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The past few years have witnessed the great potential of exploiting channel state information retrieved from commodity WiFi
devices for respiration monitoring. However, existing approaches only work when the target is close to the WiFi transceivers
and the performance degrades signi�cantly when the target is far away. On the other hand, most home environments only
have one WiFi access point and it may not be located in the same room as the target. This sensing range constraint greatly
limits the application of the proposed approaches in real life.

This paper presents FarSense–the �rst real-time system that can reliably monitor human respiration when the target
is far away from the WiFi transceiver pair. FarSense works well even when one of the transceivers is located in another
room, moving a big step towards real-life deployment. We propose two novel schemes to achieve this goal: (1) Instead of
applying the raw CSI readings of individual antenna for sensing, we employ the ratio of CSI readings from two antennas,
whose noise is mostly canceled out by the division operation to signi�cantly increase the sensing range; (2) The division
operation further enables us to utilize the phase information which is not usable with one single antenna for sensing. The
orthogonal amplitude and phase are elaborately combined to address the "blind spots" issue and further increase the sensing
range. Extensive experiments show that FarSense is able to accurately monitor human respiration even when the target is 8
meters away from the transceiver pair, increasing the sensing range by more than 100%.1 We believe this is the �rst system
to enable through-wall respiration sensing with commodity WiFi devices and the proposed method could also bene�t other
sensing applications.

CCS Concepts: • Human-centered computing→ Ubiquitous and mobile computing systems and tools;
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1Di�erent from radar with transmitter and receiver at the same location, the WiFi transmitter and receiver are separated physically. Here, the
distance between a target and a transceiver pair is de�ned as the average distance from the target to the transmitter and the receiver.
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Fig. 1. In an indoor environment, WiFi signals propagate through multiple paths before

arriving at the receiver, thus carrying information about the environment.
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1 INTRODUCTION

Wireless technologies have achieved a great success in data communication in the last two decades. Wi-Fi and
cellular networks enable us to be seamlessly connected to the Internet, changing our lives in every aspect. In
the indoor environment, Wi-Fi is the preferred choice due to its high rate and low cost. According to [32], there
are approximately �ve billion devices communicating over WiFi networks worldwide in 2016 and this number
is expected to increase to thirty billion by 2020. In the last few years, Wi-Fi signals are creatively exploited for
contactless human activity sensing. As shown in Fig. 1, in an indoor environment, WiFi signals propagate through
direct path and also re�ection paths, bouncing o� the objects in the environment before arriving at the receiver.
With careful signal processing on the re�ected signal, we can actually obtain a lot of useful information about
the objects such as the direction of the signal which can be utilized for localization. When the object is a human
target, we can employ the signal variations to infer the target’s gestures and activities, enabling human sensing
without a device attached to the human body.

In the last few years, we have seen a lot of emerging WiFi-based human sensing applications, ranging from
coarse-grained activity recognition [3, 23, 34, 37, 44, 48–50, 60, 64], indoor localization/tracking [9, 26, 40, 55],
intrusion/motion detection [24, 27, 53, 59] to �ne-gained respiration monitoring [11, 29–31, 36, 47, 51, 52, 54,
62, 63, 65]. As one of the most important applications, respiration monitoring attracts lots of attention since
respiration is an important health metric used for tracking diseases in many areas, such as sleep, pulmonology and
cardiology. The features extracted from human respiration also provide useful insights about the psychological
state of an individual [18, 21]. Among these features, respiration rate is particularly important [8] and needs to be
carefully observed. For example, an abnormal respiration rate, either too high (tachypnea), too low (bradypnea),
or absent (apnea), is a sensitive indicator of physiological distress that requires immediate clinical intervention
[47].
Traditional approaches employ wearables or cameras for respiration monitoring. However, the elderly are

usually reluctant to wear wearables and the camera-based approaches raise severe privacy concerns. The latest
research in this area explore the possibility of applying pervasive WiFi signals for respiration monitoring without
attaching a device on the target. Multiple e�orts have been made for accurate respiration monitoring leveraging
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either CSI amplitude of a single antenna or phase di�erence between two antennas available at commodity WiFi
hardware [29, 30, 47, 51–53, 66]. However, the problem with the existing work is that the sensing range is still
very limited, and the sensing devices are required to be placed close to the target. While the communication
range of WiFi can be tens of meters, the sensing range is limited to 2-4 meters. The main reason is that wireless
sensing relies on weak re�ected signal and the subtle respiration-induced signal variation can be easily buried in
noise. Furthermore, the existing works face the âĂĲblind-spotâĂİ issue that respiration cannot be e�ectively
detected at certain locations even when the target is close to the sensing devices. The short sensing range and
âĂĲblind-spotâĂİ constraints greatly limit the real-life application of the existing approaches.

In this paper, for the �rst time, we present novel solutions to push the respiration sensing range from the current
2-4 meters to house level (8-9 meters) with commodity WiFi devices, bridging the gap between lab prototype
and real-life deployment. The key idea is that we employ the widely available two antennas at commodity WiFi
AP for performance boosting. With just two antennas, we construct a new metric – the ratio of CSI readings
of two antennas. With this division operation between two antennas, most of the noise in the original CSI
amplitude and the time-varying phase o�set are canceled out. The CSI ratio of two antennas obtained is much
more noise-free and sensitive compared to the original CSI reading from a single antenna when sensing subtle
movements. Another big advantage of this "CSI ratio" is that phase information can now be utilized together
with the amplitude for sensing. Note that previously people usually only employ the CSI amplitude for sensing
because the CSI phase is not stable due to the lack of tight time synchronization between transmitter and receiver.
The phase of the ratio is stable as the time-varying random o�sets are the same at both antennas and are thus
canceled by the division operation. We further combine the phase and amplitude of the CSI ratio which are
complementary to each other in terms of sensing capability to remove the "blind spots" reported in [47]. With
the two proposed techniques, we signi�cantly extend the sensing range to 8 meters with commodity WiFi device
while still keep the 100% detection rate, outperforming the state-of-the-art WiFi-based approaches. WhatâĂŹs
more, in this work, we propose the CSI-ratio model that establishes the relationship between the target movement
and CSI ratio changes which lays the foundation to guide wireless sensing with CSI ratio. We believe this general
CSI-ratio model will bene�t not just respiration sensing but a lot of other CSI-based sensing applications as
well. We also believe this general signal ratio method can be applied to other wireless technologies such as RFID
(Radio Frequency IDenti�cation), LTE (Long Term Evolution) [38] and LoRa (Long Range) [28] to increase the
sensing range and performance. To validate the e�ectiveness and robustness of the proposed system FarSense,
we conduct comprehensive experiments with di�erent subjects in di�erent environments by varying the settings
below:

• the subject is located at di�erent distances to the transceivers;
• the challenging scenario when the WiFi transmitter is placed in a di�erent room from the receiver with a
wall in between, and the subject is located either in the transmitter side or in the receiver side;

• another challenging scenario when both transceivers are mounted on the ceiling, far away from the subject.

The demo video of FarSense that works in all three scenarios above is also submitted as an accompanying material
to show the e�ectiveness and robustness of the proposed techniques in real-world settings.

The main contributions of the work can be summarized as follows:

(1) We propose to employ CSI ratio rather than raw CSI for sensing. We develop the CSI-ratio model that
establishes the relationship between human’s movement and CSI ratio changes which lays the foundation
to guide �ne-grained sensing. We believe the general CSI-ratio model will bene�t not just respiration
sensing but a lot of other sensing applications.

(2) We apply the CSI-ratio model for respiration sensing and elaborately combine the amplitude and phase of
CSI ratio to address the "blind spots" issue and further increase the sensing range.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 121. Publication date: September 2019.



121:4 • Zeng et al.

