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Abstract

Fashion plays such a crucial rule in the evolution of culture and society that it is regarded as a second nature to the human
being. Also, its impact on economy is quite nontrivial. On what is fashionable, interestingly, there are two viewpoints that
are both extremely widespread but almost opposite: conformists think that what is popular is fashionable, while rebels
believe that being different is the essence. Fashion color is fashionable in the first sense, and Lady Gaga in the second. We
investigate a model where the population consists of the afore-mentioned two groups of people that are located on social
networks (a spatial cellular automata network and small-world networks). This model captures two fundamental kinds of
social interactions (coordination and anti-coordination) simultaneously, and also has its own interest to game theory: it is a
hybrid model of pure competition and pure cooperation. This is true because when a conformist meets a rebel, they play
the zero sum matching pennies game, which is pure competition. When two conformists (rebels) meet, they play the (anti-)
coordination game, which is pure cooperation. Simulation shows that simple social interactions greatly promote
cooperation: in most cases people can reach an extraordinarily high level of cooperation, through a selfish, myopic, naive,
and local interacting dynamic (the best response dynamic). We find that degree of synchronization also plays a critical role,
but mostly on the negative side. Four indices, namely cooperation degree, average satisfaction degree, equilibrium ratio
and complete ratio, are defined and applied to measure people’s cooperation levels from various angles. Phase transition, as
well as emergence of many interesting geographic patterns in the cellular automata network, is also observed.
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Introduction

Fashion is a very interesting phenomenon that plays a critical

role in economy. Firstly, fashion is a huge industry. Despite the

complication to give a satisfactory definition of the fashion

industry, its global market size is estimated at some two hundred

billion US dollars [1,2]. The importance of the fashion industry

can be further justified by the following facts [1]: fashion industry

‘‘is one of the few industrial segments that have remained a

constant world economy contributor with an annual growth rate

of approximately 20 percent. [...] The luxury fashion sector is the

fourth largest revenue generator in France; and one of the most

prominent sectors in Italy, Spain, the USA and the emerging

markets of China and India. The sector is currently one of the

highest employers in France and Italy.’’ Secondly, fashion serves as

a constant and efficient consumption stimulator. It is well known

that the purchases of most consumer durables are replacement

ones [3]. For instance, the shoes that we buy are usually not our

first ones, the aim that we buy them is to replace our old ones.

However, a not so environmentally friendly fact is that a significant

percentage of replaced products still function very well [3]. It is

becoming more and more popular that people discard their old

possessions not because they fail to meet their physical needs, but

because they are not fashionable any longer. If all people had

purchased new goods only when their old ones were completely

broken, then the world economy would have grown much slower.

Not only in economy, but also behind many phenomena in

society, education, politics, arts and academics, fashion is a factor

that cannot be neglected. A recent research shows that even

charitable donation is a highly subject of fashion [4]. Lars

Svendsen, a famous philosopher, argues that [5] ‘‘Fashion has

been one of the most influential phenomena in Western

civilization since the Renaissance. It has conquered an increasing

number of modern man’s fields of activity and has become almost

‘second nature’ to us. ’’ He believes that fashion deserves serious

studies from philosophers. We are sure that as the post industrial

society [6] is coming to reality for more and more countries, the

practical functions of commodities and human behaviors are

mattering less and less compared with their social functions.

Consequently, fashion is playing an increasingly crucial role.

On what is fashionable, interestingly, there are two almost

opposite viewpoints that are both extremely popular. One point of

view thinks that fashion is a distinctive or peculiar manner or way.

Lady Gaga is regarded as fashionable in this sense. The other takes

fashion as a prevailing custom or style. Fashion color is fashionable

in this latter sense. This difference has a very deep root in

psychology, and reveals that people have various desiring or

enduring levels of to be how different with the others. Following

Jackson [7], we call the former type of people rebels, and the latter

conformists.

The phenomenon of fashion has so far attracted some attention

from the academical realm, mostly in economics [1,8–12].

However, compared with its great importance, this is far from

sufficient.

We shall study fashion through a game-theoretical model, which

is called the fashion game. Formally, each fashion game is represented
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by a triple I~(N,E,T), where N~f1,2, � � � ,ng is the set of

agents, E(N|N the set of edges, and

T~(t1,t2, � � � ,tn)[fC,RgN the configuration of types. For each

agent i[N, ti[fC,Rg is her type: ti~C means that i is a

conformist, and ti~R a rebel. For agents i,j[N , they are neighbor

to each other if and only if ij[E. If ij[E, then ji[E, i.e. the network

is undirected. Ni is the neighbor set of player i, and f0,1g the

identical (pure) action set of all players. We use xi[f0,1g to denote

the action of player i. Given a pure action profile

X~(x1,x2, � � � ,xn), Li(X )(Ni is the set of neighboring agents

that i likes (w.r.t. X ), i.e.

Li(X )~
fj[Ni : xj~xig if ti~C

fj[Ni : xj=xig if ti~R

�

:

Similarly, Hi(X )(Ni is the set of neighboring agents that i

hates, i.e. Hi(X )~Ni\Li(X ). Using j:j to denote the cardinality of

a set, the utility function of player i can be defined naturally as

follows:

ui(X )~jLi(X )j{jHi(X )j:

Utilities of mixed action profiles can be extended as usual. If the

utility of an agent is nonnegative, we say that she is satisfied. An

action profile that all agents are satisfied corresponds clearly to a

Nash equilibrium.

