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Figure 1: Farthes,:point optimization of a random point set with 1024 points. Both the global minimum distance Ox and the average 

minimum distance I5x increase rapidly using our optimization technique. After one iteration the point set is already well-distributed. 

Abstract 

Efficient sampling often reli es on irregular point sets that uniformly 

cover the sample space. We present a flexible and simple optimiza­

tion strategy for such point sets. It is based on the idea of increasing 

the mutual distances by successively moving each point to the "far­

thest point," i.e. , the location that has the maximum distance from 

the rest of the point set. We present two iterative algorithms based 
on this strategy. The first is our main algorithm which distributes 

points in the plane. Our experimental results show that the result­

ing distributions have almost optimal blue noise properties and are 

highly suitable for image plane sampling. The second is a variant of 

the main algorithm that partitions any point set into equally sized 

subsets, each with large mutual distances; the resulting partition­

ings yield improved results in more general integration problems 

such as those occurring in physically based rendering. 

CR Categories: 1.3.3 [Computer GraphicsJ: Picturellmage 

Generation- Antialiasing; 1.4.1 [Image Processing and Computer 

Vision]: Digitization and Image Capture-Sampling 

Keywords: sampling, anti-aliasing, blue noise, Poisson-disk, 

maximized minimum distance, Delaunay triangulations , numerical 

integration, trajectory splitting 

1 Introduction 

Point distributions that are uniform but irregular have found many 

applications in computer graphics. Here, uniform means that the 
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average point density is approximately constant and there are no 

"holes" or "clusters"; irregular means that there are no symmetries 

or regular structures that could lead to moire patterns or other visu­

ally distracting artifacts. The blue noise criterion [Ulichney 1988J 

characterizes such point distributions in the Fourier domain. 

In this paper, we describe a new optimization procedure that iter­

atively enlarges the minimum distance between points and thereby 

improves the blue noise characteristics of the point set. The main 

algorithm moves each point in such a way that the point spacing 

increases monotonically until convergence. Since it can be inter­

preted as an iterative version of the farthest point strategy intro­

duced by Eldar et a!. [1997], we call the point sets farthest-point 

optimized and our method farthest-point optimization (FPO). The 

resulting point sets have excellent blue noise properties and a sig­

nificantly higher minimum distance than previous methods. Unlike 

other iterative methods that have been proposed for point distribu­

tion, our procedure does not converge towards (locally) regular pat­

terns. The close connection between farthest points and Delaunay 

triangulations permits a very efficient implementation that requires 

only O(nlogn) per full iteration. We discuss our method and this 

implementation in Section 3. 

In Section 4 we extend our main idea to the problem of partition­

ing a given point set such that each subset is well-distributed and 

of high minimum distance. This yields improvements in sampling 

applications other than image plane sampling such as numerical in­

tegration problems in physically based rendering. 

We demonstrate the benefits of both methods to sampling and in­

tegration problems in Section 5 and conclude with a few ideas for 

further research in Section 6. 

2 Background 

In this section we briefly review the basics of Poisson-di sk distribu­

tions, a few numerical measures for characterizing point sets, and 

survey current algorithms for generating such distributions. 

2.1 Poisson-Disk Patterns 

Point sets with a uniform but irregular distribution have a charac­

teristic energy distribution in the Fourier domain: if the points are 

widely spaced, the spectral energy is low in a circular disc around 

the origin, and if they are irregularly distributed, the energy varies 
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smoothly outside this empty inner ring. Point sets with such a spec­

trum are known as blue liaise patterns in computer graphics. Many 

methods for constructing blue noise pallerns have been proposed 

over the last 20 years. Most of them are not based on the blue noise 

definition itse lf but on geometri c constraints in the spatial domain. 

The most popular constraint is the Poisson-disk criterion, which de­

mands that no two points are closer than a certain minimal distance. 

We will be mostly interested in points distributed in the 2D unit 

torus (i.e. , the unit square with periodic boundary conditions), in 

which the distance between two points x , y is measured using the 

toroidal metric dr(x , y). For a set of points X containing n := IXI 
points we define the (,ollowing three measures: 

d,,: = min dr(x, y) 
y EX\{ x } 

dx := min dr(x , y) 
:1;,y EX ,x f;. v 

local mindist, 

global mindist , 

average mindist. 

The local mindist d,e is the di stance from a point x to its nearest 

neighbor in X; the globalmindist dx is the smallest separation 

between any two poi nts in X; and the average mill(li~·t measures the 

overall spacing of the point set. Obviously, every irregular point set 

with dx > 0 is a Poisson-disk set with radius dx /2. 

