drought—make adoption pathways for DT varieties more complicated than those for 

varieties tolerant to other stresses, particularly insect-resistant crops.3 Among other important differences, 

they argue that drought tolerance introduces nonmonotonic benefits relative to nontolerant varieties, 

which as a productivity-enhancing (yield-variability-reducing) benefit rather than purely a productivity-

increasing (yield-increasing) benefit, introduces stochastic-relative benefit streams that may complicate 

the decisionmaking calculus of risk-averse farmers.4 But the benefits of DT rice may be nearly 

monotonic, as currently available DT rice varieties provide farmers with significant yield advantages over 

conventional varieties even under severe drought conditions. Thus, Lybbert and Bell (2010) should 

perhaps be interpreted as providing a caveat that interventions may be needed to expedite the widespread 

adoption of DT crops. 

Although current efforts in developing DT technologies have resulted in self-pollinating (inbred) 

DT varieties, this study also considers the possibility that DT traits could be embodied in a hybrid 

background as an alternative solution. The relative yield advantage of hybrids under irrigated systems is 

well documented, with some studies estimating hybrids yielding 10–30 percent higher than varieties in 

India, China, and Bangladesh (see, for example, Li, Xin, and Yuan 2010; Lin 1991; Virmani, Aquino, and 

Khush 1982; Virmani 2003; Janaiah and Hossain 2003). Developing hybrids with both high yield 

potential and DT traits could both improve and stabilize yields in drought-prone environments (Villa et al. 

2012). 

In addition to higher yield potential, hybrids offer economic incentives to private innovators. The 

economic value of hybrids stems from yield gains and other benefits conferred by heterosis (hybrid vigor) 

declining dramatically after the F1 generation, thus compelling farmers to purchase new F1 seed each 

season if they want to continually realize these benefits. These purchases of F1 seed provide innovators—

breeders and seed companies—with a means of recouping their investments in research and the high fixed 

costs of producing hybrids (for example, seed multiplication). Where innovators can produce and market 

hybrids with desirable traits while also maintaining secrecy about the hybrid’s pedigree as a biological 

form of intellectual property protection, they are often able to operate at a profitable margin even in seed 

markets where farmers are relatively poor. This has been demonstrated with hybrid maize in Latin 

America and southern and eastern Africa (see Smale and Jayne 2010; Morris 1998) and with hybrid rice 

in China (Li, Xin, and Yuan 2010). This has also been demonstrated with insect-resistant (Bt) hybrid 

cotton in India, where hybrids have served as the platform for private investment in the introduction of 

genetically modified traits (Kathage and Qaim 2012; Gruere and Sun 2012). Analogous development of 

hybrid DT rice by the private sector is part of the motivation underlying this study.  

Although hybrid rice in India is still characterized by low rates of adoption (on the order of 6 

percent nationally), and although hybrid rice is still fraught with issues such as poor cooking qualities and 

variable yield performance, there is a sense that hybrid rice will play an important role in the future of rice 

production in India, particularly via private crop-science and seed companies. The government of India 

has set its sights on introducing hybrid rice on 25 percent of all cultivated rice area by 2015. Although 

this may not be feasible, there are indications of high adoption levels in poorer northeastern states such as 

Bihar—the area of focus in this study—where 24 percent of farmers had cultivated hybrid rice at least 

once as of 2009 (Spielman, Kolady, and Ward 2013). 

  

3 The genetically modified insect-resistant crops referred to here share a similar insect-resistance trait that is conferred by the 

introduction of genes from the soil bacterium Bacillus thuringiensis (Bt) into their DNA. Although Bt cotton and Bt maize are the 

largest commercial applications of this technology, Bt has also been introduced into potato, soybeans, and brinjal (eggplant), 

among other crops.  
4 We define a productivity-enhancing benefit as one that either increases yield or reduces yield variability or yield 

susceptibility to stress, whereas a productivity-increasing benefit more narrowly only increases yield. In this regard, productivity-

enhancing technologies involve higher-order moments of the yield distribution, whereas productivity-increasing technologies 

involve only the first-order moment. 
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3.  EMPIRICAL METHODOLOGY 

Our empirical methodology is based on using experimental choice modeling methods to analyze farmers’ 

preferences for seeds among a series of alternatives. Choice modeling has become an increasingly 

important mode of studying economic behavior and demand patterns since this methodology allows the 

researcher to estimate marginal values for various attributes embodied in different goods or services, 

including nonmarket goods and services for which such marginal valuations are difficult or impossible to 

measure by examining revealed preferences. In addition, choice modeling allows for relatively 

straightforward estimation of welfare effects arising from incremental changes in the levels of the 

attributes included in the analysis (Colombo, Hanley, and Louviere 2009). Within the agricultural and 

environmental economics literature, choice experiments have been used extensively for analyzing 

consumer preferences for environmental amenities (for example, Adamowicz, Louviere, and Williams 

1994; Boxall et al. 1996; Bennet and Blamey 2001), analyzing food certification and food safety 

attributes (for example, Lusk, Roosen, and Fox 2003; Nilsson, Foster, and Lusk 2006; Lusk, Norwood, 

and Pruitt 2006; Loureiro and Umberger 2007; Ubilava and Foster 2009; Ortega et al. 2011), analyzing 

adoption of voluntary traceability systems in cow-calf operations (Schulz and Tonsor 2010), and 

quantifying welfare effects of various agricultural and food policies (Ortega et al. 2012; Lusk and 

Briggeman 2009; Tonsor, Olynk, and Wolf 2009). 

In the context of this study, the use of choice experiments allows us to elicit farmers’ willingness-

to-pay (WTP) for DT as a characteristic embodied in rice. Choice experiments represent an empirical 

application and extension of the theoretical and conceptual work of Lancaster (1966). It may at first seem 

inappropriate to use an empirical approach designed within the context of consumer theory to understand 

producer behavior. In fact, such an approach has rarely been attempted with technology adoption, even 

though agricultural technologies (especially biotechnologies) are often differentiated largely on a trait-by-

trait basis (Useche, Barham, and Foltz 2009). In situations in which there are missing markets or in which 

the traits of a particular technology exhibit nonmonetary effects or otherwise give rise to nonseparability, 

the production and consumption decisions of the household must be taken simultaneously. Under these 

conditions, it is appropriate to view technology-adoption decisions as components of a utility-

maximization problem, wherein utility of farm profits is maximized by choosing a combination of 

technology attributes among a set of feasible alternatives (for example, Useche, Barham, and Foltz 2012). 

By incorporating technology choices, farm production, and farm profits in a utilitarian framework, we are 

able to analyze the demand for and welfare implications of traits that affect the variability of expected 

profits. 

Choice experiments closely simulate real-world purchasing decisions. In these experimental 

settings, consumers are asked to choose among a series of alternative bundles of attributes. Suppose that 

individual 𝑖𝑖 faces  𝐾𝐾  alternatives contained in choice set 𝒮𝒮 during occasion 𝑡𝑡 We can define an 

underlying latent variable 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖∗  that denotes the value function associated with individual 𝑖𝑖 choosing option 𝑗𝑗 ∈ 𝒮𝒮 during occasion 𝑡𝑡. For a fixed-budget constraint, individual 𝑖𝑖 will choose alternative 𝑗𝑗 so long as 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖∗ >. 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖∗  ∀𝑘𝑘 ≠ 𝑗𝑗.  The researcher does not directly observe 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖∗ , but instead directly observes 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖,, 
where  

 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 = �1
0

        if 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖∗ = max(𝑉𝑉𝑖𝑖1𝑖𝑖∗ ,𝑉𝑉𝑖𝑖2𝑖𝑖∗ , … ,𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖∗ )

 Otherwise                                
  (1) 

Following standard practice, we assume that indirect utility is linear, which ensures that marginal 

utility is strictly monotonic in traits and yields corner solutions in which only one good is purchased 

(Useche, Barham, and Foltz 2012). We can write individual  𝑖𝑖’s utility function as 

 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖∗ = 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛽𝛽 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 (2) 
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where 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′  is a vector of attributes for the 𝑗𝑗th alternative, 𝛽𝛽is a vector of taste parameters (that is, a 

vector of weights mapping attribute levels into utility), and 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖is a stochastic component of utility that is 

independently and identically distributed across individuals and alternative choices and takes a known 

distribution. This stochastic component of utility captures unobserved (to the econometrician) variations 

in tastes and errors in consumers’ perceptions and optimization. 