(3) We design and implement FarSense on commodity WiFi devices. The sensing range is increased from the
current state-of-the-art 2-4 meters to 8-9 meters. For the �rst time, FarSense is able to enable through-wall
respiration sensing with commodity WiFi hardware, moving one step further towards real-life deployment.

The rest of this paper is organized as follows. Sec. 2 surveys the related work. Sec. 3 employs benchmark
experiments to demonstrate the ratio of CSI between two antennas has higher sensitivity than CSI of one antenna
for �ne-grained sensing. Sec. 4 presents the CSI-ratio model and its veri�cation. Sec. 5 shows how to e�ectively
extract respiration pattern from the CSI ratio. Sec. 6 presents the detailed design and implementation of the
prototype system FarSense. Sec. 7 presents the experimental setup and evaluation results. Sec. 8 discusses the
limitations and opportunities followed by a conclusion in Sec. 9.

2 RELATED WORK

In this section, we discuss the most related work in respiration sensing with RF signals which can be broadly
grouped into two following categories.

Radar-based respiration sensing. These approaches can be mainly divided into three categories according
to the technologies they are using.

(1) Continuous-wave (CW) Doppler radar. CW Doppler radar technique is based on detecting the re�ected
frequency echoes to the chest wall motion during respiration [6, 7]. It has the advantages of low power
consumption and simple radio architecture. However, it su�ers from the clutter noise and multipath
re�ection so that vital sign signals may not be di�erentiable from other received frequency echoes.

(2) Ultra-wideband (UWB) pulse radar. The basic operation of UWB pulse radar is to send a train of pulses
towards the target and then the received signal can be visualized in the frequency domain [12, 20]. To
get an accurate estimation of vital signs, the delay pro�le in time domain is extracted using IFFT. With a
bandwidth of 1-2GHz, the UWB pulse radar can eliminate interference caused by re�ection from other
objects and multipath re�ection [22]. However, such a wide bandwidth requires precise control on the
pulse width and the radar peak signal intensity [19], thus increasing the hardware requirements and system
complexity.

(3) Frequency-modulated continuous-wave (FMCW) radar. FMCW radar radiates continuous transmission
power like a CW radar but linearly increases operating frequency of the transmitted signal during the
measurement within a wide bandwidth (for example, 1.79 GHz in [2]). By comparing the frequency of the
received signal bounced o� human body to the transmission signal, FMCW radar can directly measure the
distance of the re�ection body from the device. Vital-Radio [2] separates signals from di�erent users based
on their re�ection time and analyze the signals from each user to measure his/her respiration rate and
heart rate using FFT. EQ-Radio [67] proposes a new algorithm to extract individual heartbeats from the
wireless signal and recognizes a person’s emotional state based on his/her respiration signal and heartbeat
segmentation. All these works are based on FMCW signal, not WiFi (CSI). FMCW hardware employs a
much wider bandwidth (1.79 GHz in [2]) which is not available with cheap commodity WiFi hardware (the
bandwidth of WiFi is 20/40MHz). Further, the costs of FMCW hardware are usually much higher which
make these solutions less practical for everyday home usage. In this work, we would like to employ the
commodity WiFi hardware already pervasively deployed in our home environment for respiration sensing.

WiFi-based respiration sensing. These WiFi-based approaches can be divided into two categories based on
which part of the information from the complex-valued CSI they are using.

(1) Respiration sensing with amplitude information. Most existing approaches employ CSI amplitude infor-
mation for respiration sensing. CSI amplitude is also widely used in other WiFi-based human sensing
applications, even though it contains relatively large noise caused by power ampli�er uncertainty (PAU)
and environmental noise [50, 60, 69]. CSI amplitude has explicit mathematical and physical relationship
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with the target’s movements, as demonstrated in [50]. Wi-Sleep [30] is the �rst sleep monitoring system
that extracts rhythmical patterns caused by respiration from WiFi signals. The performance is further
improved in [31] by considering the sleep postures and abnormal respiration patterns. Liu et al. [29] have
shown to track human heart rate by analyzing power spectral density (PSD) of CSI amplitude during sleep.
Wu et al. [53] have demonstrated that respiration information can be obtained no matter the target is lying
or standing. These works leverage the amplitude information of CSI and the "blind spots" issue still exists.
A recent work [47] introduces the Fresnel zone theory to explain why the blind spots occur.

(2) Respiration sensing with phase information. The phase information of the CSI readings retrieved from
commodity WiFi devices is especially noisy due to the presence of sampling frequency o�set (SFO), carrier
frequency o�set (CFO) and packet detection delay (PDD) [17, 46, 56, 60], which make it not directly usable
for sensing. Multiple approaches [17, 60, 68] have been proposed to calibrate out the CSI phase o�set,
including SFO and CFO calibration. However, as shown in [62], these proposed approaches still fail to
monitor �ne-grained millimeter-level chest motion caused by respiration.
Thus, researchers employ the phase di�erence between two antennas instead to cancel out the time-varying
phase o�set since they are the same across two antennas on a same WiFi card [17, 26, 41]. In [51, 52],
researchers demonstrated that phase di�erence can be utilized for respiration monitoring. However, the
phase di�erence between two antennas can be constructive or destructive depending on their in-phase
or out-phase relationship. When they are in phase, "blind spots" occur and the sensing performance is
poor. The latest work [62] demonstrated the complementary property between phase and amplitude for
sensing and employ both amplitude and phase to remove the amount of "blind spots". However, it still fails
to address the fundamental "small range" issue for WiFi-based respiration sensing.

Di�erently, we propose to employ the ratio of CSI readings from two antennas as a new signal for the �rst
time for respiration sensing. With this simple division operation between two antennas, most of the noise in
the original CSI amplitude and the time-varying phase o�set are canceled out. With the random phase o�set
removed, we are now able to retrieve stable phase information for sensing. We further combine the phase and
amplitude of the CSI ratio which are complementary to each other in terms of sensing capability to remove the
"blind spots". These two novel schemes enable FarSense to achieve robust sensing performance and a much larger
sensing range, moving one big step towards practical application of WiFi-based respiration sensing in real life.

3 EMPIRICAL STUDY

In this section, we conduct the proof-of-concept experiments using commodity WiFi devices to see if the ratio of
CSI between two antennas has higher sensitivity than the CSI of one antenna. Note that the amplitude of the CSI
ratio equals to the ratio of two CSI amplitudes at the two antennas while the phase of the CSI ratio equals to the
CSI phase di�erence between the two antennas. Since the CSI phase of one antenna is not directly usable for
sensing, here, we focus on comparing the amplitude information, i.e., the CSI amplitude of one antenna which
was widely used for sensing with the ratio of CSI amplitude between two antennas proposed by us.

Experimental Settings. As shown in Fig. 2, we move a square metal plate with a side length of 15 cm along
the perpendicular bisector of the transceivers with a LoS length of 5.5 m in an empty room. The transceivers and
the metal plate are placed at the same height (1.2m). Since the �at metal plate can serve as a perfect re�ector for
radio waves, there is only one dominating re�ection path from the plate. For the experiment, we move the metal
plate along the perpendicular bisector of the transceiver pair in the range of 5m to 7m. We record the ground
truth of the start position Ds and end position De . Following simple geometry, the ground truth of the re�ection

path length change is 2
√
( LoS

2
)2 + D2

e − 2

√
( LoS

2
)2 + D2

s . We also vary the LoS path length to see the e�ect.

Experimental Results. Fig. 3 shows the raw amplitude waveforms of two antennas respectively as well as the
ratio of CSI amplitdue when the metal plate moves from Ds = 5.83m to De = 5.99m which incurs a re�ection path
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Fig. 2. Experimental se�ings: the metal plate

moves from the start position to the end position.