As far as we know, the above fashion game is proposed by

Young ([13], 2001, p.38) and Jackson ([7], 2008, p.271),

independently. Obviously, this game is an extension of the famous

matching pennies game, which is in Table 1.

In fact, in matching pennies, the row player is a conformist, and

the column player a rebel. A special case of the fashion game, a

dyad with one conformist and one rebel, is exactly the matching

pennies game. Just like matching pennies, the fashion game always

has a mixed Nash equilibrium: all agents play half 0 and half 1.

The existence of pure Nash equilibrium, however, cannot be

guaranteed, and it is NP-hard to check whether a fashion game on

a general network has a pure Nash equilibrium or not [14].

Consequently, it is impossible to compute a pure Nash equilibrium

efficiently when it does exist, unless P=NP (i.e. the set of problems

admitting deterministic polynomial time algorithms equals that of

problems admitting non-deterministic polynomial time algorithms,

a statement widely conjectured as impossible to be true. Extensive

discussion of this conjecture can be found in any textbook about

computational complexity).

It is valuable to note that the fashion game, though very simple,

is a typical heterogeneous model. There are two types of players,

and actually three base games played: When a conformist faces a

conformist, they play the pure coordination game; When two

rebels meet, they play the pure anti-coordination game; And when

a conformist confronts a rebel, they are in the exact game of

matching pennies.

It is widely accepted that competition and cooperation are the

two eternal topics in game theory. Zero sum games (or more

generally, constant sum games) are polar examples for competi-

tion. This is why they are also called strictly competitive games (cf. [15],

p.21). Common interest games (a.k.a. team games) are polar

examples for cooperation, where the preference rankings of pure

action profiles for all players are the same. Among the three base

games of the fashion game, the pure coordination game and the

pure anti-coordination game are both common interest games,

while matching pennies is a zero sum game. For general normal

form games, competition and cooperation are both embodied.

This is a kind of vertical hybrid, and is the key observation of [16].

The fashion game, on the other hand, is a kind of horizontal hybrid of

competition and cooperation. This feature determines that the

fashion game has a very special interest to game theory.

The fashion game can be safely classified into network games, a

typical multi-disciplinary field that rests at the intersection of social

economics, social physics, theoretical biology, and algorithmic game

theory [7,17–20]. Studying closely related models, it is a pity that

researchers from different fields seldom cite each other so far.

Although the exact model of the fashion game does not draw much

attention today, there has been a lot of related work. In social

economics, the coordination game, one side of the fashion game,

has been extensively studied [13,21–29]. The other side of the

fashion game, the anti-coordination game, however, attracts very

little attention [30–33]. In the field of social physics, for models

where agents are homogenously conformists or homogenously

rebels, there has been a large number of references, which are

impossible to fully survey here. They are called ‘‘majority game’’ (cf.

[34,35]) and ‘‘minority game’’ (cf. [36,37]), respectively. It is well

known that the minority game has been used to study the financial

and stock market since very soon after its birth. Marsili [38] noticed

early enough that people do not necessarily play the minority game

in stock market, because except for a few ‘‘market fundamentalists’’,

most people are ‘‘trend followers’’. And thus instead, the minority-

majority game is much more appropriate. Following Marsili, there

are a dozen of papers [35,39–46]. Another extensively studied

model that is closely related with the anti-coordination game is the

snowdrift game (a.k.a. the hawk-dove game, see the excellent survey

[18]). Related work in the fields of social learning and opinion

dynamics includes [47–51]. In statistical physics, another similar

model is the generalization of the Kuramoto model with conformist

oscillators and contrarian oscillators ([52–54]). It is valuable to

remark that, in the afore mentioned papers, neither the relation of

their models with the phenomenon of fashion nor the relation with

the matching pennies game is noticed. For recent work on repeated

matching pennies from the perspective of behavioral science, please

refer [55]. A brand new perspective on matching pennies is that it

can be interpreted as a (symmetric) Predator-Prey game [56,57]. A

quite complete literature review of ‘‘Social Influence, Binary

Decisions and Collective Dynamics’’, a classical topic in sociology

and also closely related with this paper, can be found in [58].

The main concern of this paper is, in a world where each agent

is fashionable (in one of the possible two ways), selfish (cares only

about the welfare of her own), extremely naive and myopic (has

only one step memory and does not look forward), and has very

limited information (that of herself and her neighbors), to what

extent can cooperation be reached through social interaction? Will

things be even worse?

Our finding is, in general, quite encouraging: an extraordinarily

high level of cooperation can be reached through a simple

updating rule, the best response dynamic. That is, social interactions

Table 1. The matching pennies game.

H T

H (1,21) (21,1)

T (21,1) (1,21)

doi:10.1371/journal.pone.0049441.t001
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generally promote cooperation (compared with the initial settings

that are uniformly random, i.e. each agent takes action 1 with

probability 0.5 and action 0 with probability 0.5). In very rare

cases, the discouraging result that social interactions prohibit

cooperation can also be observed. Degree of synchronization,

captured by updating probability in the best response dynamic

that will be introduced in the next section, also plays a critical role,

but mostly on the negative side. We remark that the negative effect

of synchronization is observed in [58] too, for the anti-

coordination game on a complete network.

