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An experimental 

smart farm uses 

environmental 

sensors, livestock 

monitoring 

technologies, and an 

ontology-enabled 

architecture for 

personal alerts and 

data sharing. 

driving a new round of information-based 

innovation, this time aligned with the tech-

nology push called the Web of Things. Since 

1999, it has been mandatory for all Austra-

lian farmers to af�x passive RFID ear tags to 

their cattle and to report movements between 

farms to a national database. Now, the �rst 

commercial systems for on-farm livestock 

location tracking are emerging; the Taggle 

system, for example, triangulates wireless sig-

nals from active ear tags as they are received 

at base station antennae. A national broad-

band network is being developed to deliver 

telephony and high-speed broadband to all 

Australian homes, schools, and businesses, 

including rural farms. Farming “things” are 

becoming electronically identi�able and mea-

sureable, but the “Web” that connects and 

adds value is largely unexplored.

The Australian farming sector includes 

more than 130,000 farms, most of which are 

operated on location as family businesses.1 

Smart phone apps are playing an increas-

ing role on farms for both crop and livestock 

management.2 Mobile phones and land-

lines are also the gateway to Web services, 

and farmers are as likely to take up Inter-

net services as city residents.3 We’re develop-

ing a smart farm near Armidale, New South 

Wales, to be a technology-intensive property 

of the future.4 Our experiments with �ne-

scale sensing technologies at Kirby Farm are 

improving the primary producer’s situation 

awareness and thus contributing to on-farm 

productivity.

Here, we present our research on this pro-

totype smart farm from two perspectives. 

First, we offer a technology perspective, out-

lining our semantic sensor network and its 

capability for generating alerts for conditions 

that augment local knowledge with physi-

cal measurement. We also discuss our recent 

evaluation of this effort, with performance 

measurements that demonstrate its feasibility 

in practice. Second, we review Australian ag-

riculture’s social and business context, which 

drive a business model that would enable the 

adoption of such technologies. We propose 

that, given imperative changes to the industry 

structure, the aggregation of farm-scale data 

creates opportunities for industry optimiza-

tion that justi�es the investment.

P
rimary industry in Australia has a proud record of both remarkable 

productivity and investment in innovation. The combine harvester, 

for example, revolutionized broad-acre crop production after its �rst commer-

cial production in Australia in 1885. Today, there are new economic pressures 
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Technology
Kirby Farm is located on a 171.3 

hectare (ha) livestock property typical 

of much of inland eastern Australia. 

Productivity of the sheep and cattle 

enterprises is dependent on manag-

ing pasture and forage crops, which 

provide the main feed source for the 

livestock. To determine landscape 

variability, we undertook a survey 

comprising an electromagnetic induc-

tion (EM38) soil scan, digital eleva-

tion mapping, and a pasture biomass 

(active optical sensor) scan, with cor-

responding spatial clustering analy-

sis. We then installed 100 soil sensor 

nodes, each representing a locality of 

approximate homogeneity, and two 

above-ground weather station nodes.

As Figure 1 shows, each soil node 

has a Decagon 5TE soil moisture sen-

sor, buried at a depth of 0.20 meters, 

that measures moisture, temperature, 

and electrical conductivity (ECa, which 

is correlated with salinity, soil mois-

ture, and clay). It also has an Apo-

gee ST-100 air temperature sensor at 

2.4 m above the ground. The Vaisala 

WXT520 weather stations measure air 

temperature, humidity, and pressure; 

wind speed and direction; and rainfall 

and hail. Collocated on the weather 

station nodes are Apogee SP-110 solar 

radiation sensors. All nodes are CSIRO 

sensor hubs powered by solar panels 

with built-in sensors for solar voltage, 

solar current, battery voltage, and bat-

tery current. The sensor nodes form a 

wireless multihop network, which al-

lows them to communicate back to a 

Linux gateway located in the shearing 

shed. From there, data is pushed via the 

public 3G cellular network to an installa-

tion of the open source Global Sensor 

Network (GSN) stream-processing 

middleware.5

Data Management
Figure 2 illustrates our approach to 

managing both live and persistent smart 

farm sensor data. 