(a) (b) (c)

Fig. 3. Comparison of three amplitude waveforms when a metal plate moves further away. Obviously, the ratio of amplitude

outperforms the other two raw amplitude waveforms for its clear fluctuation caused by the movements of metal plate.

length change of 2
√
( 5.5

2
)2 + 5.992 − 2

√
( 5.5

2
)2 + 5.832 = 0.29m. According to the Fresnel zone model proposed in

[47, 55], at the carrier frequency of 5.24GHz (λ = 5.7 cm), we ought to observe 0.29

0.057
= 5 peaks/valleys in the CSI

amplitude waveform. Fig. 3 (a) and (b) show the CSI amplitudes retrieved from two antennas at the same receiver.
As shown in Fig. 3 (a), the plate movement-induced signal variation pattern is buried in the noise, and we can
hardly see it. The signal variation pattern is slightly clearer in Fig. 3 (b) but it is still di�cult to be visualized.
Fig. 3 (c) shows the ratio of amplitude between two antennas, and we can observe much clearer peaks/valleys.
This is because the division operation cancels out most of the noise in the raw amplitude readings (e.g., high
amplitude impulse and burst noise). Thus, the signal variation pattern with amplitude ratio is much clearer than
that with raw amplitude readings. When we vary the LoS path length, we have the same observation that the
amplitude ratio shows much clearer movement-induced signal variation patterns especially when the target is
far away from the transceivers.
The ratio of two CSI readings is still a complex number with amplitude and phase. Mathematically, the

amplitude is the ratio of the raw CSI amplitudes while the phase is the phase di�erence of the raw CSI phases. We
have just shown that the ratio of the amplitudes exhibits better sensing performance compared to raw amplitudes,
we further explore the other properties of CSI ratio for human sensing.
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Fig. 5. The scaling (H (f , t) 7→ αH (f , t),α ∈ R), rotation (H (f , t) 7→ eiθH (f , t),θ ∈ R)

and translation (H (f , t) 7→ H (f , t) + β , β ∈ C) operations do not change the geometric

shape and rotation orientation (clockwise or counterclockwise) of the circle (represented

as H (f , t)).

4 THE CSI-RATIO MODEL

In this section, we �rst introduce the basic concept of CSI and present the relationship between human’s movement
and the change of CSI readings. Next, we present the CSI-ratio model which establishes the corresponding
relationship between human’s movement and CSI ratio. At last, we summarize three key properties of CSI ratio
which can be utilized for human sensing and verify them via benchmark experiments.

4.1 CSI Primer

In an indoor environment, radio frequency (RF) signals propagate from transmitter to receiver through multiple
paths, i.e., one direct path and multiple re�ection paths from objects (such as walls, furniture and the human
target). The channel state information (CSI), which characterizes the multipath propagation, is a superposition of
signals from all the paths. Mathematically, the CSI can be represented as:

H (f , t) =

L∑

i=1

Aie
−j2π

di (t )

λ (1)

where L is the number of paths, Ai is the complex attenuation and di (t) is the propagation length of the ith path.
According to prior work [50], the paths can be grouped into static path and dynamic path. Without loss of

generality, we assume there is only one re�ection path. When there is only one re�ection path corresponding
to the human target’s movement, the dynamic component is the path re�ected from the human target while
the static component is composed of the LoS propagation and other re�ection paths from static objects in the
environment. Thus, the CSI can be rewritten as:

H (f , t) = Hs (f , t) + Hd (f , t) = Hs (f , t) +A(f , t)e
−j2π

d (t )
λ (2)

where Hs (f , t) is the static component, A(f , t), e−j2π
d (t )
λ and d(t) are the complex attenuation, phase shift and

path length of dynamic component Hd (f , t), respectively.
When the human target moves a short distance, the signal amplitude of the dynamic component A(f , t) can be

considered as a constant. This is because the signal amplitude is determined by the path length. Changes of a
few centimeters in path length have very little e�ect when the path length d(t) is in the scale of meters. When
d(t) is increased by one wavelength, the CSI (H (f , t) in Eq. 2) rotates 2π clockwise, as shown in Fig. 4. It is easy
to see that with operations such as scaling (H (f , t) 7→ αH (f , t),α ∈ R), rotation (H (f , t) 7→ eiθH (f , t),θ ∈ R)
and translation (H (f , t) 7→ H (f , t) + β , β ∈ C) in complex plane, the CSI trajectory is still a clockwise circle, as
shown in Fig. 5. This observation is quite important and helps to investigate the properties of CSI ratio in Sec. 4.2.
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Note that for some sensing applications (e.g., respiration sensing and �nger tracking), the caused path length
change is smaller than one wavelength. In this case, d(t) is increased by less than one wavelength and the CSI
rotates less than 2π clockwise, thus its locus is just part of the full circle (a circular arc).

Unfortunately, for commodity WiFi devices, as the transmitter and receiver are not time-synchronized, there is
a time-varying random phase o�set e−jθof f set in each CSI sample as follows:

H (f , t) = e−jθof f set (Hs (f , t) +A(f , t)e
−j2π

d (t )
λ ) (3)

With this random phase o�set, the movement-induced CSI change in complex plane is no longer a circle. This
random phase o�set thus prevents us from directly using the CSI phase information for �ne-grained sensing.

4.2 Understanding CSI Ratio

Before derivating the formula of CSI ratio, we �rst present two key observations as follows:

(1) For commodity WiFi card such as the widely used Intel 5300, the time-varying phase o�set is the same
across di�erent antennas on a Wi-Fi card as they share the same RF oscillator [17, 25].

(2) When the target moves a short distance (a few centimeters), the di�erence of the two re�ection path lengths
at two close-by antennas d2(t) − d1(t) can be considered as a constant ∆d [62].

Based on these two observations, we obtain the CSI ratio by taking the ratio of CSI in Eq. 3 between two
antennas as follows:

H1(f , t)

H2(f , t)
=

e−jθof f set (Hs,1 +A1e
−j2π

d1(t )

λ )

e−jθof f set (Hs,2 +A2e
−j2π

d2(t )

λ )

=

A1e
−j2π

d1(t )

λ + Hs,1

A2e
−j2π

d1(t )+∆d

λ + Hs,2

=

A1e
−j2π

d1(t )

λ + Hs,1

A2e
−j2π ∆d

λ e−j2π
d1(t )

λ + Hs,2

(4)

whereH1(f , t) is the CSI of the �rst antenna andH2(f , t) is the CSI of the second antenna. To simplify the equation

for easier illustration, we employ A,B,C,D andZ to represent the terms: A1 = A, Hs,1 = B, A2e
−j2π ∆d

λ = C

andHs,2 = D; e−j2π
d1(t )

λ = Z represents a unit circle rotates clockwise when d1(t) increases. We can then simplify
Eq. 4 as:

H1(f , t)

H2(f , t)
=

AZ + B

CZ +D
(5)

which is exactly in the form of Mobius transformation [43], provided BC − AD , 0. We further decompose it
into the following form:

H1(f , t)

H2(f , t)
=

BC − AD

C2
·

1

Z + D
C

+

A

C
(6)
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Fig. 6. Illustration of complex inversion: (a) the point z is mapped to a new point 1

z that has the reciprocal length and

the negative angle; (b) the clockwise circle Z that does not contain the origin is mapped to a new circle Z̃ that has the

same orientation; (c) the clockwise circleZ that contains the origin is mapped to a new circle that has the opposite

orientation. Here, 1/z and I (Z) represent the inversion of the point z and the circleZ, respectively.

Consequently, the mapping in Eq. 6 is composed of the following transformations [35]:

(i) Z 7→ Z +
D

C
, which is a translation by

D

C
;

(ii) Z 7→
1

Z
, which is a complex inversion;

(iii) Z 7→
BC − AD

C2
Z, which is a multiplication by the complex number

BC − AD

C2
;2

(iv) Z 7→ Z +
A

C
, which is another translation by

A

C
.