The probability of observing 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 = 1 (that is, the consumer chooses option j given all other 

alternatives in 𝒮𝒮) can be written as 

 Prob(𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 = 1) = Prob�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛽𝛽 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 > 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛽𝛽 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖� ∀𝑘𝑘 ∈ 𝒮𝒮,∀𝑘𝑘 ≠ 𝑗𝑗 (3) 

We assume that the random component of utility 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 follows a Gumbel (extreme value type I) 

distribution with cumulative distribution function 𝐹𝐹�𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖� = exp�− exp�−𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖��and corresponding 

probability density function 𝑓𝑓(𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖) = exp [−𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 − exp (−𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖)].  Rearranging terms in equation (3), we 

can easily observe that 

 Prob(𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 = 1) = Prob�𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 < 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛽𝛽 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛽𝛽� ∀𝑘𝑘 ∈ 𝒮𝒮,∀𝑘𝑘 ≠ 𝑗𝑗   (4) 

Then, under the assumption that 𝜀𝜀𝑖𝑖1𝑖𝑖 , 𝜀𝜀𝑖𝑖2𝑖𝑖 , … , 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 are identically and independently distributed, 

we can write our expression for the probability of observing alternative 𝑗𝑗 chosen over all other 

alternatives conditional on the observed levels of the attribute vector for all alternatives in the choice set 𝒮𝒮 

as 

 Prob�𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 = 1|𝑋𝑋𝑖𝑖1𝑖𝑖′ ,𝑋𝑋𝑖𝑖2𝑖𝑖′ , … ,𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′ ,𝛽𝛽� =
exp�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛽𝛽�� exp�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛽𝛽�𝐾𝐾𝑖𝑖=1  (5) 

which is the basic multinomial logit model and can be estimated using maximum likelihood. 

Given the utilitarian interpretation of our econometric specification, the 𝑁𝑁 −vector of parameters 𝛽𝛽 = (𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑁𝑁) defining tastes and preferences over the 𝑁𝑁attributes can be interpreted as marginal 

utilities, and the ratio of two such marginal utilities is simply the marginal rate of substitution of one for 

the other. If one of the included attributes (say, the 𝑁𝑁th attribute) is the price of the alternative, then 𝑁𝑁 can 

be interpreted as the marginal utility of price (or cost). With an estimate for the marginal utility of money, 

the marginal rate of substitution of money for each of the corresponding attributes—that is, WTP—can be 

estimated as  

 WTP𝑛𝑛 = − 𝛽𝛽𝑛𝑛𝛽𝛽𝑁𝑁 ,𝑛𝑛 ∈ [1,𝑁𝑁 − 1] (6) 

where 𝛽𝛽𝑛𝑛 is the estimated parameter for the 𝑛𝑛th attribute. The negative sign appears because the marginal 

utility of cost is assumed to be negative, whereas the marginal utility for favorable (unfavorable) 

attributes will be positive (negative); thus, we must take the negative of this ratio to ensure that WTP for a 

favorable (unfavorable) attribute is represented as a positive (negative) value. 

Because farmers are heterogeneous, their preferences for drought tolerance may also be 

heterogeneous. Within the discrete choice literature, there are several ways to account for preference 

heterogeneity. A common method of evaluating preference heterogeneity is estimation of random 

parameters logit models, also called mixed logit. The random parameters logit is regarded as a highly 

flexible model that can approximate any random utility model and relaxes the limitations of the traditional 

multinomial logit by allowing random taste variation within a sample according to a specified distribution 

(McFadden and Train 2000). Following Train (2003), the probability that individual 𝑖𝑖 chooses 

alternative 𝑗𝑗 from the choice set 𝒮𝒮 in situation 𝑡𝑡 is given by 
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 Prob�𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 = 1|𝑋𝑋𝑖𝑖1𝑖𝑖′ ,𝑋𝑋𝑖𝑖2𝑖𝑖′ , … ,𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′ ,Ω� = ∫ exp�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛽𝛽𝑖𝑖�� exp�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛽𝛽𝑖𝑖�𝐾𝐾𝑖𝑖=1 𝑓𝑓(𝛽𝛽|Ω)𝑑𝑑𝛽𝛽 (7) 

where the vector Ω defines the parameters characterizing the distribution of the random parameters, which 

the researcher can specify. For our purposes, we allow the coefficients corresponding to all attributes 

except price to vary normally. We restrict price to be constant, effectively ensuring a negative marginal 

utility of price and facilitating easier computations of WTP. 

Alternatively, we can introduce heterogeneous preferences by segregating farmers into groups 

with similar underlying characteristics. This approach, known as latent class modeling, assumes that 𝑓𝑓(𝛽𝛽)is discrete, taking 𝐶𝐶 distinct values (Train 2003). The probability that farmer  𝑖𝑖 selects option 𝑗𝑗 in a 

given choice situation t unconditional on the class is represented by 

 Prob�𝑉𝑉𝑖𝑖𝑗𝑗𝑡𝑡 = 1|𝑋𝑋𝑖𝑖1𝑖𝑖′ ,𝑋𝑋𝑖𝑖2𝑖𝑖′ , … ,𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′ ,𝛽𝛽� = ∑ exp�𝑋𝑋𝑖𝑖𝑗𝑗𝑡𝑡′ 𝛽𝛽𝑐𝑐�∑ exp�𝑋𝑋𝑖𝑖𝑘𝑘𝑡𝑡′ 𝛽𝛽𝑐𝑐�𝐾𝐾𝑘𝑘=1

𝑄𝑄𝑖𝑖𝑐𝑐𝐶𝐶𝑐𝑐=1  (8) 

where 𝛽𝛽𝑐𝑐 is the class-specific taste parameter vector for class 𝑐𝑐 and 𝑄𝑄𝑖𝑖𝑐𝑐 is the probability that farmer 𝑖𝑖 
falls into class 𝑐𝑐: 

 Prob(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 = 𝑐𝑐) = 𝑄𝑄𝑖𝑖𝑐𝑐 =
exp�𝑍𝑍𝑖𝑖′𝜃𝜃𝑐𝑐�∑ exp�𝑍𝑍𝑖𝑖′𝜃𝜃𝑐𝑐�𝐶𝐶𝑐𝑐=1  ,   𝜃𝜃𝐶𝐶 = 0 (9) 

This probability can be random (that is, 𝑍𝑍𝑖𝑖 = 1 ∀𝑖𝑖) or conditioned by a vector of household 

characteristics (that is, 𝑍𝑍𝑖𝑖′ = [1, 𝑧𝑧𝑖𝑖1, 𝑧𝑧𝑖𝑖2, … , 𝑧𝑧𝑖𝑖𝑖𝑖]′) and corresponding coefficient vector corresponding to 

membership in class 𝑐𝑐. Combining these two equations, we can write 

 Prob�𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 = 1|𝑋𝑋𝑖𝑖1𝑖𝑖′ ,𝑋𝑋𝑖𝑖2𝑖𝑖′ , … ,𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′ ,𝑍𝑍𝑖𝑖 ,𝛽𝛽,𝜃𝜃� = ∑ � exp�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛽𝛽𝑐𝑐�∑ exp�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛽𝛽𝑐𝑐�𝐾𝐾𝑖𝑖=1 � � exp�𝑍𝑍𝑖𝑖′𝜃𝜃𝑐𝑐�∑ exp�𝑍𝑍𝑖𝑖′𝜃𝜃𝑐𝑐�𝐶𝐶𝑐𝑐=1 �𝐶𝐶𝑐𝑐=1  (10) 

In addition to being conditioned on the attributes of the various alternatives included in the choice 

task in period 𝑡𝑡 and the specification of 𝑍𝑍𝑖𝑖′, this defines the probability of a particular alternative’s being 

selected in a given choice set as a function of membership in a particular class as well as the class-specific 

vector of parameters mapping attribute levels into utility. This specification therefore allows for 

homogeneous preferences within a series of heterogeneous classes of farmers.5 

  

5 This specification could be modified to incorporate random parameters, thus introducing individual heterogeneity within 

the heterogeneous classes. This was attempted in the current study, but it was found that the estimated taste parameters within 

each class exhibited no statistically significant variation, implying that almost all of the heterogeneity could be accounted for by 

latent class segmentation. 
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4.  DATA 

The data used in this study are derived from household surveys conducted in the state of Bihar, India 

(Figure 4.1). Although roughly 90 percent of the state’s population live in rural areas (compared with only 

72 percent at the national level), Bihar has the highest population density of any state in India, with an 

estimated 1,104 persons per square kilometer as of 2011.6 Bihar also has the lowest statewise per capita 

income in India, at only 35 percent of the national average in 2009–10 (Government of Bihar 2012). 

Figure 4.1 Location of sample districts 

 
Source:  Authors. 