GSN is fed with the sensor data 

collected from the farm. In addition, 

Taggle cattle-location data is fed in 

by polling a website. Virtual GSN 

sensors are used to provide enhanced 

streaming output for further process-

ing. Through these virtual sensors,

•	 summaries of sensor data are trans-

lated to RDF and persisted in a 

Virtuoso triple store;

•	 various algorithms, implemented in 

Java or R, are deployed to consume 

real-time sensor data and produce 

value-added streams; and

•	 semantic event descriptions are 

processed to generate alerts. 

The smart farm control portal lets 

farmers develop personalized event de-

scriptions in terms of an ontology de-

signed for their farm. The descriptions 

are composed and handled via an exten-

sion of Taylor and Leidinger’s method,6 

whereby users are guided to create class 

descriptions and class and property in-

stances that together describe an event of 

interest. Event descriptions can include 

•	 thresholds on data properties aris-

ing from sensors and virtual sen-

sors, and

Figure 1. A soil sensor node on Kirby 

Farm near Armidale, New South Wales, 

Australia. The node is powered by a solar 

panel on top. A strong post keeps the 

electronics above any livestock, while 

carrying a wire to the sensors embedded 

in the soil a metre to the side.
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Figure 2. The architecture of the smart farm situation awareness and open data 

framework. Sensor data are data pushed to a stream management system that’s 

extended with prede�ned analytic functions and dynamic alert conditions.  

Semantic Web technologies are used to de�ne the alert conditions and to integrate 

and publish data. (Embedded Linking Open Data [LOD] cloud image courtesy of 

Richard Cyganiak and Anja Jentzsch.)



14  www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

W E B  O F  T H I N G S

•	 temporal relationships among com-

ponent events, such as exceeding 

thresholds over multiple streams 

within a set time period. 

In this extension, simple Descrip-

tion Logic (DL)-safe rules, with con-

junctive DL terms in the head, are 

expressed as Semantic Web Rule Lan-

guage (SWRL) and are compatible 

with the W3C’s Rule Interchange For-

mat-Basic Logic Dialect (RIF-BLD) 

recommendation. The rules enable the 

co-reference of variables throughout 

the event description that cannot be 

expressed in Web Ontology Language-

DL (OWL-DL), such as relating soil 

temperature and air temperature over 

the same paddock at the same time, 

and binding values of measurements 

to properties of the alert instance. DL 

reasoning is used for some optimiza-

tion, but ultimately the event descrip-

tions are translated to virtual sensor 

speci�cations in GSN for enactment, 

rather than being directly enacted 

through a semantically aware tech-

nology. When an event is detected by 

GSN, the relevant data is immediately 

inserted in the triple store, as asser-

tions of an instance of a conjunctive 

RIF-BLD rule head. This approach 

means that we can, in principle, uti-

lize any off-the-shelf stream processor 

without special semantic services for 

high-throughput event detection, and 

allocate our limited resources for per-

sistent storage in the triple store to de-

rived data of value instead of frequent 

raw measurements. 

The RDF data is described using 

the Semantic Sensor Network (SSN) 

ontology of the W3C SSN Incubator 

Group7; the W3C Government Linked 

Data Working Group’s RDF Data 

Cube vocabulary; and some local on-

tology extensions similar to those we 

did for climate data publishing.8 We 

present an example of a SPARQL 1.1 

query that compares daily maximum 

air temperatures on Kirby Farm with 

the historical record for locations in 

the same meteorological district as 

our farm’s weather stations at http://

smartfarm-ict.it.csiro.au/sparql-doc/

compare-farm-and-archive-observations.

html. The example uses other pub-

licly linked data from the Australian 

Bureau of Meteorology8 and demon-

strates the ability to live-link the farm 

data to the Semantic Web’s open gov-

ernment data. This is a formal query 

that can be executed on one of the 

many Web SPARQL endpoints. Alter-

natively, GUI-driven technologies to 

exploit such linking abound.