Methods

Most of our conclusions are derived through a two dimensional

(stochastic) cellular automaton. This spatial structure is simple

enough and can serve very well for a first step study. After

discussion of this particular case, more extensive analyses are done

for the more general and more realistic small-world networks [60],

where most of our conclusions are confirmed. Since it is

notoriously hard to rigorously analyze a two dimensional cellular

automaton (even a deterministic one), and the negative result of

[14] tells us that there is no good characterization of the fashion

game, simulation is our natural choice.

Three things need to be clearly stated: the underlying network,

the initial settings, and the updating rule. In this section, we shall

only introduce the particular cellular automata network. Small-

world networks and the corresponding simulation settings will be

introduced in a later section. The updating rule, as well as the four

indices that will be introduced soon, is universal.

Primary simulation settings
The cellular automata network is a special 8-degreed regular

graph. It is a sheet of grids, where each grid stands for an agent.

For each agent, the eight grids that are touching it are her

neighbors (that is, we are taking the Moore neighborhood). The

sheet is finite but unbounded: each leftmost agent has three

neighbors on the rightmost, and each rightmost agent has three

neighbors on the leftmost. Likewise, each uppermost agent has

three neighbors on the lowermost, and each lowermost agent has

three neighbors on the uppermost. Intuitively, we can imagine this

world as a torus. In the next section, all the simulations (except

possibly for the ones in the subsection of Pattern Emergence) are

done on such a torus of size 41|41~1681:
To characterize the initial settings and the updating rule, we

need two parameters: the rebel ratio r and the updating

probability p. They are the only parameters for simulations on

the cellular automata network.

For each initialization, each agent has a probability of r to be a

rebel, and 1{r to be a conformist. This is done for all agents

independently. r~0 is the case of all conformists, and r~1 that of

all rebels. Since the network is quite large, r can be roughly taken

as the percentage of rebels. It is found that the percentage of rebels

matters a lot to the fashion game. For a special instance, the all-

conformist case is completely different from the all-rebel one.

Actions are initialized uniformly, that is, each agent takes an

action of 1 and 0 equally likely (with probability 0.5). Time elapses

discretely. At each time step, each agent checks if she is satisfied with

the previous action profile. If so, her action keeps unchanged.

Otherwise, she switches to the other action with a probability p.

Intuitively, pmeasures the degree of synchronization. p~1 is exactly

the synchronous best response dynamic. When p is infinitely small,

we know that at each step there is at most one agent switching her

action. To be precise, the probability that two or more agents switch

actions is second-order infinitely small (w.r.t. p). This can be roughly

taken as the asynchronous best response dynamic. The introduction

of parameter p allows us to compare the cases of synchronous

updating, asynchronous updating, and all the middle cases. It turns

out that p also matters a lot, usually on the negative side.

Four indices
We use cooperation degree as a main index to measure the level of

cooperation between agents. Formally, the cooperation degree for

any configuration of actions in a fashion game is defined as the

percentage of satisfied agents. Clearly, Nash equilibrium corre-

sponds to an action configuration with cooperation degree of 1.

This index can be roughly taken as an approximation of Nash

equilibrium. Since Nash equilibrium is not guaranteed, this choice

is quite natural. Three other indices are also used, namely average

satisfaction degree, equilibrium ratio, and complete ratio.

The satisfaction degree of any agent is the percentage of

neighbors that she likes. Obviously, satisfaction degree is an

extension of the concept of satisfaction: an agent is satisfied if and

only if her satisfaction is no less than 0.5. The average satisfaction

degree for an action configuration is simply defined as the average

of all agents’ satisfaction degrees.

The equilibrium ratio of a group of simulations is defined as the

percentage of simulations that pure Nash equilibrium is reached.

Recall that pure Nash equilibrium is not guaranteed, and even if it

exists, it may not be reached by the best response dynamic. The

equilibrium ratio also measures the degree of cooperation, because

Nash equilibrium can be treated as stable cooperation. The other

advantage of this index is that when we investigate phase

transition, it is much sharper than cooperation degree and

average satisfaction degree.

Given an action configuration, an agent is said to be completely

satisfied if and only if her satisfaction degree is 1. The complete

ratio of an action configuration is defined as the percentage of

completely satisfied agents.

Simulation size
All results (except for Fig. 4 and Fig. 5) in the next section are

based on 420 groups of simulations: the rebel ratio r takes 21

values, 0, 0.05, 0.1, � � � , 1, and the updating ratio p takes 20

values, 0.05, 0.1, � � � , 1. For each of the 420 combination of

parameters, 10 simulations are done. For each simulation, it is

stopped at the 500-th step. For each combination of parameters,

we display the average of the corresponding 10 final values.

It may seem at the first sight that stopping at the 500-th step and

taking an average of only 10 simulations are not sufficient for such

a large network. However, it turns out that this is enough, because

the dynamic is surprisingly both fast and robust.