Because of topographical and climatic conditions, Bihar is vulnerable to meteorological and 

hydrological hazards on a recurring basis, particularly flood and droughts. Nearly 50 percent of the total 

cultivated area in Bihar is prone to these hazards. Bihar’s vulnerability to droughts has become much 

more apparent and urgent in recent years. Though roughly 57 percent of gross rice cropped area is 

irrigated (in some fashion or another), a large share of this irrigation infrastructure relies on diesel-

powered pumps, which significantly increase farmers’ production costs, especially during years when 

rainfall is scarce or when monsoon rains are delayed. It seems plausible that the development and delivery 

6 This ranking excludes union territories such as Chandigarh and Delhi, which each have more than 9,000 persons per square 

kilometer. 
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of rice varieties and hybrids that demonstrate resiliency to drought conditions could significantly reduce 

output variability and reduce farmers’ vulnerability to these hazards. 

Our sample consists of 475 rice-producing households in rural Bihar. We used a multistage 

sampling approach to form our survey sample. In the first stage, we selected three districts heavily 

dependent on rice production in which to sample households: Bhojpur, Madhubani, and Nawada. These 

three districts provide a great deal of heterogeneity, not least in geography and agroecology. Madhubani 

and Nawada are both participants in the government of India’s Drought-Prone Area Programme as of 

2010, whereas Bhojpur and Nawada were participants in the Drought-Prone Area Programme from 2002 

to 2010. All three districts were affected by rainfall deficiencies during kharif 2012: Nawada and 

Madhubani had rainfall deficiencies of 49 percent and 48 percent, respectively, and Bhojpur had a rainfall 

deficiency of 32 percent (IMD 2012).7 In the second stage, we selected 16 high-rice-producing blocks 

across the three districts. The number of blocks drawn from each district is proportional to the share of 

rice production attributable to each district.8 We selected 7 blocks from Bhojpur, 3 from Nawada, and 6 

from Madhubani. Within each of these blocks, we randomly selected two villages from which to draw 

households. From these villages, we randomly selected 18 rice-growing households from village rosters 

prepared by enumerators through door-to-door listing. After eliminating households for which data are 

missing, our sample consists of 226 households from Bhojpur, 146 households from Madhubani, and 103 

households from Nawada. 

For the choice experiment, the alternatives that the individuals were presented were comprised of 

varying levels of key attributes that are thought to be the most important characteristics that condition 

seed-purchasing decisions. The attributes included in our choice experiment and the levels over which 

they vary were determined through consultation with scientific experts, focus group discussions with 

farmers, pretesting choice experiments in the field, and careful review of the related literature. 

Paddy yield has been widely identified as the most important attribute that farmers consider when 

deciding on which rice to cultivate. Since yields are ultimately the result of both deterministic and 

stochastic processes, it is possible that farmers consider yields under both normal and drought stress 

conditions to be important. A study by Dalton, Yesuf, and Muhammad (2011) that explores farmers’ 

demand for DT maize in Kenya characterized drought tolerance by quantifying yields under different 

rainfall scenarios, corresponding to maize varieties with different forms of stochastic dominance relative 

to a popular local variety: one in which the improved variety first-order stochastically dominated (FSD) 

the reference variety, one in which the improved variety second-order stochastically dominated (SSD) the 

reference variety, and a final distribution in which the improved variety third-order stochastically 

dominated (TSD) the reference variety.9 Such an approach involves an attribute (DT) with three distinctly 

varying levels (FSD, SSD, and TSD), though each attribute level is presented as yields under three 

different rainfall conditions. In other words, farmers aren’t required to think about stochastic dominance 

but only about potential yields under different conditions, simplifying the choice task for the respondent. 

This offers a novel method for characterizing dehydration tolerance (that is, in contrast to drought escape 

through a shorter duration to maturity) without necessarily specifying the pathway by which such 

tolerance was achieved. 

We have used a similar approach to quantifying drought tolerance in the present study. Our yields 

under different stress conditions are derived based on both published figures for a newly released DT 

variety and hypothetical yields that may be obtained through hybridization. Researchers from the 

7 The kharif season is the monsoon season in India, which lasts from roughly mid-June through the end of September. 
8 These figures are based on average total rice production during 2007–2008, 2008–2009, and 2009–2010. On average, total 

rice production was 227,733 metric tons (42 percent) in Bhojpur, 118,163 metric tons (22 percent) in Nawada, and 196,621 

metric tons (36 percent) in Madhubani. 
9 Specifically, the FSD variety had higher yields than the check variety (IR 64) under normal conditions (thereby providing a 

higher expected yield) as well as under both moderate and severe drought stress conditions (thereby providing lower yield 

variability). The SSD variety yielded the same as the popular local variety under normal conditions (thus preserving mean or 

expected yields) but yielded higher under both moderate and severe drought stress. The TSD variety yielded the same as the 

popular local variety under both normal and moderate stress conditions but yielded higher under severe drought stress conditions 

(thereby providing protection against extreme downside risk).  
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International Rice Research Institute (IRRI) have been actively engaged in research on DT rice and have 

released a DT rice variety (Sahbhagi dhan) for use in Jharkhand and Odisha, which will soon be tested in 

Bihar. This variety has been shown to give better yields over check varieties in trials conducted during the 

2005–2007 kharif seasons, under both stressed and nonstressed conditions. Under severe drought 

conditions, Sahbhagi dhan provided a 1 ton per hectare yield advantage over IR 64 and IR 36, two 

prominent megavarieties grown throughout eastern India. The yield distribution of Sahbhagi dhan under 

various water stress conditions has provided important guidance in specifying the yield distributions for 

potential varieties presented in our choice experiment. 

For hypothetical DT
 
hybrids, we had to consider the yield advantages presented by heterosis and 

consider how such yield advantages might decay with increased drought stress. Based on personal 

communication with rice breeders from IRRI, it was determined that depending on the parental lines used 

in the hybridization process, a feasible scenario for a DT hybrid is that it would yield 15 percent higher 

than Sahbhagi dhan under normal conditions but that this yield advantage would diminish to 10 percent 

under moderate drought stress conditions and 5 percent under severe drought stress conditions (Arvind 

Kumar, personal communication).10 We are therefore able to specify yield distributions that roughly 

correspond with inbred varieties and hybrids with differing degrees of stochastic dominance relative to 

local check varieties. In the actual choice sets, we do not identify the seeds as either inbred or hybrid but 

merely allow for the attribute to have six levels. A summary of these yield attribute levels is seen in Table 

4.1. We label these as “hybrids” and “inbreds” to reflect the difference in yield levels, though we note 

there is nothing inherently hybrid or inbred about them.  

Table 4.1 Specification of yield attribute levels used in discrete choice experiment 

Condition 

Hypothetical seed yield distribution relative to local megavariety (Maunds per acre) 

Inbred first-
order 

stochastic 
dominant 

Inbred 
second-

order 
stochastic 
dominant 

Inbred third-
order 

stochastic 
dominant 

Hybrid first-
order 

stochastic 
dominant 

Hybrid 
second-

order 
stochastic 
dominant 

Hybrid third-
order 

stochastic 
dominant 

Normal 51 50 50 59 50 50 

Moderate 
drought 
stress 

32 32 26 36 36 26 

Extreme 
drought 
stress 

16 16 16 17 17 17 

Source:  Authors.  

Note:  A maund is a unit of mass commonly used in Bihar, equivalent to 40 kilograms. 

Focus group discussions and consultations with scientists working on DT rice have indicated the 

importance of short durations to maturity for farmers in drought-prone areas since short durations provide 

a means of escaping drought (for example, if monsoon rains are delayed). Focus group discussions with 

farmers in several districts of Bihar have suggested that short duration remains an important attribute. In 

our choice experiment, we have incorporated duration to maturity (days from planting to harvest) as an 

attribute with three distinct levels, corresponding to short (less than 120 days), medium (120–135 days), 

and long (more than 135 days) duration. 

Specifying drought tolerance through both dehydration tolerance and drought-escape mechanisms 

allows the researcher to determine which, if either, of these mechanisms is more valued by farmers, which 

in addition facilitates cost-benefit analysis that could inform public- and private-sector research and 

development programs in the discovery, development, and delivery of DT rice. 

10 Arvind Kumar leads the drought and aerobic rice-breeding program at the International Rice Research Institute. 
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Since we are interested in potential market segmentation, we also want to determine whether 

there are significant differences in the valuation between a DT hybrid and a DT variety. Heterosis is fully 

expressed in first-generation hybrid seeds but significantly declines in subsequent generations. Thus, 

farmers must purchase new hybrid seeds on a seasonal basis to obtain the maximum benefits conferred by 

heterosis. Varieties, on the other hand, maintain their performance for several generations, so harvested 

grains can generally be stored and reused as seeds in subsequent years. Therefore, to isolate the 

characteristic of nonreusability we characterize the choice as one between a seed that can be reused and a 

seed that cannot. This has been specified as a binary variable equal to one if grains can be stored and used 

as seeds and zero otherwise.11 

We have also included an attribute to capture differences in the seeding rate between varieties and 

hybrids. Hybrids typically have significantly lower seeding rates than do varieties, sometimes on the order 

of 1:3. We specified two levels for the seeding rate, a low seeding rate (4–6 kilograms[kg]/acre) roughly 

corresponding to seeding rates for hybrids, and a high seeding rate (12–16 kg/acre) roughly corresponding 

to the seeding rates for conventional inbred varieties. As before, to avoid biasing responses, the unlabeled 

seeding rate ranges are presented to respondents in the choice sets. 

