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Figure 1: Furthest-point optimization of a random point set with 1024 points. Both the global minimum distance dx and the average
minimum distance dx increase rapidly using our optimization technique. After one iteration the point set is already well-distribured,

Abstract

Efficient sampling often relies on irregular point sets that uniformly
cover the sample space. We present a flexible and simple optimiza-
tion strategy for such point sets, It is based on the idea of increasing
the mutual distances by successively moving each point to the “far-
thest point,” i.e., the location that has the maximum distance from
the rest of the point set. We present two iterative algorithms based
on this strategy. The first is our main algorithm which distributes
points in the plane, Our experimental results show that the result-
ing distributions have almost optimal blue noise properties and are
highly suitable for image plane sampling. The second is a variant of
the main algorithm that partitions any point set into equally sized
subsets, each with large mutual distances; the resulting partition-
ings yield improved results in more general integration problems
such as those occurring in physically based rendering.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image
Generation—Antialiasing; 1.4.1 [Image Processing and Computer
Vision]: Digitization and Image Capture—Sampling

Keywords:  sampling, anti-aliasing, blue noise, Poisson-disk,

maximized minimum distance, Delaunay triangulations, numerical
integration, trajectory splitting

1 Introduction

Point distributions that are uniform but irregular have found many
applications in computer graphics. Here, uniform means that the
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average point density is approximately constant and there are no
“holes” or “clusters”; irregular means that there are no symmetries
or regular structures that could lead to moiré patterns or other visu-
ally distracting artifacts. The blue noise criterion [Ulichney 1988]
characterizes such point distributions in the Fourier domain.

In this paper, we describe a new optimization procedure that iter-
atively enlarges the minimum distance between points and thereby
improves the blue noise characteristics of the point set. The main
algorithm moves each point in such a way that the point spacing
increases monotonically until convergence. Since it can be inter-
preted as an iterative version of the farthest point strategy intro-
duced by Eldar et al. [1997], we call the point sets farthest-point
optimized and our method farthest-point optimization (FPO). The
resulting point sets have excellent blue noise properties and a sig-
nificantly higher minimum distance than previous methods. Unlike
other iterative methods that have been proposed for point distribu-
tion, our procedure does not converge towards (locally) regular pat-
terns. The close connection between farthest points and Delaunay
triangulations permits a very efficient implementation that requires
only @(nlogn) per full iteration. We discuss our method and this
implementation in Section 3.

In Section 4 we extend our main idea to the problem of partition-
ing a given point set such that each subset is well-distributed and
of high minimum distance. This yields improvements in sampling
applications other than image plane sampling such as numerical in-
tegration problems in physically based rendering.

We demonstrate the benefits of both methods to sampling and in-
tegration problems in Section 5 and conclude with a few ideas for
further research in Section 6.

2 Background

In this section we briefly review the basics of Poisson-disk distribu-
tions, a few numerical measures for characterizing point sets, and
survey current algorithms for generating such distributions.

2.1 Poisson-Disk Patterns

Point sets with a uniform but irregular distribution have a charac-
teristic energy distribution in the Fourier domain: if the points are
widely spaced, the spectral energy is low in a circular dise around
the origin, and if they are irregularly distributed, the energy varies
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smoothly outside this empty inner ring. Point sets with such a spec-
trum are known as blite noise patterns in computer graphics, Many
methods for constructing blue noise patterns have been proposed
over the last 20 years. Most of them are not based on the blue noise
definition itself but on geometric constraints in the spatial domain.
The most popular constraint is the Poisson-disk criterion, which de-
mands that no two points are closer than a certain minimal distance.

We will be mostly interested in points distributed in the 2D unit
torus (i.e., the unit square with periodic boundary conditions), in
which the distance between two points @, y is measured using the
toroidal metric dr (i, y). Fora set of points X containing n 1= | X|
points we define the following three measures:

dy := min dr(z,y) local mindist,
yeX\{z}

dyx == min  dr(x, lobal mindist,
. WEX x#y r(e,y) 5

average mindist.

The local mindist d. is the distance from a point & to its nearest
neighbor in X'; the global mindist dx is the smallest separation
between any two points in X; and the average mindist measures the
overall spacing of the point set. Obviously, every irregular point set
with dx > 0 is a Poisson-disk set with radius dx /2.