To ensure that the points in X are uniformly distributed, we would 

like both the global and the average mindist to be as large as poss i­

ble: a high dx means that the points do not cluster anywhere, and 

a high dx that the points are evenly spaced. The largest mindist is 

obtained if the points form a hexagonal lattice [T6th 1951] : 

We generally report the mindist relative to this maximum value 

!I,,; := d,e/dlll " " !lx:= dx/d lll"" 8x: = dx/d lllax • 

2.2 Constructing Poisson-Disk Patterns 

Tn the (,ollowi ng we wi ll briefly review the most important algo­

rithms for generating Poisson-disk patterns; for a more in-depth 

survey refer to the article by Lagae and Dutre [2008], The rela­

tive mindist !Ix is a good measure to compare different Poisson­

disk patterns. Lagae and Dutre recommend !Ix ~ 0.65 for well­

di stributed point sets but conjecture that !Ix ~ 0.85 leads to regular 

confi guraLions; we wil l see later thaL this conjecture is not correct. 

We distinguish two main categories of algorithms: non-iterative 

algorithms that generate point sets in one pass and iterative algo­

rithms that improve the arrangement of points in multiple passes. 

Table I compares several algorithms with respect to their mindi st. 

The classical non-iterative method for generating Poisson-disk pat­

terns is the dart throwing algorithm proposed by Cook [1986], This 

method takes the desired Poisson-disk radius R as its input and ran­

domly generates candidate points. A candidate point is rejected if 

it lies closer than 2R to any of the existing points and accepted oth­

erwi se. Achieving a hi gh mindi st is very difficu lt with dart throw­

ing since, in later stages of the algorithm, an excessive number of 

candidates must be generated. Several improvements have been 

suggested [Dunbar and Humphreys 2006; W ~ i 2008; Gamito and 

Maddock 2009] which execute faster and yield similar di stributions. 

The maximum mindist that is achievable with dart throwing and re­

lated methods is !Ix ~ 0.75. 

A non-iterative algorithm that doesn' t use stochasti c sampling was 

introduced by Eldar et al. [1 997]. Given a few randomly di stributed 
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Generatioll Method 

Jittered Grid" 

Electrostatic Halftoning/) ((1 = 0.002) 

Best CandidateC and FPSd 

Dart throwing' and variantsf 

CCCVT Centroidsg 

CVT Centroids" and 

!Ix 

0.049 

0.741 

0.751 

0.765 

0 .778 

methods using Lloyd 's algorithm 0.795 

Electrostatic Half toning" 0.826 

Boundary Sampling; 0.829 

Low discrepancJ 0 .903 

Farthest-Point Optimization 0.930 

"[Cook 1986] "[Schmaltz et al. 20 I OJ C [Mitchell 1991 J 

!Ix 

0.586 

0.882 

0.839 

0.808 

0.896 

0 .939 

0.952 

0.862 

0.920 

0. 932 

d [Eldar et al. 1997] ' [Cook 1986J f [Lagae and Dutre 2008] 

Note 

I , R 

I, R 

D, R 

I 

g [Balzer et al. 2009] "[Du et al. 1999] ; [Dunbar and Humphreys 2006J 

j [Grlinschlol3 and Keller 2009 J 

Table 1: Relative minimum distances for common methods 

that generate irregulat; well-distributed point sets. The last col­

umll marks (D)eterministic (lnd (l)terative methods, and meth­

ods that converge towards (R)egular arrangements. For all non­

deter!ninistic methods, the results were obtained by averaging !Ix 
and !Ix over 10 output point sets with 4096 points each. 

seed points, the algorithm deterministically adds points according 

to the "farthest point strategy," which chooses the location with 

maximum distance from all current points. Voronoi di agrams can 

be used to obtain a O(n log n) implementation of this algorithm. In 

general, the results are comparable to dart throwing, and the mindist 

is also !Ix ~ 0.75. The best candidate algorithm by Mitchell [1991] 

can be considered an approximative version of this algorithm and 

Kanamori et al. [20 II] presented an equivalent formul ation based 

on Delaunay triangulations. 

Most non-iterative methods have difficulty ach ieving a mindi st 

larger than ~ 0.75. The reason is that they cannot move points af­

ter they have been placed, which can cause later points to be placed 

in suboptimal positions. The main exception is the boundary algo­

rithm by Dunbar and Humphreys [2006] with !Ix ~ 0. 83. 