Main Results

Cooperation degree
First of all, let’s calculate the expected cooperation degree of the

initial configuration. This value is equivalent to the probability that

an agent is initially satisfied. Since each agent has 8 neighbors in

total, and she is satisfied if and only if the number of agents who take

the same action as she does is at least 4 when she is a conformist, and

at most 4 when she is a rebel, and each agent takes an action equally

likely from f0,1g, we know that this probability is

(1=2)8(C8
8zC7

8zC6
8zC5

8zC4
8 )~(1=2)8(C0

8zC1
8zC2

8zC3
8zC4

8 )

~163=256 ¼
:
0:64:

The average of the 420 cooperation degrees in our simulations

is calculated to be 0.97. The 420 values are displayed in the color

map of Fig. 1, where different colors represent different values, as

shown in the right bar.

Fashion and Cooperation
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The most prominent observations from Fig. 1 are as follows.

(1) For most parameter combinations, stable cooperation, i.e. a

pure Nash equilibrium, can be reached. This tells us that although

pure Nash equilibrium cannot be guaranteed generally, it does

exist for most cases in the cellular automaton world, and it can be

reached by simple adaptive dynamics: best response dynamics. We

remind the reader that, for general games, even if pure Nash

equilibrium exists, there is no general simple adaptive dynamic

that always leads to one [61]. The only theoretical result we know

is that best response dynamic (in fact, better response dynamic)

always leads a potential game to a pure Nash equilibrium [62].

However, the fashion game is not a potential game, even in the

cellular automaton structure. This is because pure Nash equilib-

rium is guaranteed in potential games, which is not true in the

fashion game.

It is also valuable to remark that for the synchronous best

response dynamic (i.e. p~1), it may not lead the fashion game to a

pure Nash equilibrium, even if it exists. In fact, this always occurs

when all agents are rebels (a case which is a potential game and

thus guarantees the existence of a pure Nash equilibrium, cf. [30])

and they take the same action initially. It is obvious that at each

step, no agent is satisfied, and thus all agents switch to the other

action simultaneously, leading to the other state where no agent is

satisfied either. The configuration will oscillate between the two

extreme states, and no agent is ever satisfied at all. This illustrates

the most terrible situation that no one wants to see. Synchroni-

zation, of course, plays a critical role. In fact, asynchronous best

response dynamic (i.e. p is infinitely small), as shown in Fig. 1,

leads to a pure Nash equilibrium almost surely, and for any pv1,

the corresponding best response dynamic leads to a pure Nash

equilibrium with a positive probability. This will be explored more

extensively in later subsections.

(2) Taking into account the fact that the network size is 1681

and in most cases the best response dynamics converge within 500

steps, the convergence is remarkably fast.

(3) Bad cooperation occurs only when the percentage of rebels r

and the updating probability p are both high. To investigate this

more clearly, we put the upper-right corner of Fig. 1 in another

way, as shown in Fig. 2.

It can be observed that the cooperation degree is always a

decreasing function of the rebel ratio, which means that when the

degree of synchronization is high, rebels, in general, are a block for

cooperation. This is consistent with the theoretical results that

when all agents are conformists, stable cooperation is always

possible (i.e. pure Nash equilibrium exists), but when a portion of

rebels are added, this may not be true. It can also be observed that

higher probability of updating in general (but not always) means

worse cooperation. This is also consistent with our argument in (1),

i.e. asynchronization is better than synchronization. These

observations will be further justified by more extensive simulations

of the next subsection.

(4) For some combinations of parameters (upper-right corner of

Fig. 1), the final cooperation degrees can be even worse than the

initial ones. This tells us that best response dynamics with high

updating probabilities may not be always good for the whole

system, even if updating itself is costless (i.e. agents don’t pay for

switching actions).

Average satisfaction degree
Since the initializations of all agents are independent, it is

obvious that the initial expected average satisfaction degree is 0:5.
Fig. 3 is also based on the same 4200 simulations, where each

simulation is terminated at the 500-th step. However, only

Figure 1. Cooperation degree. The fashion game can reach high degree of cooperation through best response dynamics.
doi:10.1371/journal.pone.0049441.g001
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11|21~231 values are displayed, each as an average satisfaction

degree of 10 corresponding simulations.

Below is the analysis of this figure.

(1) In most cases, the average satisfaction degree is rather

promising. In fact, the overall average satisfaction degree (i.e.

average of the 231 values) is 0.73, much higher than the initial

expected value of 0.5. This is consistent with our observations in

the last subsection, and justifies our claim once again that, in

general, various best response dynamics can promote cooperation.

(2) The overall average satisfaction degree, 0.73, is not that high

compared with the overall cooperation degree, 0.97. This is not

surprising, because even if the cooperation degree is 1, it is very

unlikely for the corresponding average satisfaction degree to be 1,

in which case it must be that all agents are completely satisfied.

If the above perfect situation occurs, we say that perfect cooperation

is obtained. Perfect cooperation can only possibly be obtained in

one extreme case: the all-conformist case (r~0). This deepens our

observation in the last subsection in a way that in most cases,

almost all agents are satisfied, not completely satisfied, but satisfied

to some degree. We remark that in the all-rebel case (r~1), the

configuration where every agent gets complete satisfaction in

general does not exist, although pure Nash equilibrium is

guaranteed. To be precise, in the all-rebel case, the configuration

where every agent is completely satisfied exists if and only if the

graph is bipartite. Unfortunately, the two dimensional cellular

automaton with Moor neighborhood is not bipartite (there are

cycles of length three). However, the two dimensional cellular

automaton with von Neumann neighborhood, i.e. each agent has

exactly four neighbors, is indeed bipartite.