To ensure that the points in X’ are uniformly distributed, we would
like both the global and the average mindist to be as large as possi-
ble: a high dx means that the points do not cluster anywhere, and
a high dx that the points are evenly spaced. The largest mindist is
obtained if the points form a hexagonal lattice [Téth 1951]:

dmax = (2/V/3n)""2,
We generally report the mindist relative to this maximum value

Oy 1= U:u:,l"dmux, dx i=dx ;‘!dm;m‘ rix = &X f{dlllilﬁ-

2.2 Constructing Poisson-Disk Patterns

In the following we will brielly review the most important algo-
rithms for generating Poisson-disk patterns; for a more in-depth
survey refer to the article by Lagae and Dutré [2008]. The rela-
tive mindist §x is a good measure to compare different Poisson-
disk patterns. Lagae and Dutré recommend dx > 0.65 for well-
distributed point sets but conjecture that dx > 0.85 leads to regular
conligurations; we will see later that this conjecture is not correct.

We distinguish two main categories of algorithms: non-iterative
algorithms that generate point sets in one pass and iterative algo-
rithms that improve the arrangement of points in multiple passes,
Table 1 compares several algorithms with respect to their mindist.

The classical non-iterative method for generating Poisson-disk pat-
terns is the dart throwing algorithm proposed by Cook [1986]. This
method takes the desired Poisson-disk radius [? as its input and ran-
domly generates candidate points. A candidate point is rejected if
it lies closer than 217 to any of the existing points and accepted oth-
erwise. Achieving a high mindist is very difficult with dart throw-
ing since, in later stages of the algorithm, an excessive number of
candidates must be generated. Several improvements have been
suggested [Dunbar and Humphreys 2006; Wei 2008; Gamito and
Maddock 2009] which execute faster and yield similar distributions.
The maximum mindist that is achievable with dart throwing and re-
lated methods is dx = 0.75.

A non-iterative algorithm that doesn’t use stochastic sampling was
introduced by Eldar et al. [1997]. Given a few randomly distributed
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Generation Method dx dx  Note
Jittered Grid” 0.049 0.586
Electrostatic Halftoning” (p = 0.002)  0.741 0.882
Best Candidate® and FPS? 0.751 0.839
Dart throwing® and variants’ 0.765 0.808
CCCVT Centroids* 0.778 0.896 I
CVT Centroids" and

methods using Lloyd’s algorithm 0795 0939 LR
Electrostatic Halftoning” 0.826 0952 I,R
Boundary Sampling' 0.829 0.862
Low discrepancy’ 0.903 0920 D,R
Farthest-Point Optimization 0.930 0932 1

*[Cook 1986 "’(Schmaﬂtr. et al. 2010] © [Mitchell 1991]

4 |Eldar et al. 1997] ¢ [Cook 1986] / [Lagac and Dutré 2008]

# [Balzer et al. 2009] * [Du et al. 1999] ¥ [Dunbar and Humphreys 2006]
J [Griinschlof and Keller 2009]

Table 1:  Relative minimum distances for common methods
that generate irregular, well-distributed point sets. The last col-
umn marks (D)eterministic and (Iterative methods, and meth-
ods that converge towards (R)egular arrangements. For all non-
deterministic methods, the results were obtained by averaging d x
and dx over 10 output point sets with 4096 points each.

seed points, the algorithm deterministically adds points according
to the “farthest point strategy,” which chooses the location with
maximum distance from all current points. Voronoi diagrams can
be used to obtain a @(n log n) implementation of this algorithm. In
general, the results are comparable to dart throwing, and the mindist
is also dx = 0.75. The best candidate algorithm by Mitchell [1991]
can be considered an approximative version of this algorithm and
Kanamori et al, [2011] presented an equivalent formulation based
on Delaunay triangulations.