Performance

We’ve developed some scenario-based 

alerts to evaluate the runtime perfor-

mance. Here, we present results of se-

mantic alert processing over enriched 

streams as an indication of the tech-

nical success of the farm environment 

architecture. We use the “time-to-sow” 

alert, designed to assist with the opti-

mal timing for sowing of oats for fod-

der, taking account of soil and weather 

conditions. We selected this alert as an 

example of a challenging event com-

putation, as it’s mapped to an event 

processor for each of 55 paddocks, 

each of which requires an R evalu-

ation over two properties of several 

soil sensor streams. Figure 3 shows the 

description of the event through the 

smart farm control portal.

The event descriptions are enacted as 

virtual sensor nodes in GSN. We evalu-

ated runtime performance by processing 

the 55 paddock event threads in paral-

lel, with intervals of �ve minutes (the ap-

proximate time it takes for data from 

each sensor to be pushed from the �eld). 

As Figure 4 shows, we used a 64-bit 

Windows 7 desktop environment with 

Intel Core i5-3570 CPU with 3.4 GHz 

and 4 Gbytes RAM; in the �gure, each 

line represents one of 55 paddock time-

to-sow virtual sensors.

The data is collected over 60 time 

points. Because R is single-threaded, 

Figure 3. The time-to-sow event description. The description is enacted as virtual 

sensor nodes in the Global Sensor Network (GSN).



NOVEMBER/DECEMBER 2013 www.computer.org/intelligent 15

the event processing for each pad-

dock must execute sequentially, 

which is re�ected in the time taken 

at �rst. During the �rst event evalu-

ation, the event threads are randomly 

delayed to avoid simultaneous access 

of R in consequent runs. On aver-

age, an event evaluation takes 357.73 

milliseconds with a standard error 

of mean (SEM) of 15.19 millisec-

onds. Therefore, 168 events can be 

processed every minute on average. 

These events are compute-intensive 

compared to most tasks, such as com-

paring multiple sensors with thresh-

old values executed with an average 

of 51.6 milliseconds and SEM of 9.4 

milliseconds (that is, 1,162 events per 

minute).

The Business Challenge
The publication of data like this cre-

ates an opportunity to connect Web 

of Things agriculture data services to 

food processors, wholesalers, retail-

ers, and consumers for many differ-

ent value-added bene�ts.

•	At a regional scale, the same infor-

mation used to plan oat-sowing can 

be used to quantify, schedule, and lo-

cate the demand for resources, thus 

improving supply chain ef�ciency. 

•	Towards the end of the growing sea-

son, cloud-based crop-yield mod-

eling services could forecast the 

supply, storage, and logistics require-

ments for the livestock feed market, 

potentially matching seasonal net 

producers with net consumers. 

•	Data that combines livestock loca-

tion with locally sensed climate con-

ditions, such as the heat load index, 

could be shared for public assurance 

of animal welfare.

•	Cattle movement trajectories can in-

dicate animal welfare for the farmer 

and public alike; spatial animal be-

havior is known to change with nu-

tritional stress and disease status.4

•	 Livestock location preferences could 

be combined with pasture biomass 

characteristics derived from satellite 

or proximal sensing and correlated 

with milk or meat quality assess-

ments further along the supply chain.

•	 Industry-scale analysis of this data 

could provide insights into nutritional 

optimization or de�ciencies that 

could be fed back into livestock and 

pasture management improvements.

•	 For stud cattle, authoritative breed-

ing quality indicators are commonly 

Web-available, and the emerging 

Web of Things opens the opportu-

nity of relating these indicators to 

commercial herds through auto-

mated phenotyping. 