Finally, an additional parameter capturing seed price was included to allow for the estimation of 

money metric measures for WTP and welfare comparisons. We have specified six price levels to be 

included in our choice sets. The price levels included have been specified based on cost and returns 

survey data collected in Bihar as part of the Cereal Systems Initiative for South Asia. The prices roughly 

correspond to prices at the 5th, 25th, 40th, 50th, 75th, and 99th percentiles of rice prices in these data. The 

actual prices included in the choice sets are 15, 25, 45, 140, 220, and 300 Indian rupees (Rs.). 

To construct our choice sets, we specified a D-optimal design that takes into account all main 

effects as well as interactions between the yield and seeding rate attributes with the binary reusability 

variable. The D-optimal design was achieved using a modified Federov search algorithm, with a full-

factorial design constituting the candidate set. Choice sets were constructed with three alternatives per set, 

with a fourth option available to respondents whereby they choose to use the variety of rice they 

cultivated in the previous kharif season. Information about these “own varieties” is collected to allow us 

to control for attribute levels in the choice analysis.12 To reduce the response burden on survey 

respondents and reduce the probability of respondent fatigue, the choice sets were blocked into four 

groups of nine choice sets each. Respondents were subsequently randomly assigned to respond to the 

choice tasks presented in one of these four groups, with an even number of households allocated to each 

of the groups. Illustrations were included in the choice sets to increase respondents’ comprehension of the 

attributes and levels presented in the choice sets. An example of one of the choice sets is presented in 

Figure 4.2.13 

11 This choice was presented to participants in the experiment as a choice between seeds that would retain their yields if 

saved and planted in the subsequent season (that is, inbreds) and seeds that would lose their yield advantages if saved and planted 

in the subsequent season (that is, hybrids). This latter choice should not be viewed as a choice in which the saved seed is entirely 

sterile and will not germinate in the subsequent season, for example, as a result of introgression of a “terminator gene” in the 

plant. This controversial technology was not conveyed either directly or indirectly to the participants of the experiment. 
12 Although such information was used in the following analysis, it was not known during the experimental design, so the 

design proceeded assuming only three choice alternatives per choice set. By allowing respondents to opt out into simply reusing 

the seed they used last kharif season, we may introduce status quo bias; we note that only 11 percent of farmers in our sample 

chose this alternative. Thus, there does not appear to be a systematic overvaluation of the traits in their existing varieties. 
13 Although Figure 4.2 is shown in English, the actual choice sets presented to respondents were translated into Hindi to 

increase respondent comprehension. 
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Figure 4.2 Example of choice set presented to survey respondents 

 
Source:  Authors. 

In addition to collecting data pursuant to the choice experiments, we also collected data from a 

series of experiments designed to ascertain farmers’ preferences toward risk and potential losses. These 

experiments proceeded along the lines of those in Tanaka, Camerer, and Nguyen (2010) and Liu (2013). 

From these experiments, we estimated two parameters:  𝜎𝜎 which corresponds to the curvature of the 

prospect value function, and 𝜆𝜆, which defines the degree of loss aversion. From cumulative prospect 

theory, the utility over a risky prospect with potential payouts 𝑥𝑥and 𝑦𝑦 occurring with probabilities 𝑝𝑝 and 

q= 1− 𝑝𝑝, respectively, is represented by 𝑈𝑈(𝑥𝑥,𝑦𝑦; 𝑝𝑝, 𝑞𝑞,𝜎𝜎, 𝜆𝜆) =  � 𝑣𝑣(𝑦𝑦) + 𝑤𝑤(𝑝𝑝)[𝑣𝑣(𝑥𝑥)− 𝑣𝑣(𝑦𝑦)] for |𝑥𝑥| > |𝑦𝑦| > 0

  𝑤𝑤(𝑝𝑝)𝑣𝑣(𝑥𝑥) + 𝑤𝑤(𝑞𝑞)𝑣𝑣(𝑦𝑦)             for 𝑥𝑥 < 0 < 𝑦𝑦        
 

where 𝑣𝑣(∙) is the value function for the various risky outcomes and 𝑤𝑤(∙)is a probability weighting 

function (with parameter 𝛼𝛼) that captures the degree to which low-probability extreme outcomes are 

overweighed when risky prospects are evaluated. The value function is specified according to 𝑣𝑣(𝑥𝑥) =  �    𝑥𝑥𝜎𝜎                  for 𝑥𝑥 > 0−𝜆𝜆(−𝑥𝑥)𝜎𝜎 for 𝑥𝑥 < 0
 

and the probability-weighting function is the axiomatically derived weighting function in Prelec (1998):  𝑤𝑤(𝑝𝑝) = exp[−(− ln𝑝𝑝)𝛼𝛼]. Other things being equal, for 0 < 𝜎𝜎 < 1, value function curvature is 

decreasing in 𝜎𝜎, thus implying that risk aversion increases as 𝜎𝜎 decreases. Values of 𝜎𝜎equal to unity 
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imply risk neutrality for nonnegative prospects, whereas values of 𝜎𝜎 greater than unity imply risk-seeking 

behavior over nonnegative prospects. 

As a final component of this study, we conducted a household survey to collect information 

about, among other things, household characteristics (including demographic and socioeconomic 

characteristics), agricultural production, and experiences with both positive and negative economic 

shocks (including droughts). These additional sources of information are relevant for further 

understanding the determinants of WTP, especially as it pertains to preference heterogeneity, both 

between and within households. Table 4.2 summarizes the households in our sample on some of these 

important dimensions, including preferences over risk and potential losses. 

Table 4.2 Summary statistics characterizing farmers in sample 

Variable Bhojpur Madhubani Nawada 𝜎𝜎 (value function curvature) 
0.775 0.636 0.813 

(0.389) (0.378) (0.430) 𝜆𝜆 (loss aversion) 
3.593 7.948 3.100 

(2.930) (3.332) (3.042) 

Age (years) 
48.389 46.110 47.602 

(13.846) (13.052) (14.126) 

Household size (number of persons) 
6.553 6.089 6.777 

(3.018) (3.035) (2.937) 

Land area owned during kharif 2012 (acres) 
2.429 1.454 1.570 

(4.475) (2.154) (1.480) 

Land area shared during kharif 2012 (acres) 
0.519 0.417 0.291 

(1.263) (0.823) (0.577) 

Land area rented in during kharif 2012 (acres) 
0.627 0.129 0.014 

(2.087) (0.551) (0.141) 

Land area rented out during kharif 2012 (acres) 
0.223 0.046 0.085 

(1.793) (0.347) (0.567) 

Land area left fallow during kharif 2012 (acres) 
0.115 0.705 0.077 

(0.412) (1.870) (0.248) 

Household rice farming experience (years) 
63.845 46.308 58.456 

(42.178) (40.933) (43.066) 

Number of different varieties cultivated during kharif 2012 
1.358 1.658 1.369 

(0.533) (0.699) (0.524) 

Number of new rice varieties cultivated in the past five years 
0.880 1.726 0.796 

(1.198) (0.757) (1.278) 

Number of plots on which rice was cultivated during kharif 2012 
1.835 1.973 1.631 

(0.911) (0.989) (0.792) 

Total consumption expenditures during 2012 (Rs.) 
73,231.810 35,606.920 62,696.120 

(54,188.000) (29,062.220) (38,920.480) 

Number of negative income shocks experienced in past five years 
0.779 0.767 0.718 

(1.121) (2.068) (1.097) 

Total damages from shocks experienced in past five years (Rs.) 
44,308.410 16,715.750 12,737.860 

(146,564.200) (54,183.500) (32,374.630) 

Subsample size 226 146 103 

Source:  Authors.  

Note:  Rs. = Indian rupees. 