Most non-iterative methods have difficulty achieving a mindist
larger than = 0.75. The reason is that they cannot move points af-
ter they have been placed, which can cause later points to be placed
in suboptimal positions. The main exception is the boundary algo-
rithm by Dunbar and Humphreys [2006] with dx = 0.83,

The standard iteration scheme for improving the distribution of
points is Lloyd’s method [1982]. Unfortunately, the results are
often a little “too good” since Lloyd's method converges towards
hexagonal arrangements; the point sets show strong spikes in the
Fourier domain and therefore fail to be blue noise patterns. Stop-
ping the iteration before the arrangement becomes too regular is
sometimes possible but in general too unreliable. Lloyd’s method
achieves a mindist of dx ~ 0.8,

Two alternative iterative methods have been proposed in recent
years. Both optimization techniques are rather costly and show
O(n?) time complexity per iteration.

The algorithm by Balzer et al. [2009] is conceptually similar to
Lloyd’s method but places a constraint on the area of the result-
ing Voronoi regions. This leads to very uniform point distributions,
but since the constraint is on areas not distances, the mindist is not
significantly higher than for non-iterative methods (dx =~ 0.78).

Finally, Schmaltz et al. [2010] model the points as charged parti-
cles with repelling forces. Simulating the movement of these par-
ticles results in uniform point distributions with a Poisson-disk ra-
dius comparable to Lloyd’s method (dx = 0.83), but is also prone
to producing locally hexagonal structures. A variant proposed by
the authors breaks up these regularities by incorporating random
movements, but it also lowers the Poisson-disk radius.



3 Farthest-Point Optimization

In this section we present a new iterative algorithm for generating
Poisson-disk patterns that have a high minimum distance (dx =
0.93) but do not suffer from regular structures. We show that the
general algorithm runs in @(n log ) per full iteration and always
converges. We also discuss a variant of the main algorithm that runs
in @(n) per full iteration and gives results of the same quality.

3.1 Main Algorithm

The basic algorithm is very simple: each step takes a single point
from a set of points X and attempts to move it to a new position
that is as far away from the remaining points as possible, i.e., the
Sarthest point. One full iteration consists of moving each point in X
once. As we will see, this iteration scheme converges, and each full
iteration increases the average mindist 4 x .

In general, the farthest point fy of a set of points Y is the center
of the largest circle that can be placed in the domain under con-
sideration without covering any of the points in Y. This largest
empty circle can be computed efficiently using the Delaunay trian-
gulation D(Y"): it corresponds to the largest circumcircle of the tri-
angles in D(Y'). An equivalent formulation in terms of the Voronoi
diagram of ¥ was used by Eldar et al.

In our case, to move a point @, we need to inspect the Delaunay
triangulation (DT) of the remaining points X\ {z}. Instcad of cal-
culating the full DT for each point @, we build a full DT once and
update it dynamically during the iteration: before we move x, we
remave it from the DT, inspeet the remaining triangles to find the
farthest point f, and finally reinsert f as a new point into the DT.
The full algorithm can be formulated as follows.

FARTHEST-POINT-OPTIMIZATION( X )

1 D = DELAUNAY(X)
2 repeat
foreach vertex x in D
(f\ 'r'lnux) = (3’-‘, d:r)
DELAUNAY-REMOVE(D, x)
foreach ¢ in D
(e,7) = center and radius of ¢'s circumcircle
ifr >
(firme) = (¢;7)
DELAUNAY-INSERT(D, f)
11 until converged
12 return vertices of 12

3
4
5
6
7
8
9
10

We make sure that a point is only moved to a new position if its
new local mindist, namely 7., would be larger than its old local
mindist d,; otherwise, we simply reinsert it at its old position.

Figure 2 illustrates how the method successively distributes five
points X = {@y,..., @5} in the unit torus, Panels la and 1b show
how the target position for the first point &, is chosen: we search
for the triangle in D(X\ {1 }) that has the largest eircumcirele and
move 1 to the circle’s center, The distance map in the background
indicates that this is indeed the farthest point. We proceed in the
same way for @y, ..., x5, as shown in the remaining panels.

It is easy to see that this farthest-point optimization always con-
verges and yields arrangements with a high average mindist, The
key observation is that moving a point x to the farthest point of
X\{x} maximizes, by definition, its local mindist 8. In the worst
case, no better position can be found and @ remains at its old po-
sition. Because dx oc 3 4., the average mindist must increase
during a full iteration, so the optimization can never return to a pre-
vious point distribution or get stuck in eyclic configurations. We
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Figure 2: Geometrical illustration of one full iteration applied to
5 points in the unit torus. Each point is successively moved to
the center of the largest empty circle of the remaining points. The
grayscale image in the background represents the distance map of
X\{w:} and reflects the toroidal metric. The dotted circle is the
largest empty circle, and the highlighted triangle the correspond-
ing face in the Delaunay triangulation of X\ {x;}.

stop the iteration as soon as the increase of dx falls below a thresh-
old ¢, i.e.,, as soon as o3 — 03" < ¢; this must happen eventually
since A x is bounded for points in the unit torus. Convergence is fast
enough that we can use the machine precision for e.