The standard iteration scheme for improving the distribution of 

points is Lloyd 's method [1982J. Unfortunately, the results are 

often a little "too good" since Lloyd 's method converges towards 

hexagonal arrangements; the point sets show strong spikes in the 

Fourier domain and therefore fail to be blue noise patterns. Stop­

ping the iteration before the arrangement becomes too regular is 

sometimes poss ible but in general too unreli able. Lloyd 's method 

achieves a mindist of iix ~ 0. 8. 

Two alternative iterative methods have been proposed in recent 

years. Both optimization techniques are rather costly and show 

O(n2
) time complexity per iteration. 

The algorithm by Balzer et al. [2009] is conceptually similar to 

Lloyd's method but places a constraint on the area of the result­

ing Voronoi regions. This leads to very uniform point di stributions, 

but since the constraint is on areas not distances , the mindist is not 

signifi cantl y hi gher than for non-iterative methods (!Ix ~ 0.78). 

Finally, Schmaltz et al. [2010] model the points as charged parti­

cles with repelling forces. Simulating the movement of these par­

ticles results in uniform point distributions with a Poisson-disk ra­

dius comparable to Lloyd's method (!Ix ~ 0.83), but is also prone 

to producing locally hexagonal structures. A vari ant proposed by 

the authors breaks up these regulariti es by incorporat ing random 

movements, but it a lso lowers the Poisson-disk radius. 



3 Farthest-Point Optimization 

In this section we present a new iterative algorithm for generating 

Poisson-disk patterns that have a high minimum distance (bx "" 
0.93) but do not suffer from regular structures. We show that the 

general algorithm runs in O(n log n) per full iteration and always 

converges. We also discuss a variant of the main algorithm that runs 

in O(n) per full iteration and gives results of the same quality. 

3.1 Main Algorithm 

The basic algorithm is very simple : each step takes a single point 

from a set of points X and attempts to move it to a new position 

that is as far away from the remaining points as possible, i.e., the 

farthest point. One full iteration consists of moving each point in X 

once. As we will see, thi s iteration scheme converges, and each full 

iteration increases the average mindist 8x . 

In general, the farthest point fy of a set of points Y is the center 

of the largest circle that can be placed in the domain under con­

sideration without covering any of the points in Y. This largest 

empty circle can be computed efficiently using the Delaunay trian­

gulation V(Y): it corresponds to the largest circumcircle of the tri­

angles in V(Y). An equivalent formulation in terms of the Voronoi 

diagram of Y was used by Eldar et al. 

In our case, to move a point x, we need to inspect the Delaunay 

triangulation (DT) of the remaining points X\ {x}. Instead of cal­

culating the fu ll DT for each point x, we build a fu ll DT once and 

update it dynamically during the iteration: before we move x, we 

remove it from the DT. inspcct the remaining triangles to find the 

farthest point f, and finally reinsert f as a new point into the DT. 

The fu ll algorithm can be formulated as follows. 

FARTHEST-POINT-OPTIMIZATION(X) 

I D = DELAUNAY(X) 

2 repeat 
3 foreach vertex x in D 

4 (I, Tn"lX) = (x, d., ) 
5 DELAUNAY-REMOVE(D, x) 

6 forcach t in D 
7 (c, r) = center and radius of t's circumcircle 

8 if '" > r",,,, 

9 (I, r'",,,,) = (c, r) 
10 DELAUNAY-INSERT(D, f) 
I I until converged 

12 return vertices of D 

We make sure that a point is only moved to a new position if its 

new local mindist, namely r",,,,, would be larger than its old local 

mindist d,,,; otherwise, we simply reinsert it at its old position. 

Figure 2 illustrates how the method successively di stributes five 

points X = {Xl , ... , X5} in the unit torus . Panels la and Ib show 

how the target position for the first point Xl is chosen: we search 

for the triangle in V(X\ {Xl}) that has the largest circumcircle and 

move Xl to the circ le's center. The distance map in the background 

indicates that this is indeed the farthest point. We proceed in the 

same way for X2, ... ,X5, as shown in the remaining panels. 