(7)

As shown in Sec. 4.1, the scaling and rotation operation in step (iii) and translation operations in step (i) and (iv)
do not change the geometric shape and rotation orientation (clockwise or counterclockwise) of the circle. Thus,
for the remaining step (iii) in Eq. 7, its complex inversion operation (Z 7→ 1

Z
) holds the key to understanding

the e�ect of CSI ratio (Mobius transformation) and we introduce it below.
Mathematically, the complex inversion of a point z = reiθ is 1

r
e−iθ : the new length is the reciprocal of the

original, and the new phase is the opposite of the original. Fig. 6 (a) shows how a point z outside the unit circle is
mapped to a point 1

z
inside it: (1) move z = reiθ to the point that is at the same direction as z but has a reciprocal

2Mathematically, a multiplication by a complex number Ae iθ corresponds to a scaling (amplitude A) and a rotation (phase θ ).
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length, namely the point 1

r
eiθ ; (2) apply a complex conjugate operation (i.e., symmetrical with respect to the real

axis) to arrive at the point 1

r
e−iθ .

Next, we investigate the e�ect of complex inversion (denoted as Z̃) on a clockwise circleZ, as shown in Fig. 6
(b) and (c). The complex inversion does not change the shape ofZ [35]. However, it may change the rotation

orientation of Z. Whether Z̃ has the same orientation as Z depends on whether the origin (0, 0) is inside Z or

not. As shown in Fig. 6 (b), if (0, 0) is not inside Z, then Z̃ has the same rotation orientation as Z. As shown in

Fig. 6 (c), if (0, 0) is inside Z, then Z̃ has the opposite rotation orientation. Recall that the complex inversion is
applied to Z + D

C
in Eq. 6 where Z represents a unit circle and D

C
is the translation to the origin (0, 0). Thus,

given | D
C
| = |

Hs,2

A2
| > 1 (the radius of a unit circle),Z + D

C
will not contain the origin. So we can conclude that

1

Z+D
C

does have the same orientation asZ + D
C
. As shown above, the scaling, rotation and translation in Eq. 6

does not change the rotation orientation, thus the CSI ratio AZ+B
CZ+D

has the same rotation orientation as 1

Z+D
C

(andZ + D
C
). This is also the case for human sensing most of the time: the magnitude of the static component

|Hs,2 | is larger than that of the dynamic component |A2 | [26]. This may not hold true when the LoS path signal is
attenuated by objects, in which case the CSI ratio AZ+B

CZ+D
has the opposite rotation orientation as Z + D

C
.

Based on the analysis above, it is easy to obtain the following three properties of CSI ratio for human sensing:

P1 The CSI ratio changes following a circle in complex plane when the re�ection path length changes several
wavelengths.

P2 If the re�ection path length increases: when the magnitude of static component is larger than that of
dynamic component, CSI ratio rotates clockwise; otherwise, it rotates counterclockwise.

P3 If the re�ection path length changes exactly one wavelength, the CSI ratio forms a full circle whose radian
is exactly 2π in complex plane. If the re�ection path length changes less than one wavelength, the CSI ratio
forms a circular arc whose radian roughly matches the re�ection path length change.

These three properties in CSI-ratio model relate the re�ection path length change to the change of CSI ratio.

4.3 Model Verification with Benchmark Experiments

In this subsection, we verify the three properties above via benchmark experiments. As shown in Fig. 7 (a), the
veri�cation experiments are conducted in a large room with less multipath so that the three properties can be
more clearly visualized. We setup one pair of GIGABYTES mini-PCs equipped with Intel 5300 NICs as transceivers,
and the LoS distance is set as 4 meters. The transmitter (Tx) is equipped with one antenna while the receiver
(Rx) is equipped with two antennas. All the antennas are commonly-seen vertically-polarized omni-directional
antennas. The central frequency is set as 5.24GHz, corresponding to the wavelength of 5.725 cm. We adopt a
metal plate as the re�ector to re�ect o� WiFi signals. To precisely control the displacement of the metal plate, we
mount it on a high-precision linear motion slider with an accuracy of 0.01mm. We put a desk at the perpendicular
bisector of the LoS path and place the slider on the desk, as shown in Fig. 7. When the metal plate moves along
the slider, the re�ection path length changes accordingly. Note that, in this real-life setting, the magnitude of
static component is much larger than that of dynamic component.

Veri�cation of P1. We control the metal plate to move 0.1m away from the LoS path with the start position
of 2.55m perpendicular to the LoS. As shown in Fig. 8 (a), the dots are the samples of CSI ratio and the line is
smoothed CSI ratio after Savitzky-Golay �lter which can e�ectively preserve the envelope of the raw waveform
[4]. We can observe that the CSI ratio changes following a circle in complex plane, which meets our expectation.
We obtain the same results when the plate moves at di�erent start positions.

Veri�cation of P2.When the LoS path is not obscured, the magnitude of static component is larger than that
of dynamic component, in which case the CSI ratio rotates clockwise, as shown in Fig. 8 (a). Next, we place a
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Fig. 7. Experimental se�ings for model verification.
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Fig. 8. The CSI ratio in complex plane when the metal plate moves

0.1m away from the LoS path: (a) normal case; (b) the LoS path is

obscured by a large metal plate between the transceivers.
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Fig. 9. Conceptual illustration of experimental set-

tings for verification of P3.

(a) (b)

Fig. 10. The CSI ratio in complex plane when the metal plate moves

away from the LoS path: (a) from L1 to L3; (b) from L1 to L2.

large square metal plate (1m × 1m) vertically between the transceivers to greatly attenuate the LoS path signal
so that the magnitude of the dynamic component is larger than that of the static component. Then we repeat
the experiment as the same as veri�cation of P1. In this case, when the metal plate moves 0.1m away from the
LoS path, the CSI ratio rotates counterclockwise, as shown in Fig. 8 (b). We also conduct the experiments when
the metal plate moves towards the LoS path and observe that if the re�ection path length decreases: when the
magnitude of static component is larger than that of dynamic component, CSI ratio rotates counterclockwise;
otherwise, it rotates clockwise. We skip these �gures for conciseness.

Veri�cation of P3. As shown in Fig. 9, we conduct experiments in two di�erent regions, one near to the LoS
(255 cm) and the other relatively far away (575 cm). In each region, we control the start and end positions of
the metal plate’s motion to make sure the re�ection path length changes one wavelength or one-sixth of the
wavelength. In detail, when the metal plate moves from L1 (255 cm) to L3 (258.6 cm) and from L4 (575 cm) to
L6 (578.0 cm), the re�ection path length changes exactly one wavelength. When the metal plate moves from
L1 (255 cm) to L2 (255.6 cm) and from L4 (575 cm) to L5 (575.5 cm), the re�ection path length changes exactly
one-sixth of the wavelength. Note that the experiments described above are conducted without obscuration of
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Fig. 11. When a subject breathes, the dynamic path length increases or decreases, then CSI ratio rotates along

a circular arc (labeled in blue) clockwise or counterclockwise corresponding to the inhalation and exhalation.

the LoS path, which means the magnitude of static component is larger than that of dynamic component. Fig. 10
(a) shows the CSI ratio when the metal plate moves from L1 to L3, and we can observe a clear full circle. That
is to say, when the metal plate moves from L1 to L3, the re�ection path length is changed by one wavelength,
and thus the CSI ratio rotates clockwise by exactly 2π along a circle. In Fig. 10 (b), we observe the CSI ratio
rotates clockwise by roughly π

3
along a circle when the metal plate moves from L1 to L2. That is to say, when the

re�ection path length changes less than one wavelength, the CSI ratio forms a circular arc whose radian roughly
matches the re�ection path length change. We obtain similar results when the plate is 5.75 meters away, and we
omit the �gures for the sake of brevity.