•	The same opportunities as with cat-

tle would apply to sheep and their 

wool and meat products; individ-

ual wool testing is already under-

taken and could be combined with 

offspring carcase characteristics. 

Aggregating and analysing such in-

formation, correlated with on-farm 

management practices and breeding 

records could yield signi�cant in-

dustry bene�ts.

To meet demand due to worldwide 

population growth, global food pro-

duction will need to rise by more 

than 60 percent in the next 40 years.9 

Combined with pressures such as vol-

atile climate conditions and attention 

to sustainable land use, we need step-

change improvements around pro-

ductivity across the supply chain. A 

key factor in improving any system’s 

productivity is the ability to reduce 

costs in the exchange of information 

or services, as well as improve the 

quality of information that informs 

key management decisions. 

In Australia, the trends toward ag-

ing farmers, a decreasing rural work-

force, a need to attract and retain 

young farmers, a notable growth in 

farm size, and predicted growth in 

international commercial opportuni-

ties10 all suggest the need to invest in 

technologies that assist farmers with 

situation awareness when they’re not 

in the right place to see for them-

selves. Further, electronic agriculture 

has the potential to create virtual ser-

vice opportunities in agronomy, live-

stock health, and machinery support, 

where regionally based consultants 

provide synchronous identi�cation, 

analysis, and management advice. 

Broadband connectivity between ru-

ral communities and major cities (in 

Australia and internationally) will 

ensure that these farm service pro-

viders have access to the computing, 

Figure 4. Performance evaluation of event processing. Each line represents the 

time taken in milliseconds to execute a time-to-sow virtual sensor for one of the 

55 paddocks.
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data, and technology resources of 

their city counterparts, but with the 

advantages of attracting and retain-

ing skilled rural people in their rural 

lifestyle. Such services could �ll the 

void created by the recent disman-

tling of the state extension programs 

that traditionally provided research-

founded expertise to farmers.11

Farmers’ perceptions of electronic 

agriculture’s value to the farm and 

the quality of the products or services 

on offer are interdependent. Without 

farmers who value electronic agricul-

ture, we can’t create a viable market 

around it. Without a viable market, 

how can we develop a high-quality 

service and support culture? And, 

lacking that, how can we facilitate 

 uptake? In the “dependency circle” of 

electronic agriculture, market demand 

is inextricably linked to the quality of 

offered products or services, which 

in turn in�uences market demand as 

well as the level of outside investment 

in education and infrastructure, all of 

which feed into the cycle.12

We can learn from the wealth of 

literature on agricultural decision-

support systems (DSS). Zvi Hochman 

and Peter Carberry have found that 

DSS must be embedded in a support 

network of farmers, consultants, and 

researchers; that a critical mass of ap-

propriately skilled people is necessary; 

and that a DSS should aim to educate 

farmers’ intuition—rather than re-

place it with optimized recommenda-

tions—enabling them to experiment 

with options that satisfy their needs.13 

Our technology lets farmers specify 

and experiment with their own events 

(such as “time to sow”) and thus sat-

is�es the latter criterion, but the criti-

cal mass and support network criteria 

rely on the dependency circle.

Angele Giuliano and Johan Bengts-

son14 survey small to medium en-

terprises (SMEs) internationally to 

understand the drivers for adoption 

of Web of Things technologies. Both 

family farms and industry service 

providers fall within the scope of the 

SMEs that bene�t. As their survey ob-

serves, “there is untapped innovation 

potential for adding value to prod-

ucts through associated services.” The 

ability to respond reactively is identi-

�ed, as is the value of of�ine analysis 

of sensor data. Our smart farm is well 

positioned to exploit the innovation 

potential. In particular, linked data 

enables Web users to build bidirec-

tional connections among online data, 

and the data itself can be a critical 

enabler for infrastructure in business 

and government.15 With innovations 

come economic opportunities: 

“There is also signi�cant economic po-

tential ... which can be used by businesses 

as an input to improve the already exist-

ing and create additional value services.  