For the global mindist we have dx = min d,, so we are only guar-
anteed that it is non-decreasing. In fact, it is easy to construct point
sets where dx remains constant for several iterations, But dx is
strictly increasing as long as all points are still moving. For ran-
domly distributed point sets we found this to be always the case,

In this case of random seed points, farthest-point optimization con-
verges towards distributions with a mindist dx = 0.93; a few in-
termediate steps during the optimization of 1024 points are shown
in Figure 1. Since convergence becomes slower as we approach the
maximum, we have found it useful to stop the iteration earlier, In
our experience, a threshold of dx = 0.925 is a good compromise
between high-quality results and reasonable computation times, We
will study the convergence empirically in Section 3.4,

Even though most input point sets converge towards irregular ar-
rangements, some stable configurations are regular, In the three
examples above, no point can be moved to a position that is “far-
ther” away from the remaining points. If there are defects in the
regular arrangements, however, FPO quickly breaks up the regular-
ity. In this sense, FPO doesn’t actively randomize its input, but it
amplifies irregularities: this intuitively explains why the algorithm
doesn't converge towards regular arrangements,

3.2 Runtime Complexity

Let us consider the runtime complexity of the inner loop in
FARTHEST-POINT-OPTIMIZATION. We denote the average degree
of a point (i.e., its average number of neighbors in the Delaunay
|X]. The

triangulation) by ¢ and the number of points by n :



runtime of lines 4-10 can now be broken down as follows:

4: O(g) since we have to inspect the Delaunay neighbors of @ to

determine ..

. between O(g) and @(g?), depending on the algorithm
used [Devillers 2002].

6-9: O(n) since there are O(n) triangles in D(X).

10: O(g) if we already know the triangle that contains the point;
otherwise, between O(y/n) and O(logn), depending on the

algorithm used to locate the triangle [Devroye et al. 2004].

We assume that g = (O(1) which is true or conjectured to be true
for large classes of well-distributed point sets [Erickson 2005]. In
this case, the overall runtime is O(n) for a single movement and
O(n?) for a full iteration. Two algorithmic improvements allow us
to push this down to approximately O(n logn) per full iteration.

First, we can speed up the process of inserting the farthest point f
into the triangulation. In our experience, f almost always lies either
inside the triangle ¢ corresponding to the largest empty circle, or at
least close to it; this can already be seen in Figure 2. Since we
know { from lines 6-9, locating and inserting f can be done in
approximately constant time.

Second, we can speed up the search for the farthest point by using
a binary search tree to keep track of the largest empty circle. This
lets us find the farthest point in @(logn), but increases the time
required for lines 4 and 6 also to O(log n) since structural changes
to the Delaunay triangulation must be reflected in the tree. Taken
together, this means that the running time is dominated by the tree
operations, and the time required for a full iteration is O(n log n).

3.3 Local Farthest-Point Optimization

This final O(nlogn) algorithm from the previous section is effi-
cient, but since the tree operations must be intertwined with the up-
date operations of the Delaunay triangulation, its implementation is
a little involved. As an alternative we can use the following variant
that only requires O(n) per iteration but converges more slowly.

The idea behind this modified algorithm is to simplify the search
for the farthest point. When moving a point &, we do not attempt
to determine the largest empty circle but contend ourselves with
a large empty circle in the neighborhood of . In other words,
instead of checking the circumcircle of all triangles in D(X\{z}),
we restrict the search to a subset T ¢ D(X\{x}) that is in some
sense “close” to @. If the expected size of T" is independent of n,
each point can be moved in O(1).