To sum up, the benchmark results above validate the three properties of CSI ratio. These three properties relate
the re�ection path length change to the change of CSI ratio and guide us how to sense human activities exploiting
CSI ratio. We want to point out that the proposed CSI-ratio model in this session is a very general method which
can be applied to many existing WiFi-based sensing applications such as indoor tracking and motion detection. It
also lays a solid foundation for sensing �ner-grained subtle movement, such as tiny �nger tracking. It can also be
applied to other wireless technologies such as RFID, LTE and LoRa. In this paper, we focus on applying CSI ratio
to signi�cantly increase the sensing range of WiFi-based respiration, and we present the details in next section.

5 EXTRACTING RESPIRATION PATTERN FROM CSI RATIO

In this section, we aim to extract the subtle signal variation caused by respiration from CSI ratio even when
the target is far away. We �rst introduce how to apply the CSI-ratio model presented in previous section for
human respiration sensing. Next, we present our approach that extracts respiration pattern more accurately by
combining the amplitude and phase of the CSI ratio to achieve an even further sensing range and higher accuracy.

5.1 Applying CSI-ratio Model for Respiration Sensing

For respiration sensing, it is safe to assume that there is one dominating re�ection path from the human chest,
as previously veri�ed in [47, 62]. Therefore, the formula of CSI ratio obtained in Eq. 4 can be directly applied
for respiration sensing where d(t) is the path length of signal bouncing o� the human chest. Since the chest
displacement caused by respiration is between 5mm to 12mm [33], the re�ection path length changes less
than one wavelength (5.7 cm for 5.24GHz), then the locus of CSI ratio during respiration is just a circular arc
(part of a full circle). As shown in Fig. 11, when a subject inhales and exhales during respiration, the dynamic
re�ection path length increases and decreases accordingly. The CSI ratio rotates along the circular arc clockwise
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Fig. 13. Example of projecting a time series of two-dimensional CSI ratio

during respiration in complex plane: (a) CSI ratio and three projection axes

(θ = 0,π/4,π/2); (b) projection results on three corresponding axes in (a).

or counterclockwise corresponding to inhalation and exhalation, respectively. By analyzing the time interval
between clockwise and counterclockwise rotation, we can obtain the respiration rate.
As shown in Sec. 4.2, when re�ection path length increases, whether CSI ratio rotates clockwise or counter-

clockwise is determined by the relationship between the static and dynamic components. However, the rotation
orientation does not change the time interval between exhalation and inhalation during respiration and thus has
no e�ect on the respiration rate estimation.

5.2 Combining Amplitude and Phase of CSI Ratio

With the CSI reading at one antenna, the phase can not be utilized for sensing because of the time-varying
random phase o�set. With CSI ratio, the phase di�erence between two antennas is stable (the random phase
o�set gets canceled out). Thus, we can combine the phase and amplitude of the CSI ratio to eliminate the "blind
spots" issue reported in [47] and further extend the sensing range.

Note that a complex number can be represented in the form of a +bi as well asAeiθ where a,b are the real part
(I) and imaginary part (Q), andA,θ are the amplitude and phase, respectively. The orthogonal I and Q components
of CSI ratio keep perfect complementarity for respiration sensing which means at a location I component is bad
for sensing, Q component is good and vice versa.

Thus, we combine the I, Q components for sensing which is equivalent to combining amplitude and phase. As
shown below, the combination scheme consists of two steps: (1) generating multiple combination candidates by
assigning di�erent weights to the I/Q components for combination; (2) selecting one from the candidates as the
�nal extracted respiration pattern.

5.2.1 Generating Combination Candidates. Traditional approach [7] simply selects a better one from I and Q, thus
has only two candidates–I and Q. We linearly combine I/Q components by projecting the complex-valued CSI
ratio on an axis in the complex plane. Fig. 12 shows how a point z = a + bi is projected on an axis

[
cosθ sinθ

]

to get a new point z ′, where θ is the angle of projection axis. Following simple geometry, we can obtain:

oz ′ =
[
cosθ sinθ

] [
a b

]T

= a cosθ + b sinθ
(8)

which is exactly the linear combination of the I-Q components of the point z. In this combination, the weights
assigned are cosθ for I component and sinθ for Q component. Similarly, for a time series of CSI ratio data x, its
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projection y on axis
[
cosθ sinθ

]
can be denoted as:

y =
[
cosθ sinθ

] [
ℜ(x) ℑ(x)

]T
(9)

where ℜ(x) is the real part (I component) of x and ℑ(x) is the imaginary part (Q component) of x. By varying θ
from 0 to 2π at a �xed step size, we can generate di�erent combination candidates.
Fig. 13 presents the example of projecting a time series of two-dimensional CSI ratio (during respiration) on

three axes in complex plane. As shown in Fig. 13 (a), the locus of CSI ratio during respiration process is a circular
arc, and three di�erent projection axes are chosen, namely axis 1 (θ = 0), axis 2 (θ = π/4) and axis 3 (θ = π/2).
Projection axis 1 is tangential to the circular arc while projection axis 3 is perpendicular to it, and projection axis 2
is between 1 and 3. Fig. 13 (b) presents the projection results on these three axes. We can observe that, di�erent
projections have di�erent capabilities in terms of sensing respiration: while projection 3 has very little �uctuation,
projection 1 and 2 have clear periodical �uctuation patterns corresponding to inhalation and exhalation.

We can see that compared to traditional approach [7] which simply selects a better one from I and Q (weight is
either 0 or 1), we tune the weight for combination in a �ne-grained manner by changing the projection parameter
θ from 0 to 2π at a chosen step size π

n
. Our approach will generate 2n combination candidates, which is much

larger than that of the traditional approach. The selection between I and Q can be viewed as a combination of I/Q
with θ = 0 or θ = π

2
. Thus the traditional approach is actually a small subset of our approach. The much larger

number of combination candidates make our approach outperform the previous work.

5.2.2 Selection from Multiple Candidates. After generating multiple combination candidates, we need to select
the best one from these candidates to generate the respiration pattern. Our insight comes from that the target’s
respiration rate can be assumed a constant during a short period of time [61, 62]. Therefore, the periodicity of
the signal pattern during a short period can represent its capacity to sense respiration, which can be used to
select the best one from the candidates.

Here, we adopt the short term breathing-to-noise ratio (BNR) proposed in [61] to measure the periodicity of a
combination candidate, which is de�ned as the ratio of respiration energy to the overall energy. We compute
BNR by �rst taking FFT of the combination candidate. In our computation, the window length of projection is
set to 12 seconds which corresponds to 1200 samples. Next, we �nd the FFT bin with maximal energy within
the human respiration range (10 bpm to 37 bpm). Here, we increase the number of samples to 8192 by means
of zero-padding which appends the time-domain signal with 6992 zero-value samples [45]. The zero-padding
of course can not improve the spectral resolution, however, it can reveal �ner details in the spectrum so that
the FFT bin with maximal energy can be more easily located [16]. Then BNR is calculated by dividing that bin’s
energy by the energy sum of all FFT bins. At last, we select the one that has the maximal BNR value among all
the combination candidates.
Our selection strategy based on periodicity performs better than the commonly used strategy that is based

on variance[47, 51]. When the target is near to the transceiver pair, both strategies can e�ectively extract the
respiration pattern. However, when the target is further away from the transceivers, even the CSI ratio becomes
noisy and it is no longer a circular arc any more. Then the selection based on variance may fail since the
respiration-caused signal variation is now smaller than the noise level and in this case the variance is mainly
caused by environmental noise [50]. Di�erently, our selection strategy based on periodicity still tries its best to
combine I/Q for extracting the quasi-periodical respiration pattern during a short period.
Fig. 14 compares di�erent respiration pattern extraction methods when a target breathes naturally far away

from the transceivers and the ground-truth respiration rate is 25 bpm. Fig. 14 (b) and (c), which employ the
amplitude and phase of the CSI ratio, have no clear rhythmical pattern caused by respiration. In Fig. 14 (d),
the projection has the maximal variance. However, the rhythmical pattern is still not clear and respiration can
hardly be detected. In contrast, the projection with maximal periodicity in Fig. 14 (e) shows clear respiration
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Fig. 15. System architecture of FarSense.

pattern, which matches the ground truth well. Obviously, our approach outperforms the selection of a better one
from amplitude/phase [62] and the I/Q combination with maximal variance, thus signi�cantly increasing the
respiration sensing accuracy and range.