 12 



 

5.  RESULTS 

The results of estimating the random parameters logit model represented by equation (7) are reported in 

Table 5.1. We first estimated the model ignoring the possible influences of risk and loss aversion in 

conditioning choice probabilities, followed by a similar regression in which these influences are 

accounted for. Where these terms are included, they enter as alternative-specific variables and therein 

measure the effects of risk and loss aversion on choice probabilities for specific alternatives relative to the 

omitted alternative. In other words, these parameters enter as shifters of the utility derived from an 

observed choice. Including these terms in this fashion explicitly acknowledges the role of risk and loss 

aversion in farmer utility functions.14 These results are shown in columns (I) and (II) of Table 5.1, 

respectively. For each regression, we report two sets of results: the first set (top panel) provides mean 

values for the marginal utility parameters, and the second set (lower panel) provides estimates of the 

standard deviation for the normally distributed parameters. The former provides us with insight into the 

relative value associated with each of the attribute levels, and the latter provides us with information 

about the shape of the parameter distributions, which in turn gives insight into the degree of preference 

heterogeneity. 

Two interesting observations emerge when comparing the two sets of results reported in columns 

(I) and (II). First, from column (II), we see that 𝜎𝜎𝐴𝐴-𝜎𝜎𝐶𝐶 and 𝜆𝜆𝐴𝐴-𝜆𝜆𝐶𝐶 are highly statistically significant, 

indicating that on average, 𝜎𝜎 and 𝜆𝜆 significantly affect the probability that seed alternatives A through 

C—which all demonstrate some degree of stochastic dominance over common local megavarieties—will 

be chosen in lieu of alternative D, which is the option of simply cultivating the same variety as in the 

previous kharif season. Specifically, the coefficients associated with 𝜎𝜎𝐴𝐴-𝜎𝜎𝐶𝐶 are all negative, whereas the 

coefficients associated with 𝜆𝜆𝐴𝐴-𝜆𝜆𝐶𝐶 are all positive. This implies that increasing degrees of risk aversion 

(that is, lower 𝜎𝜎) and loss aversion (that is, higher 𝜆𝜆) increase the probability that a respondent would opt 

to switch to one of the hypothetical DT seeds rather than cultivating the same variety as in the previous 

kharif. Because of differences in scale, it is difficult to make judgments as to which is more important in 

this result. Given the average 𝜎𝜎 in the sample is 0.74 and the average 𝜆𝜆 in the sample is 4.82, it could 

reasonably be suggested that risk aversion is more crucial in conditioning these choices. This result could 

arise either because less risk-averse individuals are perhaps more likely to have adopted improved 

seeds—implying that the relative benefits of the hypothetical DT seeds embodied in alternatives A 

through C are less for these farmers than for more risk-averse farmers—or because risk-averse farmers 

are particularly sensitive to drought risk and value the yield gains under moderate or severe drought stress 

offered by the hypothetical DT seeds. 

The lower panel of Table 5.1 demonstrates the heterogeneity in farmers’ preferences for these 

various rice seed attributes. All of the estimated standard deviations are statistically significant, indicating 

a clear rejection of homogeneous preferences (that is, fixed coefficients) for these attribute levels. Across 

both regressions, the estimated standard error for not being able to store harvested grain and use it as seed 

is larger than any of the other estimated standard deviations, suggesting there are wide variations in how 

farmers in our sample feel about this trait that is characteristic of hybrids. The estimated standard error of 

the distribution of marginal utility parameters for the hybrid FSD yield distribution is the second largest 

estimated standard error across these two regressions, suggesting a great degree of preference 

heterogeneity for this characteristic. 

  

14 For simplification, we incorporate these parameters additively in the utility function, rather than the more common 

practice of introducing risk aversion in an exponential or power form, and incorporating loss aversion multiplicatively. 
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Table 5.1 Random parameters logit results 

 (1)  (2) 

 Estimate 

Standard  
error  Estimate 

Standard  
error 

Random utility parameters 
     

Yields 51, 32, 16a maunds/acre (inbred FSD)  1.726 *** 0.097  2.290 *** 0.196 

Yields 50, 32, 16a maunds/acre (inbred SSD)  1.635 *** 0.099  2.224 *** 0.200 

Yields 50, 26, 16a maunds/acre (inbred TSD)  1.464 *** 0.097  2.046 *** 0.199 

Yields 59, 36, 17a maunds/acre (hybrid  FSD)  2.326 *** 0.130  2.917 *** 0.214 

Yields 50, 36, 17a maunds/acre (hybrid SSD)  1.871 *** 0.104  2.431 *** 0.201 

Yields 50, 26, 17a maunds/acre (hybrid TSD) 1.711 *** 0.102  2.223 *** 0.201 

Short duration (less than 120 days) 0.179 *** 0.069  0.202 *** 0.069 

Medium duration (120–135 days) 0.213 *** 0.061  0.205 *** 0.063 

Low seeding rate (4–6 kilograms/acre)  0.721 *** 0.055  0.679 *** 0.056 

Grain cannot be stored and reused as seed  –0.634 *** 0.087  –0.658 *** 0.088 

Nonrandom marginal utility parameters 
       

Price –0.011 *** 0.000  –0.011 *** 0.000 

Alternative-specific parameters        𝜎𝜎𝐴𝐴      –1.243 *** 0.178 𝜎𝜎𝐵𝐵      –1.322 *** 0.182 𝜎𝜎𝐶𝐶      –1.414 *** 0.180 𝜆𝜆𝐴𝐴      0.107 *** 0.021 𝜆𝜆𝐵𝐵      0.135 *** 0.021 𝜆𝜆𝐶𝐶      0.103 *** 0.021 

Distribution parameters        

Standard deviation (inbred FSD) 0.647 *** 0.160  0.546 *** 0.166 

Standard deviation (inbred SSD) 0.686 *** 0.132  0.635 *** 0.134 

Standard deviation (inbred TSD) 0.577 *** 0.146  0.596 *** 0.145 

Standard deviation (hybrid FSD) 1.569 *** 0.164  1.540 *** 0.155 

Standard deviation (hybrid SSD) 0.884 *** 0.139  0.807 *** 0.141 

Standard deviation (hybrid TSD) 0.857 *** 0.136  0.811 *** 0.136 

Standard deviation (short duration) 0.944 *** 0.082  0.898 *** 0.083 

Standard deviation (medium duration) 0.567 *** 0.101  0.576 *** 0.099 

Standard deviation (grain cannot be stored 

and reused as seed) 1.637 *** 0.097 
 

1.660 *** 0.098 

Standard deviation (low seeding rate) 0.591 *** 0.074   0.616 *** 0.072 

Log-likelihood –4,298.616  –4,233.410 

Source:  Authors. 

Notes:  FSD = first-order stochastically dominant; SSD = second-order stochastically dominant; TSD = third-order 

stochastically dominant. * Significant at 10% level; ** Significant at 5% level; *** Significant at 1% level. Presented 

models were estimated using NLOGIT 5.0.  
a These figures correspond to yields under normal conditions, moderate drought stress conditions, and extreme drought 

stress conditions, respectively. 

 14 



 

The second observation that can be made from comparing the results in columns (I) and (II) 

supports this latter argument. Once we control for the roles of risk and loss aversion in conditioning 

choice probabilities, the marginal utility associated with the different yield distributions increases rather 

substantially. And it is not just the marginal utility of the FSD yield distributions that increase. The 

valuation of all distributions increase, suggesting that the farmers in our sample appreciate the reduction 

in variance and kurtosis embodied in the hypothetical DT alternatives. But although the yield distribution 

attributes become more attractive once we control for the effects of risk and loss aversion in conditioning 

seed choices, the marginal utility of other attributes remain roughly unchanged. This is clearly seen in 

Figure 5.1 and Figure 5.2, which plot kernel density estimates of the empirical distributions of the random 

parameters for the different yield and nonyield attributes, respectively. In Figure 5.1, there is a clear shift 

in the distribution of the random parameters for the different yield distribution attributes, implying a 

higher mean marginal utility for each of these DT yield distributions. In Figure 5.2, the distributions are 

virtually indistinguishable from one another, suggesting perhaps that the marginal utilities for these 

nonyield attributes are drawn from the same data-generating process, regardless of whether risk and loss 

aversion are allowed to condition the choice probabilities in the discrete choice experiment. 

The mean marginal utilities for each of the yield distribution attribute levels are positive in both 

regressions. This is as expected since these yield distributions stochastically dominate the distributions of 

megavarieties commonly grown in eastern India. In both regressions, the marginal utility of an FSD 

distribution is higher than that of an SSD distribution, which in turn is higher than that of a TSD 

distribution. This result implies that farmers prefer higher expected yields over and above lower yield 

variability or protection against low probability downside risk (similar to Lybbert 2006). 