(3) In the all-conformist case, perfect cooperation is not

attainable through best response dynamics. In this case, there

are two focal equilibria, i.e. all agents taking action 1 and all agents

taking action 0, and they are both perfectly good. However, it is

very unlikely for simple dynamics to lead the system to them. It is

imaginable that perfect cooperation is hugely hard, and the main

obstacle comes from the underlying network. When the network is

a complete graph, it may be not that hard to reach perfect

cooperation.

(4) Fortunately, in the very case that all agents are conformists,

the real equilibria reached through best response dynamics are

good enough. The average satisfaction degree is shown to be 0.96.

In fact, we will show later that the equilibrium states when all

agents are conformists are usually composed of impressively

large‘‘continents’’, and the agents that are not completely satisfied

all sit on the coastlines.

(5) In most cases, the average satisfaction degree is not sensitive

to the updating probability p, unless p and r are both large

(pw0:8,rw0:5). In fact, the eight curves for r~0:1, � � � ,0:8 are

almost identical. This is consistent with the observations of the last

subsection. However, cooperation degrees are monotonic there,

always approximately 1. Here, the average satisfaction degree, as a

function of rebel ratio, is richer and more interesting. In this sense,

the fact that (in most cases) the average satisfaction degree is

insensitive to updating probability is much more striking than that

(in most cases) the cooperation degree is insensitive to updating

probability.

(6) In most cases (pv0:8), average satisfaction degree is a

convex function of the rebel ratio r, and reaches its lowest value

0.68 at 0:5. This says that the case where there are equally number

of conformists and rebels is the most difficult situation to

cooperate.

This is intuitively reasonable, because an edge between a

conformist and a rebel always contributes 0 to exactly one of the

agents. The number of these inter-type edges is expected to reach

its maximum when r~0:5. In fact, the very special case where

every agent has four conformist neighbors and four rebel ones has

exactly an average satisfaction degree of 0.5. Having this in mind,

and considering that the expected initial average satisfaction

Figure 2. Bad cooperation. Cooperation degree is a decreasing function of rebel ratio r when p is large.
doi:10.1371/journal.pone.0049441.g002

Fashion and Cooperation

PLOS ONE | www.plosone.org 5 January 2013 | Volume 8 | Issue 1 | e49441



degree is also 0.5, the final value of 0.68 is really not disappointing

at all. The property that average satisfaction degree is decreasing

when rv0:5 and increasing when rw0:5 is easy to understand.

The convexity of this function, however, is not that intuitive. As to

why the satisfaction degree of the all-rebel case, 0.71, is much

lower than 0.96, the satisfaction degree of the all-conformist case,

remember the remark we give in (2). The particular value of 0.71

will be revisited later.

(7) For large p and large r, the average satisfaction degree can be

rather low, and may be even much lower than the expected initial

value, 0.5. This is consistent with our observations in the last

subsection.

(8) When rw0:5, the average satisfaction degree is an increasing

function of r for small p, and a decreasing function of r for large p.

This reflects that there may be some phase transition for p, which

will be explored more extensively in the next subsection.

Phase transition
To explore the possible phase transition, we did more careful

simulations. Our main worries are that (i) 500 steps may not be

enough for the cases where p and r are both large to reach a

relatively stable state, and (ii) 0.05, the difference between any two

adjacent ps we take, is too rough for observing phase transition.

Based on the above two worries, we change the simulation settings

to allow each simulation run 5000 steps, and ps are taken more

densely. To be precise, we investigate 41 ps: 0.8, 0.805, � � � , 1, and
5 rs: 0:5,0:6, � � � ,1. For each of the 41|5~205 parameter

combinations, we take 10 simulations and calculate the average

cooperation degree. The results are displayed in Fig. 4.

Fig. 4 shows that phase transition does exist, especially for large

rs: cooperation degree drops from 1 to a very low level within a

small change of p. We put the all-rebel case in another way as in

Fig. 5, where the index of cooperation degree is replaced by the

equilibrium ratio.

Figure 3. Average satisfaction degree as a function of rebel ratio.
doi:10.1371/journal.pone.0049441.g003

Figure 4. Phase transition of cooperation degree in p.
doi:10.1371/journal.pone.0049441.g004
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Fig. 5 shows that when all agents are rebels, Nash equilibrium

can always be reached through best response dynamics if the

updating probability pv0:85. However, once p exceeds 0:9, it can
never be reached. Within a 5 percent fluctuation of p, the

equilibrium ratio drops down sharply from 1 to 0. This is really

striking, and we believe that it can be treated as a significant phase

transition. The all-rebel case will be explored more deeply in the

next subsection, where we shall see that regular patterns emerge

steadily regardless of whether Nash equilibrium can be reached or

not.

Pattern emergence
We show first the all-conformist case and then the all-rebel case.

In the figures below, each agent is represented by a small square

(for conformists, it is simply a square; for rebels, there is a dark

triangle in this square), red means that the corresponding agent

chooses an action of 1 and green of 0.