There are many strategies for choos-
ing T". In our experience, the choice
does not influence the quality of the
resulting point sets, only the number
of iterations. Here, we discuss the
one that has proven to be a good com-
promise between iteration and conver-
gence speed: we include in T all trian-
gles that are incident with the neigh-
bors of @ in D(X) (see embedded fig-
ure). Since there are O(g?) such triangles, moving a single point
can indeed be done in constant time. We will refer to this variant as
local FPO, in contrast to the global FPO from Section 3.1,

Since convergence guarantee from Section 3.1 only relied on the
fact that the local mindist doesn’t decrease, it remains valid in the
case of the local FPO. However, since the local FPO moves points
only locally, the mindist increases more slowly. Nevertheless, both
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Method dy = 075 0775 0.8 0.825 0.85 0.875 0.9 0.925

[Lloyd 1982] 70 113 425% - -

|Balzer et al. 2009] 111 357*% - - - - - =

Local FPO 3 4 6 8 14 27 64 352

Global FPO 1 2 2 3 4 6 13 118
by = 075 0775 0.8 0825 0.85 0.875 0.9 0925

[Lloyd 1982] 2 3 4 5 & 13 29 122

[Balzer et al, 2009] 2 2 2 4 10 50 414%

Local FFO 1 1 1 1 1 2 3 10

Global FPO | | 1 1 1 2 2 6

Table 2: Number of iterations needed to achieve a certain minimum
distance § x (top) and average minimum distance §x (bottom). The
results are averaged values from optimizing 10 sets of 4096 random
points, (*) indicates that the mindist could not always be achieved.

methods converge towards point sets that are indistinguishable. In
fact, once the points are sufficiently well distributed, local and
global FPO are equivalent, since the farthest point of X\ {x} is al-
most always located inside the hole that resulted from removing .

This suggests a hybrid algorithm that uses the global O(n logn)
algorithm for the first few iterations and then switches to the more
efficient @(n) algorithm. In practice, this has turned out to be the
fastest variant of farthest-point optimization, but for this paper, we
will keep the discussion of the two algorithms separate.

3.4 Discussion and Evaluation

In this section we empirically study the main properties of the pro-
posed optimization scheme and the point sets it generates. We will
be primarily concerned with general observations and defer practi-
cal applications until Section 3.

We implemented the global and local FPO using the dynamic De-
launay triangulations from CGAL [CGAL], which we extended to
handle toroidal boundary conditions, Despite their iterative nature,
both algorithms are reasonably fast. For 4096 points, one iteration
takes an average 39 ms for the global FPO and 25 ms for the local
FPO.! Starting with a random point distribution, the full optimiza-
tion until 6x > 0.925 takes on average 4.7s (122 iterations) using
the global FPO and 8.8 s using the local FPO (348 iterations).

Both algorithms consistently converge towards point sets with ex-
cellent blue noise properties. Figure 3 shows a representative ex-
ample of the standard spectral measures—power spectrum, radially
averaged power spectrum, and anisotropy—based on ten FPO point
sets with 4096 points (for each set dx =~ 0.93). We compare the
results to pure dart throwing (dx = 0.75) and one state-of-the-art
method [Balzer et al. 2009]. The spectral properties of the method
by Schmaltz et al. [2010] are very similar, but we only had access
to non-toroidal point sets, which would have skewed the analysis.

We see in Figure 3 that there is almost no energy around the ori-
gin and no discernible anisotropy for FPO points. By maximiz-
ing the mindist, our method pushes low energy as far as possible
towards higher frequencies,.We also see that the amplitude of the
radial power falls off very slowly. This reflects another kind of uni-
formity: for FPO points, the variance of the local mindists is very
small, i.e., dx =~ dx (see also Table 1). As a consequence, not
only the distance of each point to its direct neighbors is relatively
constant, but the distance to its second and higher-order neighbors
becomes very similar too.

! Performance measurements were obtained using a single core of a Xeon
processor with 2.8 GHz using gec.
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Figure 3: Analyzing common spectral properties for point sets generated by pure dart throwing (left), a state-of-the-art method (center), and
our optimization method (right). Both of our algorithms consistenily converge towards point sets with excellent blue properties. There is
almost no energy around the origin and no discernible anisotropy. Maximizing the minimum distance by our method pushes low energy as
far as possible towards higher frequencies as indicated by the strong peak at the spatial frequency 1/dx.
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Figure 4: Average convergence of §x (solid lines) and 0x (dashed
lines) for random sets of 512, 4096, and 32768 points, from left to
right. The inset magnifies the region 0.75 < dx < 0.95.