In addition, the marginal utility for the hybrid seed distributions is always and everywhere higher 

than the marginal utility for the corresponding inbred distributions.15 This, again, is not particularly 

surprising, since although both exhibit the same degree of stochastic dominance over check varieties, the 

hybrid yields are at least as high as the inbred yields under all conditions and higher than the inbred under 

at least one condition. So the hybrid yield distributions stochastically dominate the inbred distributions to 

the same degree to which they both dominate the local megavariety. For example, the hybrid FSD yield 

distribution actually also stochastically dominates the inbred FSD yield distribution in the first order, the 

hybrid SSD yield distribution stochastically dominates the inbred SSD yield distribution in the second 

order, and so on. 

Both short and medium durations have positive marginal utilities, suggesting that farmers prefer 

these both relative to long durations. But there is not an appreciable difference in the marginal utilities 

between these two: Contrary to what might be expected, farmers do not have a demonstrably higher 

valuation for short-duration paddy, which would allow the farmer to grow a crop to duration even in the 

event of delayed monsoon rains. 

15 For example, the marginal utility of an FSD “hybrid” yield distribution is higher than the marginal utility of an FSD 

“inbred” yield distribution. 
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Figure 5.1 Random parameter distributions for yield distribution attributes, (I) without and (II) with risk- and loss-aversion conditioning 

choice probabilities 

 

Source:  Authors. 

Note:  FSD = first-order stochastically dominant; SSD = second-order stochastically dominant; TSD = third-order stochastically dominant. 
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Figure 5.2 Random parameter distributions for nonyield attributes, (I) without and (II) with risk- and loss-aversion conditioning choice 

probabilities 

 

Source:  Authors.
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As expected, in both regressions the marginal utility of price is negative, indicating that farmers 

generally prefer cheaper seeds to more expensive seeds. This term can be used to generate money-metric 

WTP figures for each of the attribute levels using equation (6). The estimated WTPs associated with each 

of these attribute levels are given in Table 5.2. We use a parametric bootstrapping procedure (Krinsky and 

Robb 1986) to generate 95 percent confidence intervals for these estimates. 

Table 5.2 Estimated willingness-to-pay for rice seed attributes, random parameters logit 

Description 
(I)  (II) 

Lower 
2.5% 

Mean 
Upper 
2.5% 

 Lower 
2.5% 

Mean 
Upper 
2.5% 

Yields 51, 32, 16 maunds/acre (inbred FSD) 136.583 154.241 172.786  168.711 199.988 229.480 

Yields 50, 32, 16 maunds/acre (inbred SSD) 128.767 146.243 163.654  161.987 193.957 228.092 

Yields 50, 26, 16 maunds/acre (inbred TSD) 113.980 130.992 148.150  144.893 178.699 211.272 

Yields 59, 36, 17 maunds/acre (hybrid FSD) 186.824 208.033 231.438  219.274 254.618 290.601 

Yields 50, 36, 17 maunds/acre (hybrid SSD) 148.231 167.303 186.212  180.551 212.267 245.691 

Yields 50, 26, 17 maunds/acre (hybrid TSD) 134.693 153.638 171.418  159.934 194.134 227.664 

Short duration (less than 120 days) 3.549 16.017 28.072  5.900 17.363 29.470 

Medium duration (120–135 days) 8.579 19.055 30.285  7.056 17.724 28.620 

Low seeding rate (4–6 kilograms/acre)  54.979 64.657 74.063  49.548 59.418 69.307 

Grain cannot be stored and reused as seed  –71.525 –56.739 –42.118  –73.126 –57.532 –43.113 

Source:  Authors. 

Note:  FSD = first-order stochastically dominant; SSD = second-order stochastically dominant; TSD = third-order 

stochastically dominant. Confidence intervals derived using parametric bootstrap procedure introduced in 

Krinsky and Robb (1986) based on 1,000 random draws from a multivariate normal distribution with 

means and variance-covariance matrix of the estimated model parameters. 

For the six DT yield distribution levels, incorporating risk and loss aversion into the utility 

function raises WTP by approximately Rs.45 at each level, whereas there is virtually no change in WTP 

for the nonyield attributes (duration, seeding rate, or whether the harvest grains can be stored and reused 

for seed). When risk and loss aversion condition utility, estimates suggest that farmers would be willing 

to pay Rs.200 for a DT seed yielding 51, 32, and 16 maunds per acre under normal, moderate stress, and 

severe stress conditions, respectively (that is, inbred FSD), whereas farmers would be willing to pay 

Rs.255 for a DT seed yielding 59, 36, and 17 maunds per acre under normal, moderate drought stress, and 

severe drought stress conditions, respectively (that is, hybrid FSD). These figures seem high, considering 

the average cost of seed among farmers in our sample, but they highlight the extent to which farmers 

value DT characteristics.16 We estimate, therefore, that farmers are willing to pay a premium of 

approximately Rs.55 for the additional yield under all conditions. For a DT seed yielding 50, 36, and 17 

maunds per acre under normal, moderate drought stress, and severe drought stress conditions, respectively 

(hybrid SSD), farmers are willing to pay roughly Rs.212—more than for the inbred FSD that yields more 

under normal conditions (51 versus 50 maunds per acre) but less under moderate drought stress 

conditions (32 versus 36 maunds per acre) and severe drought stress conditions (16 versus 17 maunds per 

acre). Although the confidence intervals for these two WTP estimates overlap to some degree, these 

estimates suggest that farmers in our sample value a reduction in risk (that is, increased yields under stress 

conditions), even at the expense of a reduction in mean (that is, reduced yields under normal conditions). 

Indeed, comparing the mean and confidence interval for WTP for the inbred FSD distribution with the 

mean and confidence interval for WTP for the hybrid TSD distribution (which has lower expected yields, 

16 For comparison, the average price of rice seed cultivated during kharif 2012 among the farmers in our sample is only 

Rs.42.69. 
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lower yields under moderate stress conditions, but an additional 1 maund per acre under severe stress 

conditions) gives insight into the relative valuation of protection against downside risk in the extreme tails 

of the weather-yield distribution. Farmers are roughly willing to pay the same for a seed that yields 50, 

26, and 17 maunds per acre under normal, moderate drought stress, and severe drought stress conditions 

(hybrid TSD), respectively, as they are for one that yields 51, 32, and 16 maunds per acre (inbred FSD). 

Since farmers value these two yield distributions roughly equivalently, this suggests a tradeoff between 

higher expected and less-variable yields and the additional protection against severe droughts. 

We can bundle WTP estimates for a series of attributes and gauge an approximate value for how 

much farmers would be willing to pay for a particular seed containing that combination of attributes. For 

example, we might be interested in determining how much farmers would be willing to pay for a short-

duration DT hybrid that yields 59, 36, and 17 maunds per acre under normal, moderate drought stress and 

severe drought stress conditions, respectively. To do so, we would simply add the WTP for the attributes 

that are embodied in this hypothetical seed. Since it is a DT hybrid, in addition to valuations for short 

duration and the hybrid FSD yield distribution, we would take into consideration the valuations for both a 

low seeding rate and the inability to store harvested grain and use it as seed, two features characteristic of 

hybrids. Since each individual is assumed to have unique preferences for each of the attributes, each 

individual would also have a unique WTP for this bundle. These WTPs can be sorted and ranked from 

highest to lowest and plotted against some measure of quantity to illustrate the demand for a particular 

seed bundle at various prices. Figure 5.3 plots two sets of demand curves, with area under cultivation and 

quantity of seed used along the horizontal axis. In each plot, two demand curves are presented, one 

corresponding to a hypothetical DT hybrid (as described above) and one corresponding to a DT variety 

similar to IRRI’s Sahbhagi dhan. 

Figure 5.3 Demand curves for a hypothetical drought-tolerant hybrid and a drought-tolerant 

variety similar to International Rice Research Institute’s Sahbhagi dhan 

 

Source:  Authors. 
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Plotting WTP against seed quantity complicates comparisons between the demand structures 

between a DT hybrid and a variety. There are inherent differences in seeding rates between hybrids and 

varieties, such that farmers would require a lower quantity of hybrids than varieties to cultivate a given 

area of land. Other things being equal, therefore, farmers would have to purchase a larger quantity of 

inbred seeds than they would hybrids. But this would be only for the first year since varieties can be 

stored and reused as seeds in later years. Farmers cultivating DT hybrids would use a lower quantity of 

seed but would have to purchase new seed every year. 

From these demand curves, we see there is a great deal of heterogeneity in demand for DT 

hybrids and DT varieties. Demand for DT hybrids is both much more heterogeneous and much more 

inelastic. WTP for a DT hybrid ranges from nearly Rs.700 to actually negative values for some farmers 

(not shown in Figure 5.3). But to significantly increase the area under cultivation, the price would have to 

decline markedly. Such is not the case for a DT variety. The range of WTP for a DT variety is much 

narrower, implying much more uniform valuations among the farmers in our sample. 