6 THE FARSENSE SYSTEM

In this section, we present our design and implementation of a real-time respiration monitoring system named
FarSense. The FarSense system consists of four basic modules: Data Collection, Data Preprocessing, Respiration
Pattern Extraction and Respiration Rate Estimation, as shown in Fig. 15.

6.1 Data Collection

In this module, we collect CSI data from two antennas at the receiver using the CSI tool [10] developed by
Halperin which collects the CSI samples for each received packet. Here, we con�gure the WiFi card to run at a
central frequency of 5.24 GHz with a bandwidth of 20MHz. Note that the Intel 5300 WiFi card provides CSI on 30
sub-carriers out of a total of 56 sub-carriers for 20MHz bandwidth. The sampling rate of CSI is set to 100Hz in our
system. Although a sampling rate of 10Hz is enough to capture the change of CSI caused by respiration (smaller

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 121. Publication date: September 2019.



121:16 • Zeng et al.

than 1Hz), we set a higher sampling rate for higher respiration rate estimation resolution using autocorrelation
in Sec. 6.4.

6.2 Data Preprocessing

In this module, for each sub-carrier, we �rst divide the two complex CSI readings from the two antennas at the
same receiver to obtain the CSI ratio which is still a complex value.

Next, we introduce the motion detector proposed in [27] to �ag periods of time when there are large motions
and exclude these time periods for sensing. This is because when the human target is at high mobility, the CSI
change due to minute chest movement is overwhelmed by the large motions so that FarSense system will not be
able to accurately monitor respiration. Di�erent from [27] that feeds the conjugate multiplication of CSI from
two antennas into the speed spectrum estimator, we feed the CSI ratio into it to robustly determine whether the
human target is stationary or non-stationary (i.e., whether there are large motions).

At last, we apply the Savitzky-Golay �lter to smooth the CSI ratio data of each sub-carrier during these stable
time periods and use them for further processing.

6.3 Respiration Pa�ern Extraction

In this module, we extract respiration patterns of 30 sub-carriers. For each sub-carrier i , we go through all the
projection axis parameter θ (i.e., 0, π

50
,
2π

50
, ...,

99π

50
at a step size of π

50
) to generate 100 candidates and select one

that maximizes BNR as the �nal extracted respiration pattern, as shown in Sec. 5.2. For the laptop (DELL Precision
5520 with Intel Xeon E3-1505M v6 and 8GB RAM) we use for data processing, the time cost of all 30 sub-carriers
for searching θ from 0 to 2π with a given step π

50
is about 0.54 s, which is acceptable for a real-time respiration

monitoring system. We can further reduce the time cost by increasing the step size of searching.

6.4 Respiration Rate Estimation

In this module, we estimate respiration rate by combining results from multiple sub-carriers. We adopt the
autocorrelation method which has shown to perform well in low SNR scenario [6]. The periodicity of respiration
presents us this unique opportunity to obtain peaks with autocorrelation. We �rst apply autocorrelation on the
respiration pattern of each sub-carrier. Then we combine the autocorrelation results from multiple sub-carriers
to obtain a �nal respiration rate estimation.

6.4.1 Applying Autocorrelation on Respiration Pa�ern. First, for each sub-carrier, we calculate the autocorrelation
of its respiration pattern. The autocorrelation function describes the similarity of a signal to a shifted version of
itself. According to [5], for sub-carrier i , the autocorrelation ri (k) of a time series of respiration pattern yi for a
shift of k samples is de�ned as:

ri (k) =

T∑
t=k+1

(yi (t) − yi )(yi (t − k) − yi )

T∑
t=1

(yi (t) − yi )2
(10)

where T is the total length of yi , yi is the mean of yi and k = 0, ...,T − 1 is number of samples shifted.

6.4.2 Multiple Sub-carriers Combining. We now combine the sub-carriers by employing a weighted sum of
each sub-carrier’s autocorrelation result. The weight of each sub-carrier is the respiration pattern’s BNR value.
With extensive experiments, we �nd that, when the subject is far away from the WiFi transceivers, there are
occasionally some so-called âĂĲbadâĂİ sub-carriers whose respiration patterns are chaotic even after we apply
our proposed methods. We believe this is because each sub-carrier experiences di�erent multipath fading and
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Fig. 16. Example of multiple sub-carriers combining. In this case, we use the weighted sum of three selected sub-carriers’

autocorrelation results to obtain a final one. The estimated respiration rate is 60

335/100
= 17.9 bpm.

shadowing e�ects, and the CSI ratios of di�erent sub-carrier have di�erent sensitivity to subtle respiration
motions. Thus, we do not include all the sub-carriers but only those "good" ones. Those "bad" sub-carriers which
have BNR values smaller than a pre-de�ned threshold will be excluded from combination. Let the maximal BNR
among all 30 sub-carriers be ε , we just include those sub-carriers whose BNR is larger than 0.7ε for combination.3

And the �nal combined autocorrelation result can be represented as:

rmsc =

∑

i ∈S

BNRi × ri (11)

where S is the set of sub-carriers whose BNR is larger than 0.7ε , BNRi is the BNR of sub-carrier i and ri is the
autocorrelation result of sub-carrier i . The �rst peak of rmsc (k)(k = 0, ...,T − 1) is the component describing the
periodicity of respiration [13]. And the shift of the �rst peak divided by the sampling rate is the estimated period
for one respiration cycle.

Fig. 16 shows an example of respiration rate estimation by combining multiple sub-carriers. Three sub-carriers
(i.e., 4, 8 and 17) are selected to participate in the weighted sum operation. As shown in the �nal combined
autocorrelation result, the lag (shift) of the �rst peak labeled with 1 is 335. For a sampling rate of 100Hz, the
estimated respiration rate is calculated as 60

335/100
= 17.9 bpm.

7 EVALUATION

In this section, we conduct comprehensive experiments to evaluate the performance of FarSense with commodity
WiFi devices. In Sec. 7.1, we describe the experimental setup. In Sec. 7.2, we compare FarSense with the state-of-
the-art approaches in terms of sensing range. In Sec. 7.3, we evaluate the robustness of FarSense in challenging
real-life scenario such as when the WiFi AP is located in another room far away from the target.

7.1 Experimental Setup

As shown in Sec. 4.3, we employ a pair of GIGABYTE mini-PCs equipped with cheap Intel 5300 WiFi cards
as transceivers where one antenna is equipped at the transmitter (Tx) and two antennas are equipped at the
receiver (Rx). The carrier frequency of the WiFi channel is set as 5.24GHz and the transmitter broadcasts 100

3We tested di�erent thresholds with large amounts of data and empirically chose 0.7 for sub-carrier selection.
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Fig. 17. Graphical user interface of FarSense.

(a) (b)
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Tx
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Rx

Fig. 18. Comparison with the state-of-the-art approaches in two dif-

ferent experimental environments: (a) a large corridor; (b) a typical

home.

packets one second. We collect CSI data at the Rx using the CSI tool [10] and process it with MATLAB at a
DELL Precision 5520 laptop (Intel Xeon E3-1505M v6, 8 GB RAM) in real time. Fig. 17 shows the graphical user
interface (GUI) of FarSense, which consists of four components: (1) the respiration pattern of the sub-carrier
that has the largest BNR; (2) the real-time video of the test environment captured by a camera; (3) the human
status (stationary or non-stationary); and (4) the estimated respiration rate. Note that if the human status is
non-stationary, the GUI will not display the value of respiration rate. Di�erent from the lab-controlled ground-
truth collection approaches which ask subjects to breathe to a metronome [14, 42], we collect the ground-truth
respiration rates when a subject breathes naturally with a commercial device (Neulog Respiration Monitor Belt
logger sensor NUL-236 [15]). In the experiments, we recruit 12 people and collect a total of 197 hours of CSI data
in di�erent environments where each subject sits on a chair or lies in a bed.