The convergence speed of the global and local FPO is illustrated
in Figure 4. Both dx and dx increase rapidly at first and then con-
verge more slowly towards a maximum around 0.932. The achieved
maximum isn’t the same for each set but consistently falls between
0.93 and 0.933. For both algorithms, the three curves for the av-
erage mindist (dashed lines) lie almost on top of each other. This
means that convergence of dx is mostly independent of the num-
ber of points, which underlines how effectively FPO distributes the
points. The convergence of the mindist (solid lines) depends more
strongly on the input size, especially for the local variant,

Finally, Table 2 compares the number of iterations required to ob-
tain well-distributed point sets with Lloyd’s method and the algo-
rithm by Balzer et al. It is obvious that both FPO variants are far
more effective than the other methods at spreading out the points: a
handful of iterations are typically sulficient to obtain point sets with
excellent blue noise properties. These improvements are even more
significant considering that state-of-the-art techniques [Balzer et al.
2009; Schmaltz et al. 2010] require @(n?) per iteration.

4 Extension: Partitioning a Point Set

We saw that farthest-point optimizing a point set is a simple strategy
to increase the minimum distance without introducing regularity.
But in sampling scenarios other than image plane sampling, this is
often not enough: we also need the union of several sets of samples
to be well-distributed. A prominent example is direct light esti-
mation or BSDF sampling via trajectory splitting [Arvo and Kirk
1990]: for each ray traced through the image plane, trace multi-
ple rays towards an area light source or evaluate a BSDF multiple
times. The overall coverage of the sample space is much better if
the sample points for each ray and their union is well-distributed.
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Since a high minimum distance remains desirable for such integra-
tion scenarios [Griinschlof and Keller 2009], we propose an exten-
sion of our optimization strategy that partitions our optimized point
sets from the main section into equally sized subsets, each with op-
timized minimum distance. In contrast to existing techniques, such
as the multi-class algorithm by Wei [2010] which directly generates
partitioned point sets by dart throwing, we can in fact partition any
given point set such that each subset is farthest-point optimized.

4.1 Partition Algorithm

Let us formulate the problem more formally. We want to partition
aset X of input points into m subsets Y; of size n ;= | X|/m. The
points in each subset should be spread out as far as possible, i.c., we
need to find n points in X that have maximized minimum distance.
This can be solved by a process similar to our main algorithm: we
start with a random subset of n points from X and successively
move each point to a better position. The main difference is that
we cannol move points arbitrarily to increase the mindist but are
restricted to the positions of the points in the base set X

To partition the full base set X so that X = | J, Y, we construct the
subsets Y; sequentially by first optimizing Y7 considering all points
in X, then Y3 considering the points in X'\ Y3, and so on. The full
algorithm can be formulated as follows.

FARTHEST-POINT-OPTIMIZED-PARTITION( X, {Vi})
I Dx = DELAUNAY(X)
2 foreachiinm — 1

3 Y: = n random vertices of Dx

4 Dy = DELAUNAY(Y:)

5 DELAUNAY-REMOVE(D x, Y;)

6 repeat

7 foreach vertex y in Dy

8 (f.dy) = (v, dy)

9 remove y from Dy and insert into D x
10 foreach vertex z in Dy

11 d. = mindist to any vertex in Dy
12 ifd. > dy

13 (f.dp) = (z,d)

14 remove f from D x and insert into Dy
15 Y; = vertices of Dy

16 until ¥; did not change

17 Y,. = vertices of Dx
18 return {V;}

Since the location of the farthest point f is now restricted to an un-
used point 2 € X, we maintain two Delaunay triangulations: [y
for the remaining points in X, and Dy for the subset Y; currently
being optimized (lines 1, 4-5). To identify the global farthest point,