The differences in demand structures for the DT hybrid and DT variety suggest a role for both 

private-sector DT hybrids and DT varieties developed by the public sector. Rather than necessarily 

competing, these two seeds could serve different segments of the market. Furthermore, this natural 

segmentation suggests the potential for transformative public-private partnerships in the discovery, 

development, and delivery of DT technologies. 

We can also introduce preference heterogeneity through the use of latent class modeling, 

following equation (10). We consider two methods for class segmentation: random class segmentation 

and segmentation based on farmer characteristics that might be important in distinguishing farmer 

preferences, such as age, experience with rice cultivation, experimentation or diversification with 

different rice varieties, and agricultural income. The optimal number of classes is determined by 

comparing diagnostics for models with different numbers of classes, but a balance must generally be 

reached between the importance of the different diagnostic measures. Model diagnostics are reported in 

Table 5.3 for models with two to five classes under both methods of class segmentation. In both cases, the 

model with three classes has better log-likelihood, pseudo R2, and Akaike Information Criterion, but there 

are concerns that a three-class model overfits the data since one of the resulting class probabilities (in the 

random model) is less than 5 percent and the estimated marginal utility parameters for some of the 

attributes within this class are generally unrealistic. Under both specifications, the two-class model results 

in the lower (and therefore better) Bayesian Information Criterion, which Nylund, Asparouhov, and 

Muthen (2007) have suggested is the more appropriate model diagnostic to use in determining the number 

of classes in latent class analysis. We thus proceed with estimating a two-class model, the results of which 

are reported in Table 5.4. 
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Table 5.3 Latent class diagnostics 

Random class membership 

Class k Log-likelihood Pseudo R2 AIC BIC 

1 17 –4566.968 .229 9167.935 4638.032 

2 35 –4083.209 .311 8236.419 4229.519 

3 53 –4023.534 .321 8153.067 4245.088 

4 71 –4163.272 .298 8468.544 4460.071 

5 89 –4105.466 .307 8388.933 4477.510 

Class membership conditioned by age, rice experience, number of varieties cultivated in 2012, and 
ln(agricultural income) 

Class k Log-likelihood Pseudo R2 AIC BIC 

1 17 –4566.968 .229 9167.935 4638.032 

2 39 –4121.170 .305 8320.340 4284.201 

3 61 –4096.610 .309 8315.220 4351.606 

4 83 –4163.970 .297 8493.940 4510.932 

5 105 –4157.030 .299 8524.060 4595.958 

Source:  Authors. 

Note:  AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion. These statistics were based on a sample of 

4,275 choices from 475 farmers (each making 9 choices). McFadden’s pseudo R2 is computed as 1− 𝐿𝐿𝐿𝐿/𝐿𝐿𝐿𝐿(0), where 𝐿𝐿𝐿𝐿(0) is the log-likelihood for a restricted model (only including an intercept). AIC is computed as −2(𝐿𝐿𝐿𝐿 − 𝑘𝑘), where 𝑘𝑘 is the number of parameters estimated. BIC is computed as [ln(N) × 𝑘𝑘/2]− 𝐿𝐿𝐿𝐿, where 𝑁𝑁 is the sample size. 

It is often valuable to identify the sources of class segmentation arising from the latent class 

modeling approach. Such identification often arises from differences in the marginal utility parameter 

estimates. In our case, since we control for risk and loss preferences in the utility function, we are also 

able to define class segmentation in class members’ sensitivity to risks and losses. For example, in both 

the random and the conditional latent class models, members of class 1 are significantly more sensitive to 

losses than they are to risks. Indeed, given the lack of statistical significance for the effects of 𝜎𝜎𝐴𝐴 − 𝜎𝜎𝐶𝐶, 

one could argue that risk preferences play no role whatsoever in conditioning seed choices for these 

farmers. But given the degree to which their choices are conditioned by aversion to potential losses (for 

example, those arising from droughts), class 1 members have substantially higher marginal utilities for the 

DT yield distribution attributes. Class 2 members, on the other hand, although somewhat sensitive to 

losses, are much more sensitive to risks. But surprisingly, they do not seem to value the reduction in yield 

variability or protection against extreme tail events offered by the SSD and TSD distributions. This is 

particularly true in the random latent class model, in which the marginal utility of TSD distributions is not 

statistically different from zero and only the marginal utility of the hybrid SSD distribution is statistically 

significant.
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Table 5.4 Latent class model estimates 

Description 

Random latent class model  Conditional latent class model 

Class 1  Class 2  Class 1  Class 2 

Coefficient 
Standard 

error  Coefficient 
Standard 

error  Coefficient 
Standard 

error  Coefficient 
Standard 

error 

Utility parameters                

Yields 51, 32, 16 maunds/acre (inbred FSD)  1.861 *** 0.257  0.936 *** 0.238  1.925 *** 0.188  0.900 *** 0.118 

Yields 50, 32, 16 maunds/acre (inbred SSD)  1.767 *** 0.258  0.314  0.266  1.826 *** 0.205  0.288 ** 0.137 

Yields 50, 26, 16 maunds/acre (inbred TSD)  1.701 *** 0.256  0.326  0.257  1.762 *** 0.198  0.294 * 0.155 

Yields 59, 36, 17 maunds/acre (hybrid FSD)  2.237 *** 0.271  1.641 *** 0.284  2.269 *** 0.194  1.631 *** 0.107 

Yields 50, 36, 17 maunds/acre (hybrid SSD)  2.127 *** 0.263  0.829 *** 0.255  2.192 *** 0.215  0.808 *** 0.122 

Yields 50, 26, 17 maunds/acre (hybrid TSD) 2.043 *** 0.265  –0.007  0.276  2.115 *** 0.191  –0.018  0.163 

Short duration (less than 120 days) 0.318 *** 0.073  0.251 ** 0.098  0.317 *** 0.068  0.257 *** 0.062 

Medium duration (120–135 days) 0.150 ** 0.070  0.171 ** 0.087  0.144 * 0.074  0.185 *** 0.060 

Low seeding rate (4–6 kilograms/acre)  0.597 *** 0.057  0.405 *** 0.077  0.608 *** 0.055  0.394 *** 0.060 

Grain cannot be stored and reused as seed  –1.199 *** 0.089  0.189 * 0.101  –1.205 *** 0.062  0.155 *** 0.051 

Price –0.016 *** 0.001  –0.001 ** 0.000  –0.016 *** 0.000  –0.001 *** 0.000 

Parameters conditioning choice probabilities               𝜎𝜎𝐴𝐴  –0.151  0.230  –1.403 *** 0.219  –0.184  0.163  –1.367 *** 0.126 𝜎𝜎𝐵𝐵  –0.273  0.237  –1.539 *** 0.228  –0.311 * 0.173  –1.506 *** 0.161 𝜎𝜎𝐶𝐶  –0.236  0.231  –1.750 *** 0.236  –0.266 * 0.161  –1.705 *** 0.165 𝜆𝜆𝐴𝐴  0.198 *** 0.032  0.113 *** 0.026  0.192 *** 0.026  0.118 *** 0.015 𝜆𝜆𝐵𝐵  0.243 *** 0.033  0.112 *** 0.027  0.239 *** 0.028  0.117 *** 0.018 𝜆𝜆𝐶𝐶  0.228 *** 0.032   0.100 *** 0.028   0.224 *** 0.026   0.106 *** 0.018 

Parameters conditioning class membership               

Constant         1.400 * 0.782     

Age         –0.011  0.009     

Number of years of experience cultivating rice        –0.006 * 0.003     

Number of different varieties cultivated in kharif 2012        –0.225  0.200     

ln (agricultural income)                 0.072   0.054         

Probability of class membership .721  .279  .713  .287 

Log-likelihood        

Source:  Authors. 

Note:  FSD = first-order stochastically dominant; SSD = second-order stochastically dominant; TSD = third-order stochastically dominant.* Significant at 10% level; ** 

Significant at 5% level; *** Significant at 1% level.  Presented models were estimated using NLOGIT 5.0.  
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Members of class 1 are also sensitive about being able to save their harvested grains and use them 

as seed in future kharif seasons. These farmers have large and highly significant negative marginal 

utilities associated with having to purchase new seeds every year. Farmers in class 2, on the other hand, 

have positive marginal utilities for having to purchase new seed every year, perhaps suggesting that they 

have an understanding of the many benefits of first-generation seeds over seeds from second or later 

generations. 

It might be tempting to compare the magnitudes of the marginal utilities for, for example, the 

hybrid FSD yield distribution and conclude that members of class 1 would be willing to pay more for a 

seed with this distribution, but such a conclusion fails to observe differences in price sensitivity between 

the two classes. Farmers in class 1 are dramatically more price sensitive than farmers in class 2, as their 

marginal disutility of price is more than 10 times the marginal disutility of price for farmers in class 2. 