... Today, it seems that we are about to ap-

proach the triggering point of a virtuous 

cycle for better services and more involved 

consumers in the Web economy.”15

Agtrix, a software vendor in the 

sugar cane industry, is an exemplar 

within a closed data environment. 

On-farm crop management data is 

shared with agronomy advisors, logis-

tics providers, harvest contractors, the 

mills, and government for industry- 

wide optimization and compliance 

monitoring. Mills can use the infor-

mation to predict crop yield; in so do-

ing, they have improved �eet capacity 

by 30 percent while reducing inef�-

cient processing delays.

Barriers and Drivers

In assessing the business potential for 

the Web of Things in the agricultural 

sector, we must consider both drivers 

and barriers to adoption. These factors 

will determine the speed and success of 

new service models and productivity 

bene�ts. Some of the existing barriers to 

adoption are being addressed through 

wider technology and industry develop-

ments, including the following.

•	Level and quality of connectivity. 

Rural areas are increasingly con-

nected to a variety of telecommuni-

cations systems, including 3G and 

4G mobile services and �xed broad-

band data services provided through 

a combination of �bre, terrestrial 

wireless, and satellite coverage. In 

Australia, the national broadband 

infrastructure project will connect 

farm residences with an expected 

 capacity of 25 Mbps download and 

5 Mbps upload.

•	Cost of sensors and sensor networks. 

Sensor technology is becoming in-

creasingly commoditized, driven by 

the increasing demand for a wide 

range of industrial, research, and do-

mestic applications. This will drive 

down the cost of sensors.

•	Availability of cloud services. Led by 

the larger Internet companies, cloud 

technology has become available at 

a low cost for software developers to 

build services in an agile and rapid 

manner. For the farmer, having data 

captured, processed, and analyzed re-

motely through cloud services makes 

it viable to install and use Web of 

Things infrastructure and services.

•	 Public awareness and �t-for-purpose 

apps. With increasing use of smart 

phones and tablets, there’s strong 

public awareness and use of apps 

that have been designed to be �t-

for-purpose for speci�c functions. 

Australian farmers have a high 

level of mobile phone adoption (85 

percent).3

•	Data and sensor standards. The de-

velopment and widespread adoption 

of standards for data management 

and exchange have made it easier to 

develop reusable and extensible soft-

ware platforms for Web of Things 

services, as has been exploited in 
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the SPARQL query here. Our work 

relies on the widely used SSN on-

tology,7 and a livestock data inter-

change standard community group 

was established in the W3C in 2013.

•	Open data policies and practices. 

There has been a strong push for 

government agencies to make their 

data available for reuse through 

open licensing frameworks—espe-

cially agencies responsible for en-

vironmental and natural resources 

data relevant to agricultural deci-

sion support. However, several barri-

ers remain that impede the adoption 

of new Web of Things services for 

the agricultural sector. These fac-

tors require further research and 

development involving collabora-

tions among researchers, farmers, 

software and service businesses, and 

other businesses in the supply chain 

through to customers.

•	User acceptance. DSS must be de-

signed to support and extend farm-

ers’ capabilities rather than replace 

them, as well as to be adoptable by 

a support network of service pro-

viders and other business in the 

support network and supply-chain 

connected to agriculture. Our work 

directly addresses this need.

•	Maturity of software and services 

industry for agricultural applica-

tions. A recent survey of agriculture 

software suppliers in Australia high-

lighted the large number of small-

scale software companies, most of 

which lack the scale, scope, and ma-

turity of business operations to drive 

more rapid adoption.16 The develop-

ing business models of open data are 

well suited to this environment.

•	Clear and tangible cost-bene�ts. Al-

though there are several high-level 

estimates of the cost bene�ts of DSS 

for Australian agriculture, farmers 

will require more detailed under-

standing of costs and bene�ts spe-

ci�c to their sector. Most cost-bene�t 

analysis has focused on speci�c sec-

tors, such as cropping, rather than 

livestock farming, where our work 

contributes.