It is easy to see that thi s farthest-point optimizat ion always con­

verges and yields arrangements with a high average mindist. The 

key observation is that moving a point X to the farthest point of 

X\ {x } maximizes, by definition , its localmindi st 0". In the worst 

case, no better position can be found and X remains at its old po­

sition. Because 8x <X I: 15"" the average mindist must increase 

during a full iteration , so the optimization can never return to a pre­

vious point distribution or get stuck in cyc li c confi gurations. We 
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Figure 2: Geometrical illustration of one full iteration applied to 

5 points in the unit torlls. Each point is successively moved to 

the center of the largest empty circle of the remaining points. The 

grayscale image in the background represents the distance map of 

X\ {xd and reflects the toroidal metric. The dOlled circle is the 

largest empty circle, and the highlighted triangle the correspond­

ing face in the Delaunuy triangulation of X\ {Xi }. 

stop the iteration as soon as the increase of 8x falls below a thresh­

old E, i.e., as soon as 8J-cW - 8~d < E; this must happen eventually 

since 8x is bounded for points in the unit torus. Convergence is fast 

enough that we can use the machine precision for E. 

For the global mindist we have bx = min l'1,e, so we are only guar­

anteed that it is non-decreasing. In fact, it is easy to construct point 

sets where Ox remains constant for several iterations. But Ox is 

strictly increasing as long as all points are sti ll moving. For ran­

domly distributed point sets we found this to be always the case. 

In this case of random seed points, farthest-point optimization con­

verges towards distributions with a mindist bx "" 0.93; a few in­

termediate steps during the optimization of 1024 points are shown 

in Figure I. Since convergence becomes slower as we approach the 

maximum, we have found it useful to stop the iteration earl ier. In 

our experience, a threshold of Ox = 0.925 is a good compromise 

between high-quality results and reasonable computation times. We 

will study the convergence empirically in Section 3.4. 

., .. , .. , . . ... . . , , . . , , . . . , .. , , . .. . . .. .. , . . , ..... .. , ., , . 

. , .. , .. , , . ...... 
.. . , ... . 

.. .. . . , . ,. . ...... , , .. . 

Even though most input point sets converge towards irregular ar­

rangements , some stab le configurations are regular. In the three 

examples above, no point can be moved to a position that is "far­

ther" away from the remaining points. If there are defects in the 

regular arrangements, however, FPO quickly breaks up the regular­

ity. In this sense, FPO doesn ' t actively randomize its input, but it 

amplifi es irregulariti es; thi s intuitively explains why the algorithm 

doesn't converge towards regular arrangements. 

3.2 Runtime Complexity 

Let us consider the runtime complexity of the inner loop in 

FARTHEST-POtNT-OPT IMIZATION. We denote the average degree 

of a point (i.e. , its average number of neighbors in the Delaunay 

triangulation) by 9 and the number of points by n := IXI. The 



runtime of lines 4- 10 can now be broken down as follows: 

4: O(g) since we have to inspect the Delaunay neighbors of x to 

determine d" . 

5: between O (g) and 0 (g2) , depending on the algorithm 

used [Devi llers 2002]. 

6- 9: O(n) since there are O(n) triangles in "D(X). 

10: O(g) if we already know the triangle that contains the point; 

otherwise, between O(fo) and O (logn), depending on the 

algorithm used to locate the triangle [Devroye et al. 2004]. 

We assume that 9 = 0 (1) which is true or conjectured to be true 

for large classes of well-distributed point sets [Erickson 2005] . In 

this case, the overall runtime is O(n) for a single movement and 

0(n2
) for a full iteration. Two algorithmic improvements allow us 

to push thi s down to approximately O(n logn) per full iteration. 

First, we can speed up the process of inserting the farthest point f 
into the triangulation. In our experience, f almost always lies either 

inside the triangle t corresponding to the largest empty circle, or at 

least close to it; thi s can already be seen in Figure 2. Since we 

know t from lines 6- 9, locating and inserting f can be done in 

approximately constant time. 

Second, we can speed up the search for the farthest point by using 

a binary search tree to keep track of the largest empty circle. This 

lets us find the farthes t point in O (logn), but increases the time 

required for lines 4 and 6 also to O(log n) since structural changes 

to the Delaunay tri angulation must be refl ected in the tree. Taken 

together, thi s means that the running time is dominated by the tree 

operations, and the time required for a full iteration is O(n log n). 

3.3 Local Farthest-Point Optimization 

This fin al O (n log n ) algorithm from the previous sec tion is effi ­

cient, but since the tree operations must be intertwined with the up­

date operations of the Delaunay triangulation, its implementation is 

a little involved. As an alternative we can use the fo llowing vari ant 

that only requires O(n) per iteration but converges more slowly. 