We call the set of agents that are connected and share the same

action a ‘‘continent’’. A torus with any configuration can be

decomposed into continents. Fig. 6 shows that toruses with initial

configurations have only relatively small continents. However,

continents in the stable configurations arrived through best

response dynamics are in general impressively large. When the

torus is small, the largest continent can even cover more than a

half of it. Obviously, an agent is completely satisfied if and only if it

is in the inner part of some continent, and incompletely satisfied,

or unsatisfied, if and only if it is on the ‘‘coastal line’’, i.e. the

boundary of some continent. It can be proved trivially that

complete ratio, i.e. the percentage of completely satisfied agents,

for any initialization is expectedly (0:5)8 ¼
:
0:0039. Large conti-

nents in the stable configurations imply that the final complete

ratio is high. In fact, calculation shows that this value in our

simulations (r = 0) is in general larger than 0.5. This tells us that if

we consider the index of complete ratio as the coordinating ability

of best response dynamics, the result is still rather optimistic.

‘‘Lakes’’, i.e. small continents resting in bigger ones, can also be

observed.

Next, let’s turn our attention to the all-rebel case, i.e. r~1. An

amazing property of this case is that ‘‘mazes’’ frequently emerge.

This is shown clearly in Fig. 7. If an agent is on the ‘‘street’’ of a

maze, rather than on the corner, then she has two neighbors

taking the same action as she does, and six ones taking the opposite

action. Thus, her satisfaction degree is 6=8~0:75. Since almost all

agents are on streets, and only a few ones on corners, this explains

the overall satisfaction degree 0.71 for r~1 and pƒ0:8 in Fig. 3

very well.

It should also be noted that every agent in the maze is satisfied,

and thus a maze corresponds to a Nash equilibrium. When r~1,

mazes emerge definitely for pƒ0:85, and never occur for pw0:9.
This is also implied in Fig. 5. For updating probabilities between

0.85 and 0.9, mazes occur with some positive probability strictly

less than 1. It can also be observed that the lengths of streets in

mazes generally increase as p increases.

The last part of this subsection is devoted to the emergence for

the cases that r~1 and Nash equilibrium is not attainable through

best response dynamics, i.e. pw0:9.
As shown in Fig. 8, regular patterns such as strips (straight ones

as well as declining ones) and continents can be frequently

observed. Since rebels don’t like her neighbors to take the same

action as she does, this is not a good thing. And this explains also

why the cases that rebel ratios and updating probabilities are both

high behave so badly in Fig. 1–5. An extremely terrible situation is

the one showed at the upper left corner of Fig. 8, where almost all

agents, except for very few ones (this number is expectedly equal to

(1{p)|s, where s is the size of the torus), are completely

unsatisfied. The patterns we display in Fig. 8 are the only ones. We

note that small wheels can also be frequently observed when r~1

and p~1:
It you check really carefully the lower three pictures in Fig. 8,

you will find that there are only two types of rebels, i.e. the ones

that keep switching their actions and the ones that never switch.

This means that the lengths of limit cycles of synchronous best

response dynamics in our model are always 2. To put it another

way, synchronous best response dynamics will eventually lead the

system to oscillate between two states. The lower left state and the

lower middle one in Fig. 8, in fact, compose such a pair. This is

consistent with the theoretical observation of Cannings [35] that

synchronous best response dynamic always lead a system with all

Figure 5. Phase transition of equilibrium ratio in p. r = 1.
doi:10.1371/journal.pone.0049441.g005
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rebels to a limit cycle of length 1 or 2, regardless of the structure.

Limit cycles of length 1, i.e. Nash equilibria, however, are never

observed by us. This does not mean that they do not exist at all,

but that they are really rare. Initial configurations that will

eventually reach a Nash equilibrium, can be easily designed. For

the simplest instance, we can let the initial configuration be an

equilibrium.

Size=41X41 Size=101X101 Size=201X201

Figure 6. Emergence of continents. r = 0, p = 0.5. The upper three are initial configurations, and the lower three are the corresponding stable
ones.
doi:10.1371/journal.pone.0049441.g006

I nitialization P=0.2 P=0.4 P=0.6 P=0.8

P=0.85 P=0.86 P=0.87 P=0.88 P=0.89

Figure 7. Emergence of mazes. r = 1, size = 41|41.
doi:10.1371/journal.pone.0049441.g007
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Up to now, we have discussed the emergence of regular patterns

in the two extreme cases either with all rebels or with all

conformists. For the cases in between, similar patterns can be

observed too. In a word, there exists a spectrum and the patterns

change over r continuously. When the rebel ratio r is close to 0,

the patterns are more like those in the all-conformist case, and as r

tends to 1, the patterns are more similar to those in the all-rebel

case. But when r is near 0.5, the patterns are quite blurred (we can

also say that in these cases there is no pattern at all). What’s

definite is that when rv0:2 or rw0:8, the patterns are rather clear
and steady.

All the results of this subsection are obtained with the assistance

of the excellent multi-agent programmable software NetLogo [59],

and our program can be mailed at request.

Results on Small-World Networks

To check that whether the results discussed in the last section,

which are derived from a rather special network, are still valid in

more realistic networks, we did more simulations on small-world

networks proposed by Watts and Strogatz ([60]). The conclusion is

quite promising: to a great extent, our results are rather robust,

they are still valid for the more realistic small-world networks.