Although these barriers are chal-

lenging, there are also emerging driv-

ers for adoption of new Web of Things 

services for the agricultural sector:

•	 Integration into vertical supply 

chains. One of the success factors in 

driving adoption appears to be hav-

ing a key operator in the agriculture 

supply sector require their produc-

ers to use a speci�c software service 

to optimize their operations. An ex-

ample here is sugar cane mill op-

erators requiring growers to use a 

service like Agtrix to schedule har-

vesting and milling.

•	Agricultural product and advi-

sory companies move toward dig-

ital services. As exempli�ed in 

other industries, many of the larger 

manufacturers and suppliers of ag-

ricultural products are facing re-

duced margins and are directing 

their business strategies toward 

providing services enabled by digi-

tal technology. For example, com-

panies such as Syngenta are looking 

to increase their share of advisory 

services compared to the supply 

of fertilizer products,17 and John 

Deere hopes to provide advisory 

services for precision agriculture in 

addition to farm equipment.18

•	Biosecurity and food safety initia-

tives. The threat of disease outbreaks 

has led government and industry 

regulators to introduce widespread 

tagging and tracking systems for 

livestock. The implementation of 

Web of Things services can extend 

the value and timeliness of informa-

tion on such threats and outbreaks.

•	Consumer demand for food prov-

enance. Consumers are increasingly 

demanding more information about 

the conditions under which food is 

produced, and marketing companies 

are seeking to exploit this interest 

to create value-added brands. There 

are also signs of this trend extending 

to textiles and leather products.

•	Rural communities’ increased use of 

digital services. There’s interest and 

unmet demand from rural commu-

nities for better access to education, 

health, and other social services, as 

well as to entertainment and social 

media communication with friends 

and peers. Development of these ser-

vices feeds in positively to the depen-

dency circle for electronic agriculture.

T
he technology we presented here 

relies on Semantic Web standards 

to support both personalized real-time 

alerts for on-farm situation aware-

ness and for open data publishing. Al-

though several native SPARQL-like 

stream query solutions are known, us-

ing general-purpose stream processing 

middleware lets us readily offer other 

non-semantic services without induc-

ing a semantic processing overhead. 

We’re building in a range of statistically 

enriched sensor streams to provide 

knowledge—including livestock break-

out, time to irrigate, weather for gastro-

intestinal parasite, aberrant behaviour 

pattern, and do not fertilize—and all of 

these streams can be selected for local 

conditions. Our research on enriching 

alerts, once �red, with semantic linked 

data information contextualized to the 

alert situation is ongoing.

Our work is the �rst approach 

to use ontology representations of 

knowledge at runtime both to express 

descriptions of events over stream-

ing measurement data and to publish 

summaries as linked open data for 

longer-term analysis. In the �rst case, 

the data is interpreted in a very local 

temporal and spatial context, and the 

model for interaction aims to extend 

the farmer’s own knowledge; in the 

second case, the publication of open 



18  www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

W E B  O F  T H I N G S

data is intended to drive industry de-
velopment that might bene�t both 
the farm’s productivity and the farm-
ing community’s social fabric. Our 
linked data cube on the Web permits 
industry-scale tracking of “Things,” 
such as livestock, through the vari-
ability of experience in weather and 
feed as measured by sensors.

Australia’s national broadband roll-
out brings the major opportunity to re-
structure the industry around the Web 
of Things capability with the  potential 
to solve identi�ed industry challenges.  
The industry is ripe for the Web 
of  Things, but industry development 
throughout the dependency circle is 

 required. Next, we need to undertake 
the challenging task of quantifying 
industry-scale bene�ts. Our analysis 
might scale internationally, as other 
large agricultural nations look to invest 
in rural broadband  services. 
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