7.2 Comparison with Previous Approaches

In this subsection, we compare FarSense with two state-of-the-art WiFi-based respiration sensing approaches
[47, 62] in terms of sensing range. To quantitatively understand the e�ective sensing range, we adopt the metric
of detection rate when a subject breathes at locations with di�erent distances to the transceivers. As shown
in previous section, the distance from a subject to the transceivers is de�ned as the average distance from the
subject to the transmitter and receiver. The detection rate at a certain distance is de�ned as Ndetected

Nall
, where

Ndetected is the number of CSI measurements whose respiration rate estimation is very close to the ground truth
(i.e., the absolute error is less than 0.5 bpm) and Nall is the total number of collected CSI measurements. Then,
we de�ne the sensing range of a respiration sensing system as the maximal distance at where the detection rate
is higher than 95%. Obviously, a higher detection rate means a larger sensing range.

7.2.1 Baseline Approaches. We �rst introduce these two state-of-the-art approaches as follows:

• HRD.4 HRD [47] uses the CSI amplitude for respiration sensing. HRD �rst applies the Hampel �lter and a
moving average �lter to remove outliers and high-frequency noise. Then HRD employs a threshold-based
method to select sub-carriers that have larger variance of CSI amplitude and estimates the respiration rate
with peak detection method.

• FullBreathe. FullBreathe [62] uses the conjugate multiplication (CM) of CSI readings from two adjacent
antennas at the same sub-carrier for sensing. FullBreathe �rst applies the Savitzky-Golay �lter to smooth
the noisy raw CM. FullBreathe then selects either the amplitude or phase which achieves better performance
for sensing. FullBreathe also estimates the respiration rate by peak detection.

4For convenience, we use the term "HRD" (Human Respiration Detection) to represent the respiration detection system proposed in [47].
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Fig. 19. The detailed respiration pa�erns of each approach at three di�erent

distances to the transceivers. At the distance of 5m, FarSense can still e�ectively

sense respiration while the other two approaches fail.

Fig. 20. The overall detection rate of

each approach versus distance to the

transceivers.

7.2.2 Experimental Se�ings. We conduct experiments in two di�erent environments, as shown in Fig. 18 (a) and
(b): one is a large corridor and the other is a typical home environment with furniture and electrical appliances
which has rich multipath. In each environment, we deploy a pair of transceivers and ask a subject to sit in the
chair located on the perpendicular bisector of the LoS path of the transceivers. We place markers on the �oor
to label the distances (i.e., 0m, 2m, 4m and 6m) to the LoS path and record CSI data when a subject breathes
naturally. We vary the distance between the subject and the LoS path from 2.5m to 5m at a step size of 0.1m.
Since the subject is on the perpendicular bisector of the LoS path, following simple geometry, we can obtain the

distance from the subject to a transceiver pair
√
( LoS

2
)2 + l2, where l is the distance between the subject and the

LoS path. We further vary the distance between the transmitter and receiver from 3m to 5.5m at a step size

of 0.1m so we record CSI data at di�erent distances to the transceivers ranging from
√
( 3
2
)2 + 2.52 = 2.9m to

√
( 5.5

2
)2 + 52 = 5.7m. To see the e�ect of environment changes, we also move the furniture randomly to change

the multipath.

7.2.3 Experimental Results. To clearly visualize the comparison results, we show them from two aspects: one is
the detailed respiration patterns in one of the above settings and the other is the overall detection rate of each
approach with varying distances between the target and the transceivers.

Respiration Pattern. Fig. 19 presents the detailed respiration patterns of the three approaches at di�erent
distances to the transceivers (i.e., 3m, 4m and 5m) in a typical home with the transmitter and receiver separated
by 3m. The ground truth of respiration rate is 18.2 bpm, which means 18.2

60/12
≈ 3.5 peaks/valleys in a 12-second

window. When the subject is 3m away from the transceivers, we can observe the clear respiration patterns
with all three approaches. We can see that among the three clear patterns, FarSense still achieves the clearest
respiration pattern. When the distance is increased to 4m, as shown in Fig. 19 (d), the pattern obtained with HRD
is full of noise, and we can hardly extract respiration rate from it. However, FullBreathe (Fig. 19 (e)) and FarSense
(Fig. 19 (f)) still have clear �uctuations, which match the ground truths. If the subject moves 5m away from the
transceivers, as shown in Fig. 19 (g)-(i), both HRD and FullBreathe fail to extract clear respiration patterns while
FarSense still performs well. Under other settings speci�ed in Sec. 7.2.2, FarSense always outperforms the other
two state-of-the-art systems and we skip the similar results here.
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Fig. 21. Experimental se�ings in a large o�ice room

(7.5m × 9m).

Fig. 22. The mean absolute error of respiration

rate versus distance to the transceivers.

Overall Detection Rate. Fig. 20 presents the overall detection rates of the three approaches with di�erent
distances away from the transceivers ranging from 3m to 5m at a step size of 0.5m. The �gure shows that our
detection rate remains 100% even when the subject is 5m away from transceivers, while the detection rate of HRD
and FullBreathe drop to 1.4% and 7.7%, respectively. Obviously, at a greater distance, both HRD and FullBreathe
can hardly detect the human respiration, achieving very low detection rates. According to the de�nition of
sensing range in Sec. 7.2, we get the sensing range for HRD (less than 2.9m), FullBreathe (3.7m) and FarSense
(larger than 5.7m). The experimental results demonstrate the e�ectiveness of FarSense in terms of increasing the
sensing range without sacri�cing the accuracy.

7.3 Performance in Challenging Real-life Scenarios

In this subsection, we evaluate FarSense’s performance in challenging real-life scenarios. In Sec. 7.3.1, we conduct
experiments when the subject is located 6m to 9m away from the transceivers to evaluate the range limit of our
system. Apart from the LoS scenarios, in Sec. 7.3.2, we evaluate the FarSense’s performance when the subject
has non-LoS path with the transmitter (or receiver)–the WiFi transmitter is placed in a di�erent room from the
receiver with a wall in between and the subject is located either in the transmitter side or in the receiver side. In
addition to sitting scenario, in Sec. 7.3.3, we evaluate FarSense when the subject lies in bed with di�erent sleeping
postures while both transceivers are mounted far away on the ceiling.

7.3.1 Si�ing Far from the Transceivers. We now evaluate FarSense’s performance when the subject sits beyond
5m to the transceivers. As shown in Fig. 21, we conduct the experiments in a large o�ce room (7.5m × 9m),
where rich multipath exists due to a large number of furniture and electronic appliances. In the experiments, the
transceivers are placed in the corner with a LoS path length of 6.8m, and the subject sits on a barstool with a
height of 0.95m, breathing naturally. We randomly move the subject’s position so that he/she is not just located
on the perpendicular bisector of the LoS path. We measure the distances from the subject to the transmitter and
receiver with a laser meter [39] and average these two distances to obtain the distance from the subject to the
transceivers.
We plot the mean absolute error of respiration rate as a function of distance from 6m to 9m in Fig. 22. The

�gure shows that the mean absolute error of FarSense is 0.28 bpm at 6 meters and slightly increases to 0.64 bpm
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Fig. 23. The Experiments for NLoS scenarios are conducted in a typical home: (a) the floor plan of the home

with three di�erent transceiver setups, namely setup 1, 2 and 3; (b) the photo for setup 1, which is captured

by camera 1; (c) the photo for setup 1, which is captured by camera 2.

even when the subject is 9 meters away from the transceivers. When the distance from the subject to transceivers
increases, the mean absolute error increases, too. This is because the signal re�ected o� human target is further
attenuated when the distance is increased. We also observe that, the mean absolute error is still less than 0.5 bpm
when the distance is 8m. That is to say, FarSense can reliably sense human respiration at 100% detection rate
(less than 0.5 bpm) even when the subject is 8m away from the transceivers. According to the de�nition of
sensing range in Sec. 7.2, the sensing range of FarSense is larger than 8m. Compared to HRD (less than 2.9m)
and FullBreathe (3.7m), the sensing range of FarSense is increased by more than 8−3.7

3.7
= 116%.