Needless to say, we are unable to discuss the pattern emergence

results, because they rely on geographic locations that do not exist

in small-world networks. And not surprisingly, we are not able to

give convincing explanations to several results as to why they are

like that. For instance, we cannot give a similar explanation as to

why the average satisfaction degree is 0.71 for the all-rebel case.

Small-world networks are widely accepted as excellent mimics

of the real social networks. The idea of Watts and Strogatz’s

algorithm to generate an arbitrary small-world network is to derive

it from a regular network through ‘‘randomly rewiring’’ some

edges. Roughly speaking, there is a uniform rewiring probability,

which is denoted as q in our paper (p in the paper of Watts and

Strogatz), for each of the original edge to be severed and replaced

by a random edge (however, one endpoint of the new edge must

be taken from the two old ones). The advantage of introducing q is

that it captures the degree of randomness of the corresponding

network: Larger q implies more randomness. When q~0, the

network is regular, as in the last section of our paper, and when

q~1, the network is completely random (an approximation of the

classical ER random network). This gives us a new angle to study

the fashion game, i.e. how randomness affects the cooperation

level of agents.

While there are only two parameters in the simulations of the

previous section, namely rebel ratio r and updating probability p,

there are four in this section. In addition to the two old ones, there

are two new ones, network density (i.e. average degree) k and

rewiring probability q. In our simulations, the network size is fixed

at 200, and (1) the network density k takes six values: 8, 18, 28, 38,

48 and 58, (2) the rewiring probability q takes 11 values evenly

from 0 to 1, (3) the rebel ratio r takes 11 values evenly from 0 to 1,

(4) the updating probability p takes 10 values evenly from 0.1 to 1.

For each combination of parameters, the result is based on the

average of 10 simulations, and each simulation is terminated at the

500-th step, as set in the previous section.

Calculation shows that the overall cooperation degree is 0.80.

This value, though much lower than the corresponding one (0.97)

for the cellular automata network, is still promisingly high,

confirming our main result that, in fairly general and realistic

scenarios, agents in the fashion game can reach high level of

cooperation through the simple best response dynamic.

It can also be observed from Fig. 9 that, for all the six cases with

different network densities, rewiring probability q always plays a

negative role at small values (less than 0.1). But once exceeding the

threshold of 0.1, increasing q will be good to the cooperation

degree, though the increasing speed of the right part is much lower

Figure 8. Emergence of strips, continents, and wheels. r = 1. p = 0.98 for the upper three pictures, and p=1 for the lower three.
doi:10.1371/journal.pone.0049441.g008
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than the decreasing speed of the left part. The maximum values of

cooperation degrees are always obtained at q~0, and the values at

q~1 are only a little bit smaller than the maxima. This tells us that

randomness of networks plays some very interesting role.

Completely regular networks are the best of all for reaching high

degree of cooperation, completely random networks are only a

little worse, and networks with a relatively low randomness of

about 0.1 are the worst of all.

Fig. 9 indicates also that high density is always an obstacle for

cooperation degree. Intuitively, this is not hard to understand: the

more neighbors you have, the harder for you to cooperate.

Since the cellular automata network we study in the previous

section is both completely regular and with a low density, no

wonder that we observed an amazingly high degree of coopera-

tion.

Now let’s turn our attention from cooperation degree to another

index, the average satisfaction degree. As discussed for the cellular

automata network, this index is always much smaller than

cooperation degree. Calculation shows that its overall average

value is 0.6, still significantly higher than the initially expected

value of 0.5, and confirms our claim again that best response

dynamic promotes cooperation. As for the index of cooperation

degree, high density of networks plays a negative role for average

satisfaction. This effect is also quite robust. The effect of rewiring

probability q, however, is unclear for low density networks

(k~8,18,28). For high density networks (k~38,48,58), its effect

is steadily negative. An interesting observation from the network

with density k~58 is that, if we let q grow from 0.1 to 1 and

compare the index of cooperation degree and that of average

satisfaction degree, we can find that the former index increases

while the latter one decreases slowly. In this process, more and

more agents are satisfied, but their average satisfaction degree

becomes worse. This implies that more and more agents must

have behaved compromisingly, leading the society to more

equality. To put it another way, in the case that the network is

highly dense and not so regular, adding randomness (or decreasing

regularity) of people’s interactions can improve equality of the

society.

It is valuable to remark that if we abandon the normalization in

the definition of average satisfaction degree, i.e. define the absolute

satisfaction degree of each agent as the number of neighbors that

s/he likes, then we could find that adding density to people’s

interaction networks would be a good thing in general. This is not

surprising, because having more neighbors means that you have

more chances to get rewarded from interacting with them (notice

that in the above argument the disadvantage from neighbors is not

calculated).

As to the other two indices, i.e. equilibrium ratio and complete

ratio, which are auxiliary in this paper, their overall average values

are 0.45 and 0.09, respectively. Considering their definitions, these

values are not low at all. The effects of rewiring probability q and

network density k, however, are not stable on neither of them.