1024 FPO points parlitioned into 4 subsets

dy = 0.847 &y = 0.821 ay = 0.818

1024 FPO points partitioned into 8 subsets

dy = 0.852 dx = 0.851 by = 0.832 &y = 0.829

Jx = 0.804 dx = 0.790 &y = 0.613

dx = 0.830

Figure 5: Partitioning the 1024 points from Figure I into four (top)
and eight (bottom) subsets of egual sizes. Despite the greedy char-
acteristic of the partition algorithm, most subsets show average
mininum distances dx > 0.8,

we loop over all available points z € X'\Y; and pick the one that
is farthest from the current selection Y; (lines 7, 10-13). Keeping
the intersection X N Y; empty allows us to swap the old point y
and the farthest point f between the corresponding Delaunay trian-
gulations, i.e., remove it from the first and insert it into the second
(lines 9, 14). Repeating this procedure for all points in Y; con-
cludes a full iteration, Once we have optimized a subset, we repeat
the process for the other subsets using only the remaining points.

The optimization of a subset converges when no farther point f €
X\Y; can be found for any of the i € Y3; this can be easily detected
e.g. by setting a flag in line 13, Since | J; ¥; = X, the last subset
Yo is fully determined by the first m — 1 subsets (line 17) and
therefore does not need Lo be optimized.

Analogous to the continuous FPO, the computational complexity of
a naive implementation of this discrete space algorithm is roughly
quadratic in the number of points per subset. (The real complexity
is O(n|X|) per iteration per subset, where | X| denotes the number
of remaining points after removing each Y; in line 5.) Similar to the
continuous variant, this can be sped up to O(n logn) per iteration
(per subset) if we utilize a binary tree that tracks the global farthest
point and is updated after each insert and remove operation,

4.2 Discussion

This FPO-based partition algorithm works as a post process for ar-
bitrary input point sets. Similar to the continuous variant, it is guar-
anteed to converge since eventually the current selection ¥; cannot
be improved by finding a farther point in X\ Y;.

Figure 5 shows the result when partitioning the 1024 points from
Figure | into four (top) and eight {bortom) subsets. It can be seen
that the algorithm’s greedy characteristic mostly affects the last sub-
sel which is not able to optimize its selection of points. Although
this is not ideal, the greedy approach still generated the overall
best results among other strategies we experimented with. The first
m— 1 subsets are all very uniform and show high average minimum
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Figure 6: Sampling an infinite checkerboard. Although the dif-
ferences are subtle, notice the better edge anti-aliasing (bottom of
the close-ups) and reduced noise in regions beyond the Nyquist fre-
guency (top of the close-ups) for our point sets,

distances with most dy; > 0.8, Our non-optimized implementation
of the partition algorithm took 97 ms to perform the partition in
Figure 5 into 8 subsets. Partitioning 16384 points into 16 subsets of
1024 points takes an average 3.3 5.

5 Applications

We already evaluated the general propertics of farthest-point opti-
mized point sets in the main section. We now analyze their quality
in two important practical applications: image plane sampling and
numerical integration for physically based rendering.

5.1 Image Plane Sampling

We saw that FPO points show excellent blue noise properties. This
makes them especially suitable for image plane sampling in graph-
ics, where we want the samples to be both irregular (so that aliasing
is mapped to noise) and of high minimum distance (so that alias-
ing is mapped to high frequencies). We show that this is indeed
the case using three image plane sampling scenarios shown in Fig-
ures 6, 7, and 8. In each scenario, reconstruction was performed
using a Lanczos-2 filter and mean square errors were obtained in
relation to a reference image using 4096 random samples/pixel.

Fig. 6 shows the result of sampling the infamous checkerboard, The
close-ups were chosen so that content both below and above the
Nyquist frequency is visible in the same image. Although the dif-
ferences are subtle, note the better anti-aliasing along edges and the
reduced noise in the top of the images.

The improvement is even more obvious in the two other figures
which show dedicated scenarios for edge anti-aliasing and high fre-
quency sampling. The higher uniformity of FPO point sets notice-
ably improves the rendering of edges in Figure 7. and when sam-
pling the common 2D chirp f(z,y) = (cos(aw® + ay?) + 1)/2
in Figure 8, our method already produces a very good solution at
approximately 2 samples per pixel, This is mainly due to a good
trade-off between noise and moiré artifacts since maximizing the
minimum distance yields both a high effective Nyquist frequency
(which lessens aliasing) and very uniform point sets (which yields
less noise).