The idea behind thi s modified algorithlll is to simplify the search 

fo r the farthest point. When moving a point x, we do not attempt 

to determine the largest empty circle but contend ourselves with 

a large empty circle in the neighborhood of x . In other words, 

instead of checki ng the circumcircle of all triangles in V(X\ {x }), 
we restri ct the search to a subset T C "D (X\ { x } ) that is in some 

sense "close" to x. If the expected size of T is independent of n , 

each point can be moved in 0(1). 

There are many strategies fo r choos­

ing T. In our experience, the choice 

does not influence the qua lity of the 

resulting point sets, only the number 

of iterations. Here, we discuss the 

one that has proven to be a good com­

promise between iterat ion and conver­

gence speed: we include in T all trian­

gles that are incident with the neigh­

bors of x in V (X) (see embedded fig­

ure). Since there are O(l ) such triangles , moving a single point 

can indeed be done in constant time. We will refer to this vari ant as 

local FPO, in contrast to the global FPO from Section 3. 1. 

Since convergence guarantee from Section 3.1 only relied on the 

fact that the local mindist doesn' t decrease, it remains valid in the 

case of the local FPO. However, since the local FPO moves points 

onl y loca ll y, the mindist increases more slowly. Nevertheless, both 
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Method Ox = 0.75 0.775 0.8 0.825 0 .85 0.875 0 .9 0.925 

[Lloyd 1982J 70 11 3 425* 

[Balzer et al. 2009] III 357* 

Local FPO 3 4 6 8 14 27 64 352 

Global FPO 2 2 3 4 6 13 11 8 

<Ix = 0 .75 0.775 0.8 0.825 0.85 0 .875 0.9 0.925 

[Lloyd 1982J 2 3 4 5 8 13 29 122 

[Balzer et al. 2009J 2 2 2 4 10 50 4 14* 

Local FPO I 2 3 10 

Global FPO 2 2 6 

Table 2: Number ofiterafions needed to achieve a certain minimum 

distance dx (top) and average minimum distance 8x (bo ttom). The 

results are averaged valuesfrom optimizing 10 sets of4096 random 

points. (':') indicates that the mindist could /lot always be achieved. 

methods converge towards point sets that are indistinguishable. In 

fact, once the points are suffi ciently well di stributed, local and 

global FPO are equiva lent, since the farthest point of X\ {x} is al­

most always located inside the hole that resulted from re moving x. 

This suggests a hybrid algorithm that uses the global O( n log n) 
algorithm fo r the first few iterati ons and then sw itches to the more 

effi cient O(n) algorithm. In practi ce, thi s has turned out to be the 

fastest vari ant o f farthest-point optimization, but for thi s paper, we 

will keep the discuss ion of the two algorithms separate. 

3.4 Discussion and Evaluation 

In thi s section we empirically study the main properties of the pro­

posed optimization scheme and the point sets it generates. We will 

be primarily concerned with genera l observations and defer practi­

cal applications until Section 5. 

We implemented the global and local FPO using the dynamic De­

launay tri angulations from CGAL [CGAL] , which we ex tended to 

handle toroidal boundary conditions. Despite the ir iterative nature, 

both algorithms are reasonably fast. For 4096 points, one iteration 

takes an average 39 ms for the global FPO and 25 ms for the local 
FPO.] Starting with a random point di stribution, the full optimiza­

tion until dx 2: 0 .925 takes on average 4.7 s (122 iterations) using 

the global FPO and 8.8 s using the local FPO (348 iterations). 

Both algori thms consistently converge towards point sets wi th ex­

cellent blue noise properties. Figure 3 shows a representat ive ex­

ample of the standard spectral measures- power spectrum, radi ally 

averaged power spectrum, and ani sotropy- based on ten FPO point 

sets with 4096 points (for each set lix "'" 0.93). We compare the 

results to pure dart throwing (ox "'" 0 .75) and one state-of-the-art 

method [Balzer et al. 2009]. The spectral properties o f the method 

by Schmaltz et al. [20 I 0] are very similar, but we only had access 

to non-toroidal point sets, which would have skewed the analysis. 

We see in Figure 3 that there is almost no energy around the ori­

gin and no discernible anisotropy for FPO points. By maximiz­

ing the mindist, our method pushes low energy as far as possible 

towards higher frequencies.We also see that the amplitude of the 

radi al power fall s off very slowly. This reflects another kind of un i­

fonnity: for FPO points, the vari ance of the local mindists is very 

small , i.e., 8x "'" dx (see also Table I). As a consequence, not 

only the distance of each point to its direct neighbors is relatively 

constant, but the distance to its second and higher-order neighbors 

becomes very similar too. 