Let’s consider next the effects of rebel ratio r and updating

probability p. The simulation results, which excellently confirm

our claims for the cellular automata network that high updating

probability is always bad for cooperation and high rebel ratio is

also bad when p is large, are displayed in Fig. 10. When p is small,

the effect of r on cooperation level is roughly a pattern of ‘‘V’’.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 9. Effects of rewiring probability q and network density k on cooperation degree and average satisfaction degree. The
horizontal axis is for the rewiring probability, solid blue lines for cooperation degree and dashed red ones for average satisfaction degree. Different
densities of k~8,18,28,38,48,58 are represented by 0, |, z, � , %, and %, respectively.
doi:10.1371/journal.pone.0049441.g009
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This pattern can also be observed for the cellular automata

network in Fig. 3. For small-world networks, however, it is much

more significant, especially if we only concentrate on the index of

equilibrium ratio. This result is plausible because in the two

extreme cases with all conformists or all rebels, Nash equilibrium

can always be guaranteed, but not in other cases. And the more

balanced the proportion between conformists and rebels, the more

difficult it is to reach a Nash equilibrium or a high average degree

of satisfaction. It is quite remarkable that updating probability p

has absolutely no effect at all to the index of complete ratio. This

ratio is very high for the case with all conformists. However, once

the rebel ratio r increases a little bit, it drops down dramatically,

and then, very soon, approximates zero.

Phase transition of equilibrium ratio is also confirmed in the

more general settings, as displayed in Fig. 11. It should be noted

that significance of this phenomenon is negatively correlated with

the rewiring probability q. For completely regular networks (q~0),

phase transition is rather significant. However, as randomness of

the network grows, this phenomenon becomes less and less

significant. In fact, when q is larger than 0.3, it is farfetched to call

them phase transitions any more. Since the cellular automata

network is completely regular, no wonder that we observed a

beautiful phase transition.

Discussion

The fashion game is investigated in this paper through

simulations. Our focus is on cooperation of agents. To study this,

various indices are used, namely the cooperation degree, the

average satisfaction degree, the equilibrium ratio, and the

complete ratio. Our finding is quite promising: in most cases,

agents can cooperate rather well through best response dynamics.

It tells us also that the interaction structure matters a lot.

Considering that these dynamics are really simple, agents are

selfish, myopic, naive, and have very limited information, this

finding is fairly surprising.

It is valuable to note that small-world networks used in the last

section are generated by the original algorithm of Watts and

Strogatz. This algorithm, though extremely popular and widely

accepted, does not take the cellular automata network but a ring

type regular network as the benchmark network (p~0). As

suggested by one anonymous referee, it is natural to take the

cellular automata network as the benchmark network. This

Figure 10. Effects of rebel ratio r and updating probability p on cooperation degree (Top-Left), average satisfaction degree (Top-
Right), equilibrium ratio (Bottom-Left), and complete ratio (Bottom-Right). All horizontal axises represent rebel ratio r.
doi:10.1371/journal.pone.0049441.g010
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treatment will bridge the two kinds of networks we study

seamlessly. We call networks generated in this way the modified

small-world networks. For these modified small-world networks

(with density k~8), we did the same group of simulations as in the

previous section. For technical reasons, we didn’t take the network

size so large as for the cellular automata network (recall that the

size there is 1681), but a normal size of 441, about twice the size

we used in the previous section for the original small-world

networks (200). We made a comparison between the original and

the modified small-world networks. It turns out that, as shown in

Fig. 12, the two groups of networks make no meaningful difference

for three of the four indices. This might indicate that, compared

with network density and randomness level, details such as how

they are actually connected matter very little. Of course, this

broader guess should be confirmed or falsified by more extensive

simulations, and related further studies include how degree

distribution and clustering coefficient affect agents’ behavior and

consequently their cooperation level in the fashion game. Network

size, though does not affect cooperation degree, average satisfac-

tion degree, or complete ratio significantly, also as shown in

Fig. 12, it may well matter a lot to equilibrium ratio. And the effect

must be on the negative side. This is intuitive, because the

definition of an equilibrium is quite restrictive. As long as there is

one agent that is unsatisfied, an action profile cannot be an

equilibrium. This possibility increases as the network size grows.

In this paper, we mainly focus on the overall cooperation levels,

i.e. the macro side. For further research, it is also meaningful to

investigate the micro side of the fashion game, i.e. how the payoffs

of agents are affected by their status in the networks, measured by

various centrality indices, say their degree centralities, their

betweenness centralities, their closeness centralities, and their

clustering coefficients. To study these problems, the utility function

as defined in the introduction part of this paper should be given at

least equal attention as the satisfaction degree.

Another obvious direction is to study the kind of realistic

network, scale-free network [63]. ‘‘Homophily’’, a basic observa-

tion from the real world that ‘‘birds of a feature flock together’’, is

attracting more and more attention recently (c.f. [64,65]), and also

deserves the discussion of its effect on the fashion game. It is

natural to conjecture that cooperation level is positively correlated

with homophily level. Throughout this paper, we have assumed

that the initial settings are uniformly random, that is, each agent

takes action 1 with probability 0.5 and action 0 with probability

0.5. It is interesting to consider nonuniform initializations, say

action 1 is biased. Another interesting future direction is to take

into account the possibility of network formation, where forming a

new link (or severing an old one, or both) is an extra strategy of
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Figure 11. Phase transition of equilibrium ratio in updating
probability p in small-world networks (k~8,r~1). The horizontal
axis is for p.
doi:10.1371/journal.pone.0049441.g011
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each agent. Assuming that there is a cost to this new strategy, it is

very meaningful to study the co-evolution of cooperation level and

network structure.
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