7.3.2 NLoS Scenarios. To evaluate the ability of FarSense to monitor human respiration in NLoS scenarios, we
conduct experiments when the WiFi transmitter is placed in a di�erent room from the receiver with a wall in
between, and the subject is located either in the transmitter side or in the receiver side. As shown in Fig. 23 (a),
we conduct the experiments in a typical home with three di�erent transceiver setups, namely setup 1, 2 and 3. For
each setup, the subject sits on the sofa, in the bed or a chair, and is about 5m to the transceivers. Fig. 23 (b) and
(c) present the two photos of deployment for setup 1, which is captured by one camera in the living room (camera
1) and another camera in the bedroom (camera 2), respectively. In this setup, the subject sitting on the sofa is in
the same room with the receiver while the transmitter is in the bedroom with a 10cm-thick wall between the two
rooms.

For all the experiments in NLoS scenarios, the achieved mean absolute error is as small as 0.34 bpm. The results
indicate that FarSense can reliably monitor human respiration even in the challenging NLoS scenario with a wall
in between. We also observe that the mean absolute error at the same distance of 5m for the NLoS scenarios is
slightly higher than that for the LoS scenarios (0.23 bpm) in Sec. 7.2. This is because the signal re�ected o� the
human target becomes even weaker after penetrating the wall. We also want to point out that the other two
state-of-the-art systems fail to work in these NLoS scenarios.
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Fig. 24. Experimental se�ings for sleeping scenarios. Fig. 25. Mean absolute error of respiration

rate versus the sleeping postures.

7.3.3 Sleeping in Di�erent Postures. We conduct experiments when the subject sleeps in the bed with four
di�erent postures, i.e., supine, prone, left and right. Di�erent from the lab-controlled settings in [29, 47] where
the transceivers are placed close at two sides of the bed, we mount the transceivers on the ceiling which is a
deployable setup in real indoor environments, far away from the subject. To make it even more challenging, the
subject is covered with a quilt. As shown in Fig. 24, the antennas of the transceivers are placed horizontally. In
this setting, the LoS path length is 3.9m and the distance from the subject to the transceivers mounted on the
ceiling is 3.8m.
Fig. 25 shows the mean absolute error of respiration rate for di�erent sleeping postures. As shown in the

�gure, no matter at what posture, the mean absolute error is always less than 0.3 bpm, which demonstrates the
e�ectiveness and robustness of FarSense. As can be seen, the respiration rate is more accurate in supine posture
than in other postures. We believe this is because when the subject’s chest faces the transceivers in supine posture,
the chest displacement induces larger signal �uctuations and and thus achieves more accurate estimation.

8 DISCUSSIONS

In this work, we focus on designing a single-person respiration detection system with commodity WiFi devices,
which achieves a much further sensing range than the state-of-the-art WiFi-based systems. We brie�y discuss
the limitation and future direction of our work below.

8.1 Through the Wall Twice

FarSense works well when one of the transceivers is in another room. However, when both WiFi transceivers
are located in another room, FarSense has di�culty to sense human respiration because now the weak re�ected
signal from the human chest will need to go through the wall twice [1]. A potential solution is to null out the
strong static LoS signal and other re�ections as shown in [1] for FMCW radar.

8.2 Multiple Subjects

In real life, there are scenarios when multiple subjects are in the same room, e.g., a couple is sharing a same bed.
It is a well-known challenge to separate the signals re�ected o� multiple targets and achieve multi-target sensing
with cheap commodity hardware. Basically there are two ways to address the challenging multi-target sensing
issue with WiFi. One is to increase the bandwidth and the other is to increase the number of antennas at the
WiFi transceivers.

For example, with a 40MHz bandwidth for 802.11n WiFi, the time domain resolution is merely 25 ns. This
means that if the path length di�erence of two signals is within 7.5m (25 ns · 3 · 108 m/s), the two signals cannot
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be separated in time domain. Fortunately, larger bandwidth is expected in future WiFi standards which can be
utilized to further increase the sensing resolution. As for multi-person respiration sensing, the BBS (Blind Source
Separation) or FFT (Fast Fourier Transformation) techniques could also be utilized to separate a set of source
signals with di�erent frequencies, as demonstrated in [47, 51, 61].
The other possible solution is that we can employ antenna array (multiple antennas) to separate the signals

coming from di�erent directions in space domain. Actually, the proposed CSI-ratio model can be combined
with the multiple-antenna techniques to increase both the sensing range and resolution. On top of the multiple-
antenna setting, advanced signal processing techniques such as MUSIC (MUltiple SIgnal Classi�cation) and
multi-dimensional information fusion [57] can be utilized to further increase the signal separation resolution.

8.3 Commodity WiFi NICs with Multiple Antennas

In this work, we propose to utilize the ratio of CSI readings from two antennas at the WiFi receiver for respiration
sensing. We implement our FarSense system with commodity Intel 5300 NICs equipped with one antenna at the
transmitter and two antennas at the receiver. Actually, FarSense can work with other multi-antenna commodity
WiFi NICs as long as the NICs can provide us CSI information.

• FarSense does not depend on any speci�c MIMOmechanism (precoding, beamforming, multiplexing, etc) to
work. The MIMO mechanisms do a�ect the data transmission but have very little e�ect on human sensing
with CSI. Thus, no matter what MIMO mechanisms are adopted at the WiFi transceivers, FarSense works
as long as the CSI streams from two receiving antennas share the same clock, which is true for current
commodity MIMO WiFi NICs. To obtain the CSI data, commodity MIMO WiFi NICs such as Intel 5300
[10] and Atheros AR9580 [58] can be used (with three antennas supported). With more and more wireless
sensing applications proposed, we believe more commodity MIMO WiFi NICs may support exportation of
the CSI information for sensing in the future.

• Assuming that we haveM transmitting antennas and N receiving antennas, we are able to obtain MN CSI
readings at each timestamp for every sub-carrier. By selecting one CSI reading as the numerator of CSI
ratio and another one as the denominator, we will get A2

MN
= MN (MN − 1) CSI ratios for human sensing.

Since di�erent antenna pairs experience di�erent multipath and environment noise, we can then employ
di�erent pairs of antennas to obtain the CSI ratio and exploit the complementarity of those pairs for better
sensing performance. We plan to explore the MIMO sensing capability using the CSI-ratio model in our
future work.

9 CONCLUSION

Contactless respiration sensing with pervasive WiFi signals is promising for real-life deployment. However, the
small sensing range of existing systems severely limits their application in reality. In this paper, we propose to
employ the ratio of CSI readings from two adjacent antennas to signi�cantly push the sensing range limit from
room level (2-4m) to house level (8-9m).We also propose novel methods to elaborately combine the complementary
amplitude and phase for sensing in a much �ner-grained way, further improving the sensing accuracy and range.
With the proposed methods, for the �rst time, we are able to enable through-wall respiration sensing with
commodity WiFi hardware. We believe the proposed system greatly reduces the gap between lab prototype and
real-life deployment. In addition, the proposed ratio of CSI readings from two adjacent antennas could be used as
a new base signal in all MIMO devices, which could help to achieve high SNR and bene�t a large group of other
sensing applications.
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