] Perfo rmance measurements were obta ined using a single core ofaXeon 

processor with 2.8 GHz using gcc. 
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Figure 3: Analyzing common spectral properties for point sets generated by pure dart throwing (left), a state-of-the-art method (center), and 

our optimization method (right). Both of our algorithms collsistelltly converge towards point sets with excellent blue properties. There is 

almost no energy around the origin and no discernible anisotropy. Maximizing the minimum distance by our method pushes low enelgy as 

far as possible towards higherfrequencies as indicated by the strong peak at the spatial frequency 1/ dx. 
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Figure 4: Average convergence of bx (solid lines) and 6x (dashed 

lines)for random sets of 512,4096, and 32768 points, from left to 

righl. Th e ill.l'ellnaglli/ie.\· lh e region 0.75 :s: iix :s: 0.95. 

The convergence speed of the global and local FPO is illustrated 

in Figure 4. Both bx and 6x increase rapidly at first and then con­

verge more slowly towards a maximum around 0.932. The achieved 

maximum isn't the same for each set but consistently falls between 

0.93 and 0.933. For both algorithms, the three curves for the av­

erage mindist (dashed lines) lie almost on top of each other. This 

means that convergence of 8x is mostly independent of the num­

ber of points, which underlines how effectively FPO distributes the 

points. The convergence of the mindist (solid lines) depends more 

strongly on the input size, especially for the local variant. 

Finally, Table 2 compares the number of iterations required to ob­

tain well-distributed point sets with Lloyd's method and the algo­

rithm by Balzer et al. It is obvious that both FPO variants are far 

more effective than the other methods at spreading out the points: a 

handl'tli of iterations arc typically sul'licicnt to obtain point scts with 

excellent blue noise properties. These improvements are even more 

significant considering that s tate-or-the-art techniques [Balzer e t al. 

2009; Schmaltz et al. 2010] require O(n2
) per iteration. 

4 Extension: Partitioning a Point Set 

We saw that farthest-point optimizing a point set is a simple strategy 

to increase the minimum distance without introducing regularity. 

But in sampling scenarios other than image plane sampling, thi s is 

often not enough: we also need the union of several sets of samples 

to be well-distributed. A prominent example is direct light esti­
mation or BSDF sampling via trajectory splitting [Arvo and Kirk 

1990]: for each ray traced through the image plane, trace multi­

ple rays towards an area light source or evaluate a BSDF multiple 

times. The overall coverage of the sample space is much better if 

the sample points for each ray and their union is well-distributed. 
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Since a high minimum distance remains desirable for such integra­

tion scenarios [GriinschloB and Keller 2009], we propose an exten­

sion of our optimization strategy that partitions our opti mized point 

sets from the main section into equally sized subsets , each with op­

timized minimum distance. In contrast to existing techniques , such 

as the multi-class algorithm by Wei [20 I 0] which directly generates 

partitioned point sets by dart throwing, we can in fact partition any 

given point set such that each subset is farthest-point optimized. 

4.1 Partition Algorithm 

Let us formulate the problem more formally. We want to 'partition 

a set X of input points into m subsets Yi of size n := IXI/m: The 

points in each subset should be spread out as far as possible, i.e ., we 

need to find n points in X that have maximized minimum distance. 

This can be solved by a process similar to our main algorithm: we 

start with a random subset of n points from X and successively 

move each point to a better position. The main difference is that 

we cannot move points arbitrarily to increase the mindist but are 

restricted to the positions of the points in the base set X. 

To partition the full base set X so that X = Ui Yi , we construct the 

subsets Yi sequentially by first optimiZing Yj considering all points 

in X, then Y2 considering the points in X\Yj , and so on . The full 

algorithm can be formulated as follows. 

FARTH EST-POINT-OPTIMI ZED-PART ITlON(X, {Y;}) 

I D x = DELAUNAY(X) 

2 foreach i in TIl - 1 

3 Yi = n random vertices of D x 

4 Dy = DELAUNAY(Yi) 

5 D ELAUNAY-REMOV E(Dx , Yi) 
6 repeat 
7 foreach vertex y in D y 

8 (I, dJ) = (y , dIJ) 
9 remove y from Dy and insert into D x 

10 foreach vertex z in D x 

J I dz = mindist to any vertex in D y 

12 ifd. > dJ 
13 (I, dJ) = (z, dz ) 