The very low (in magnitude) marginal disutility of price for farmers in class 2 may partly explain why 

farmers in this class have positive marginal utilities associated with purchasing new seed every year.17 

Since the marginal disutility of price is in the denominator of WTP estimates, these differences in the 

marginal disutility of price have important implications for multiclass segmented demand. Table 5.5 

reports WTP for each of the various rice seed attributes across both classes, along with corresponding 95 

percent confidence intervals. For these estimates, we draw only from the random latent class model 

results, though we note there are no appreciable differences in the estimates when farmer characteristics 

are introduced to condition class segmentation. 

Table 5.5 Estimated willingness-to-pay for seed attributes, random latent class model 

Description 
Class 1  Class 2 

Lower 2.5% Mean 
Upper 
2.5%  

Lower 
2.5% Mean 

Upper 
2.5% 

Yields 51, 32, 16 maunds/acre (inbred FSD) 
83.103 115.196 147.156  345.123 1135.126 4323.970 

Yields 50, 32, 16 maunds/acre (inbred SSD) 
75.697 109.714 141.546  –527.054 320.516 1473.036 

Yields 50, 26, 16 maunds/acre (inbred TSD) 
74.708 105.596 138.800  –397.207 359.064 1739.085 

Yields 59, 36, 17 maunds/acre (hybrid FSD) 
100.630 139.199 178.705  790.487 1971.960 7426.097 

Yields 50, 36, 17 maunds/acre (hybrid SSD) 
97.959 131.897 163.494  244.027 950.453 3436.853 

Yields 50, 26, 17 maunds/acre (hybrid TSD) 
92.376 126.731 160.091  –1141.437 –85.206 759.737 

Short duration (less than 120 days) 
11.119 19.513 28.214  36.582 325.698 1273.338 

Medium duration (120–135 days) 
0.390 9.344 17.969  –39.182 226.337 913.926 

Low seeding rate (4–6 kilograms/acre) 
30.003 37.080 44.190  158.349 526.303 2034.961 

Grain cannot be stored and reused as seed 
–83.625 –74.210 –64.872  –32.393 237.554 1122.333 

Source:  Authors. 

Note:  FSD = first-order stochastically dominant; SSD = second-order stochastically dominant; TSD = third-order 

stochastically dominant. Confidence intervals were derived using parametric bootstrap procedure introduced in 

Krinsky and Robb (1986) based on 1,000 random draws from a multivariate normal distribution with means 

and variance-covariance matrix of the estimated model parameters 

  

17 We note that even though farmers in class 2 have a smaller marginal utility of price (less negative), this should not be 

construed as implying that these farmers are wealthier and are therefore less concerned with price. When we allow covariates to 

condition class membership, we find that households with higher agricultural incomes are no more likely to be members of class 

2 than of class 1. The point estimate suggests that farmers with more agricultural income are actually more likely to be members 

of class 1 than class 2, though this point estimate is not statistically different from zero at standard significance levels. 
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These WTP estimates should likely be viewed with caution. Clearly, the estimates of WTP for the 

various seed attributes for class 2 are excessive and largely infeasible. This is largely driven by the very 

small marginal disutility of price for this class of farmers. Few farmers—even extremely wealthy ones—

would likely be willing to pay nearly Rs.2,000 per kg for rice seed, even if such seed yields 59 maunds 

per acre under normal conditions and 36 maunds per acre during moderate droughts. There are generally 

very wide confidence intervals for the valuations of the seed attributes for class 2, leading to imprecise 

measurements of WTP. Several of the empirical distributions span 0, so we cannot be confident even of 

the sign of the WTP estimate for these attribute levels. 

In simplest terms, these results confirm our previous findings of significant heterogeneity in 

preferences over rice seed characteristics. The estimates also suggest a great deal of heterogeneity in the 

valuation of DT characteristics. Across both classes, there are positive and significant WTPs for DT seeds 

whose yield distributions are higher than local megavarieties under all conditions. But farmers in class 2 

do not seem to highly value seeds that merely reduce yield variability or provide additional protection 

against severe droughts, despite their seed choices’ being particularly sensitive to the farmers’ preferences 

for risk and, to a lesser degree, the potential for losses. 

In addition, the latent class modeling approach further supports our previous findings about the 

potential for both public-sector DT varieties and private-sector DT hybrids to coexist and the potential for 

public-private partnerships in developing these technologies. Within both classes, there is potentially 

significant demand for DT, especially DT rice that also provides yield advantages under normal 

conditions (that is, a yield distribution that first-order stochastically dominates other varieties). Famers in 

class 2 exhibit a small disutility of price and a positive marginal utility of purchasing new seed every 

year, suggesting a natural market segment that could be specifically targeted by private-sector DT 

hybrids. Farmers in class 1, on the other hand, are far more sensitive to price and exhibit a significant 

disutility when it comes to purchasing new seed every year.  
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6.  CONCLUSION 

In this study, we use discrete choice experiments to examine farmers’ preferences for DT traits embodied 

in different rice backgrounds and model heterogeneity in these preferences using both random parameters 

(capturing preference heterogeneity at the individual level) and latent class (capturing preference 

heterogeneity across multiple classes of farmers) modeling approaches. This research provides a novel 

analysis of demand for new, pro-poor technologies and demonstrates that natural heterogeneity also 

presents natural market segmentation such that both public-sector DT varieties and DT hybrids developed 

by the private sector could coexist in the market, thereby making the benefits of these technologies more 

widely accessible to poor and vulnerable farmers who would benefit the most from them. 

In our discrete choice experiment, we present DT through a series of yield distributions, with 

yields under normal conditions (that is, expected yields), moderate drought stress conditions, and severe 

drought stress conditions. This method explicitly illustrates that seeds represent a bundle of potential 

yields—not just an average yield—including a range of yields under suboptimal conditions. Although 

many seed companies and research institutions focus on yields under normal conditions, risk-averse 

farmers would also be expected to care about yield variability and exposure to extreme weather events 

rather than only focusing on expected yields. Our empirical results support this. We find that there is 

significant demand for DT characteristics. Although farmers are willing to pay more for rice seed that 

yields more than local megavarieties in all conditions, they are also willing to pay significant amounts for 

seeds that outperform these megavarieties under drought stress conditions, even if they do not provide 

yield advantages under normal conditions. We also find evidence that farmers’ value reduced exposure to 

yield losses due to severe droughts, even when this reduced exposure is not accompanied by higher 

average yields or even less variable yields.  

We also demonstrate the importance of incorporating behavioral parameters in farmers’ utility 

function. Incorporating these parameters in the utility function involves affecting choice probabilities. We 

find that more risk-averse and more loss-averse farmers are more likely to choose DT seeds over the 

varieties they had cultivated in previous seasons. We also find that in addition to conditioning choice 

probabilities, incorporating these parameters affects the valuation of seed attributes. When we control for 

preferences toward risk and potential losses, we find that farmers’ valuations of the various DT yield 

distributions increase. Although the valuations for these attributes increase, there are not significant 

changes in the valuations for the other attributes, such as duration, seed rate, and seed reusability. 

Our results suggest that there are different demand structures for DT varieties developed by the 

public sector and DT hybrids developed by the private sector. Although there is, on average, significant 

disutility associated with having to buy new seed every year (a key characteristic of hybrids), the 

additional yield conferred by heterosis (or hybrid vigor) results is such that many farmers would be 

willing to pay a significant price for a DT hybrid. At the same time, because there is such wide variation 

in the utility associated with purchasing new seeds every year, demand for DT hybrids is heterogeneous 

and therefore inelastic. Demand for DT varieties is much more elastic, but the average WTP is 

significantly lower than for DT hybrids. This is an important result, as it suggests natural market 

segmentation, implying that both DT hybrids and DT varieties could coexist in the DT rice market. Given 

limited research budgets and conflicting research priorities, this natural market segmentation provides 

opportunities for cooperation between public- and private-sector research, resulting in potentially 

beneficial public-private partnerships in the development and delivery of DT technologies that could 

benefit large numbers of poor, vulnerable farmers in India’s drought-prone areas. 

Although this study focuses on DT rice in the Indian state of Bihar, we provide a methodological 

toolkit to motivate similar studies that address abiotic stresses characterized by similar patterns of 

occurrence and learning among farmers. This approach could be used to explore demand for tolerance 

traits addressing other abiotic stresses such as submergence, salinity, excessive heat, and excessive cold; 

within other staples such as maize or wheat; or within other nonstaple crops such as vegetables or other 

horticultural crops.  
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