5.2 Numerical Integration

We now investigate the applicability of FPO points to numerical in-
tegration problems occurring in physically based rendering [Pharr
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Figure 7: Sampling a series of circles and lines of different orien-
tation. Increasing the uniformity of point sets via FPO noticeably
enhances edge anti-aliasing, both visually and numerically.

and Humphreys 2010]. Due to the curse of dimension it is likely
that point sets with maximized mindist do not improve upon ran-
dom point sets for higher dimensional problems, but for one- and
two-dimensional problems they promise a noticeable increase in
convergence speed. As aforementioned, a prominent example is
direct light estimation by trajectory splitting. The common method
to generate the corresponding sample points is the Sobol’ (0, 2)-
sequence [Sobol 1967] which has the powerful property that each
successive set of power-of-2 points is well-distributed (a (0, m, 2)-
net of low-discrepancy) while their union is also well-distributed.
We can mimic this property using our partition algorithm from Sec-
tion 4. To this end, we compute an optimized partition of an FPO
point set. This ensures that each subset is well-distributed and their
union is a FPO point set with maximized minimum distance. For
performance reasons we do not perform the optimization procedure
online but precompute a point set and the necessary partitions. In
order to ensure that the corresponding integral estimators remain
unbiased, we can randomly shift the sets on the unit torus (Cranley-
Patterson rotation) which preserves the minimum distance.

Figures 9 and 10 show results for this procedure which we inte-
grated into PBRT [Pharr and Humphreys 2010]. The simple scene
is lit by two light sources—one circular area light source and one in-
finite light source in form of a HDR environment image—to verify
that our samples retain their good distribution even after mapping
them from the unit square to e.g. a disk. The scene is untextured
s0 that the remaining approximation error isn’t masked. The close-
ups in Figure 9 show the result when utilizing 4 x 4 samples, i.e., 4
pixel samples and for each of those 4 secondary samples (integra-
tor samples). The MSE conlirms that FPO points partitioned into
optimized subsets outperform the low-discrepancy sequence inde-
pendent of the number of samples. For comparison, the plot also
shows results for two naive variants where either the subsets are
optimized but not their union (“no partition”), or where the union is
a FPO point set but where subsets were chosen randomly (“random
partition”). Obviously, the best result is obtained if both the union
and the partition are optimized, but overall an optimized total set is
more important than an optimized partition.

In Fig. 9 we increased both pixel and integrator samples at the same
time, whereas we kept their product constant at 16 combined sam-
ples in Fig. 10. Using partitioned FPO samples yields a lower error
for every combination of pixel and integrator samples. In particu-
lar, the MSE remains roughly constant despite the varying numbers
of pixel vs. integrator samples. The plot again underlines the im-
portance of the partition procedure. Just assigning good integrator
samples to each pixel sample quickly becomes inferior to the parti-
tioned results, even at twice the number of combined samples.

6 Conclusion

We have presented a new iterative method for optimizing the distri-
bution of points in the plane. The main feature of the resulting point
sets is that they are practically optimal blue noise samples under the
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Figure 8: Sampling a common 2D chirp. In the top row we used
5122 sample points to produce images of 512 x 512 pixels, and
in the bottom row 2 - 5122 samples for the same output resolution,
Maximizing the minimum distance increases the Nyquist frequency
so that aliasing is shifted to noise of higher frequency.

[Dunbar et al. 2006] Our Method

assumption that such point sets should be both irregular and of high
minimum distance. This re-raises the question of ideal image plane
sample points as we suspect that it will be hard to increase the min-
imum distance further without introducing regular structures.

We introduced a variant of this algorithm that allows to partition
a given point set such that each subset is well-distributed. This
enables the use of our optimized point in a broad range of numerical
integration problems occurring in physically based rendering. Even
though the partition algorithm yields good results, we think there is
still room for improvement and are investigating other strategies
than the greedy approach currently used.

We have only considered the problem of distributing points in the
unit torus, but the general algorithm directly extends to other geo-
metric arrangements, such as higher dimensions, points on bounded
surfaces, triangulated domains, or non-Euclidean metrics. Some
work in this area has been done in the context of non-uniform sam-
pling and remeshing [Moenning and Dodgson 2003; Peyré and Co-
hen 2006] using the strategy by Eldar et al., but our iterative method
may prove advantageous for these applications as well,
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