14 remove f from D x and insert into D y 

15 Yi = vertices of D y 
16 until Yi did not change 

J 7 Y,,., = vertices of D x 
18 return {Yi} 

Since the location of the farthest point f is now restricted to an un ­

used point x E X , we maintain two Delaunay triangulations: D x 
for the remaining points in X , and D y for the subset Y i currently 

being optimized (lines 1,4-5). To identify the global farthest point, 
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Figure 5: Partitioning the 1024 pointsfrom Figure 1 into four (top) 

and eight (bottom) subsets of equal sizes. Despite the greedy char­

acteristic of the partition algorithm, most subsets show average 

minimum distances 8x > 0.8. 

we loop over all available points Z E X\Y; and pick the one that 

is farthest from the current selection Yi (lines 7, 10- 13). Keeping 

the intersection X n Y; empty allows us to swap the old point y 

and the fa rthest point f between the corresponding Delaunay trian­

gulations, i.e., remove it from the first and insert it into the second 

(lines 9, 14). Repeating this procedure for all points in Yi con­

cludes a full iteration. Once we have optimized a subset, we repeat 

the process for the other subsets using only the remaining points. 

The optimization of a subset converges when no farther point f E 

X\ Yi can be found for any of the y E Yi; this can be easily detected 

e.g. by sCllin g a flag in linc 13. Since Ui Y; = X , the last subset 

1';n is fully determined by the first Tn - 1 subsets (line 17) and 

therefore does not need to be optimized. 

Analogous to the continuous FPO, the computational complexity of 

a naive implementation of this di screte space algorithm is roughly 

quadratic in the number of points per subset. (The real complexity 

is O(nIXI) per iteration per subset, where IXI denotes the number 

of remaining points after removing each Yi in line 5.) Similar to the 

continuous variant, this can be sped up to O(n log n) per iteration 

(per subset) if we utilize a binary tree that tracks the global farthest 

point and is updated after each insert and remove operation . 

4.2 Discussion 

This FPO-based partition algorithm works as a post process for ar­

bitrary input point sets. Similar to the continuous variant, it is guar­

anteed to converge since eventually the current selection Y, cannot 

be improved by find ing a farther point in X\Y;. 

Figure 5 shows the result when partitioning the 1024 points from 

Figure I into four (top) and eight (bollom) subsets . It can be seen 

that the algorithm's greedy characteristic mostly affects the last sub­

set which is not able to optimize its selection of points. Although 

thi s is not ideal, the greedy approach still generated the overall 

best results among other strategies we experitl1ented with. The first 

rn - 1 subsets are all very uniform and show high average minimum 
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Figure 6: Sampling an. infinite checkerboard. Although the dif ~ 

feren ces are subtle, notice the belle I' edge anti-aliasing (bottom of 

the close-ups) and reduced noise in. regio/1,\' beyond the Nyquistfre­

quency (top of the close-ups) for 0111' point sets . 

distances with most 8y; > 0.8. Our non-optimized implementation 

of the partition algorithm took 97 ms to perform the partition in 

Figure 5 into 8 subsets. Partitioning 16384 points into 16 subsets of 

1024 points takes an average 3.3 s. 

5 Applications 

We already evaluated the general properties of farthest-point opti ­

mized point sets in the main section. We now analyze their quality 

in two important practical applications: image plane sampling and 

numerical integration for physically based rendering. 

5.1 Image Plane Sampling 

We saw that FPO points show excellent blue noise properties. This 

makes them especially su itable for image plane sampling in graph­

ics, where we want the samples to be both irregular (so that aliasing 

is mapped to noise) and of high minimum distance (so that alias­

ing is mapped to high frequencies). We show that this is indeed 

the case using three image plane sampling scenarios shown in Fig­

ures 6, 7, and 8. In each scenario, reconstruction was performed 

using a Lanczos-2 filter and mcan squarc crrors wcrc obtained in 

relation to a reference image using 4096 random samples/pixel. 

Fig. 6 shows the result of sampling the infamous checkerboard. The 

close-ups were chosen so that content both below and above the 
Nyquist frequency is visible in the same image. Although the dif­

ferences are subtle, note the better anti-aliasing along edges and the 

reduced noise in the top of the images. 

The improvement is even more obv ious in the two other fi gures 

which show dedicated scenarios for edge anti-aliasi ng and high fre­

quency sampling. The higher uniformity of FPO point sets notice­

ably improves the rendering of edges in Figure 7, and when sam­

pling the common 2D chirp f( x , y) = (cos(ax2 + L~ y2) + 1)/2 
in Figure 8, our method already produces a very good solution at 

approximately 2 samples per pixel. This is mainly due to a good 

trade-off between noise and moire artifacts since maximizing the 

minimum di stance yields both a high effective Nyquist frequency 

(which lessens aliasing) and very uniform point sets (which yields 

less noise). 

5.2 Numericallntegration 

We now investigate the app licability ofFPO points to numerical in­

tegration problems occurring in physically based rendering [Pharr 
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Figure 7: Sampling a series of circles and lines of different orien­

tation. Increasing the uniformity of point sets via FPO noticeably 

enhances edge anti-aliasing, both visually and numerically. 

and Humphreys 2010], Due to the curse of dimension it is likely 

that point sets with maximized mindist do not improve upon ran­

dom point sets for higher dimensional problems, but for one- and 

two-dimensional problems they promise a noticeable increase in 

convergence speed. As aforementioned, a prominent example is 

direct light estimation by trajectory splitting. The common method 

to generate the corresponding sample points is the Sobol' (0 , 2)­

sequence [Sobol 1967] which has the powerful property that each 

successive set of power-of-2 points is well-distributed (a (0 , m , 2)­

net of low-discrepancy) while their union is also well-distributed. 

We can mimic this property using our partition algorithm from Sec­

tion 4. To this end, we compute an optimized partition of an FPO 

point set. This ensures that each subset is well-distributed and their 

union is a FPO point set with maximized minimum distance. For 

performance reasons we do not perform the optimization procedure 

online but precompute a point set and the necessary partitions. In 

order to ensure that the corresponding integral estimators remain 

unbiased, we can randomly shift the sets on the unit torus (Cranley­

Patterson rotation) which preserves the minimum distance. 

Figures 9 and 10 show results for this procedure which we inte­

grated into PBRT [Pharr and Humphreys 2010]. The simple scene 

is lit by two light sources-one circular area light source and one in­

finite li ght source in form of a HDR environment image- to verify 

that our samples retain their good distribution even after mapping 

them from the unit square to e.g. a disk. The scene is un textured 

so that the remaining approximation error isn't masked. The close­

ups in Figure 9 show the result when utilizing 4 x 4 samples, i.e. , 4 

pixel samples and for each of those 4 secondary samples (integra­

tor samples). The MSE conlirms that FPO points partitioned into 

optimized subsets outperform the low-discrepancy sequence inde­

pendent of the number of samples. For comparison, the plot also 

shows results for two naive variants where either the subsets are 

optimized but not their union ("no partition"), or where the union is 

a FPO point set but where subsets were chosen randomly ("random 

partition"). Obviously, the best result is obtained if both the union 

and the partition are optimized, but overall an optimized total set is 

more important than an optimized partition. 

In Fig. 9 we increased both pixel and integrator samples at the same 

time, whereas we kept their product constant at 16 combined sam­

ples in Fig. 10. Using partitioned FPO samples yields a lower error 

for every combination of pixel and integrator samples. In particu­

lar, the MSE remains roughly constant despite the varying numbers 

of pixel vs. integrator samples. The plot again underlines the im­

portance of the partition procedure. Just assigning good integrator 

samples to each pixel sample quickly becomes inferior to the parti­

tioned results , even at twice the number of combined samples. 

6 Conclusion 

We have presented a new iterative method for optimizing the distri ­

bution of points in the plane. The main feature of the resulting point 

sets is that they are practically optimal blue noise samples under the 
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Maximizing the minimum distance increases the Nyquist frequency 

so that aliasing is shifted to noise of higherfrequency. 

assumption that such point sets should be both irregular and of high 

minimum distance. This re-raises the question of ideal image plane 

sample points as we suspect that it will be hard to increase the min­

imum distance further without introducing regular structures. 

We introduced a variant of this algorithm that allows to partition 

a given point set such that each subset is well-distributed. This 

enables the use of our optimized point in a broad range of numerical 

integration problems occurring in physically based rendering. Even 

though the partition algorithm yields good results, we think there is 

still room for improvement and are investigating other strategies 

than the greedy approach currently used. 

We have only considered the problem of distributing points in the 

unit torus, but the general algorithm directly extends to other geo­

metric arrangements, such as higher dimensions, points on bounded 

surfaces, triangulated domains, or non-Euclidean metrics. Some 

work in this area has been done in the context of non-uniform sam­

pling and remeshing [Moenning and Dodgson 2003; Peyre and Co­

hen 2006] using the strategy by Eldar et aI., but our iterative method 

may prove advantageous for these applications as well. 
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