
FAST 2-D DISCRETE COSINE TRANSFORM
MARTIN VETTERLI

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

Abstract

16, Chemin de Bellerive
CH-1007 LAUSANNE, SWITZERLAND

The DCT becomes:

N-I
DCT(k1,k2,N)= =8

N—I 27t(4n+l)k 27t(4n+l)k
y(ri ,n2).eos(4N)C0 4N) (3)

02=8

1538 CH2118-8/85/0000-1538 $1.00 © 1985 IEEE

Using basic trigonometry, this can be rewritten as phasors
times real and imaginary part of a 2-D DFT. We use the
following shorthands:

N-I N-I
2Tt(nk+n2k)

cos-DFT(k1,k,,,N)
=

y(n1,n2).cos(N-
njO n2=0

N—I N—i 2lt(nk+2k)sin—DFT(k,k,N) = y(jI2).j(N
111=0

whIch correspond to the real and imaginary part of a 2-I)
DFT. Equation (3) becomes:

21t(k1+k2)
DCT(k1,k2,N) = l/2 [cos(4N).cos—DFT(k1,k2,N)

21f(k1.i-k2)
— sin(4N)sin—DFT(k1,k2,N)

23t(k1-k5)+ — 4N)cos-DFT(k1,N-k2,N)

2Jt(k1—k2)
— SiIl(4N)-sin—DVf(k1,N—k2,N) 1 (5)

Now, we note that DcF(k1k2,N), DCT(N-k1k2.N), DCT(k1.N-k2.N)
and DCT(N-kj,N-k2.N) can be derived from the corresponding
cos- and sin-DFTs by 2 plane rotations and some additions as
follows:

A fast radix-2 two dimensional discrete cosine transform
(DCT) is presented. First, the mapping into a 2-D discrete ________
Fourier transform (DFT) of a real signal is improved. Then
an usual polynomial transform approach is used in order
to map the 2-D DFF into a reduced size 2-D DFF and one
dimensional odd DFFs. Finally, optimized odd 0FF
algorithms for real signals are developped. Ailtogether, a
reduction of more than SOZ in the number of
multiplications and a comparable amount of additions is
obtained in comparison to other algorithms.

I Introduction

Block coding using the two dimensional discrete cosine
transform is widely used in image data compression [1].
Usually, a small block (typically 8 by 8 or 16 by 16) is
transformed and an appropriate bit allocation is made in the
transform domain.
One approach to the 2-D DCT computation uses the
separability property and computes a DCT of dimension
NbyNas2NDCT'sofNwhichcanbe computedbyoneof
the known fast algorithms [2,3]. The other approach consists
in computing directly the 2-D transform by means of
polynomial transforms and was first proposed in [4,5], restated
in [6] and applied in [7]. Our method is also a direct
approach to the 2-D problem. The DCF of N by N is mapped
into a real DFT of N by N followed by post-multiplications.
These post-multiplications are shown to be rotations, thus _______
reducing the required number of operations. The real DFF is
evaluated through polynomial transforms where the fact that
the data is real is taken into account, specifically by
developping an optimized real odd DVF algorithm.

II Evaluation of the DCT from a DFT
First we consider the mapping from DCT to DVF and the
optimization of the resulting post-multiplications. Assume a
real signal x(nj,n2) of dimension Nx}l. The 2-I) DCI' is defined
as: DCT(k1,k2,N) 1 0 1 0

R(k,k2)O
N—i N-I

21t(2n1+i)k 27t(2n2+i)k DC'l'(N—k1,k2,N)
1 0 1 2

DC1'(k1,k2,N)=E I2)cos(4N 2) (1)
DC'F(k1,N-k2,N)

1 0 —1
1

02R.(k,-k)
In the following, we assume N to be a power of 2. Using the DCT(N-k1,Nk2,N 1 0 1 0
mapping introduced in [3] and then in [9] given by:

where:

y(nj,n2) x(2n1,2n2) n1=O..N/-1, n2.O..N/2-1 0 8

= x(2N—2n1—l,2n2) n1N/2..NI, n2=O..N/2-i 02 = R(k1,k2) =

= x(2n1,2N—2nrl) nj—O..N/2-1, n2N/2..N-1 0 0

= x(2N—2a1—1,2N—2n2-1) a1.=N/2..N-I, u2'N/2..N-i (2)

40.8.1

cos-DFT(k ,k ,N) 112
sin—DFT(k ,k N) I

1 2'

cos-DFF(k ,N-k ,N)l
1 2

sin-DFT(k ,N—k N) I
1 2' J

(6)

(7)

Since R(k1,k2) is a rotation matrix whose product with a x(n1,n2) + x(ii1,n2+N/2) + x(n1+N/2,n2) + x(n1+N/2,n2+N/2) (15)
2-point vector requires 3 mults and 3 adds [9], the evaluation
of (6) requires a total 6 mults and 10 adds. Since (6) has to
be evaluated for k1 and k2 going from 0 to N/2-1. and When k1 is odd and k2 even, (9) can be rewritten, similarly
taking into account all simplifications (eg. kj k2), the load to (10-12), as
for obtaining the DCT from the real DPI' is:

3N2/2 — 2N mu. 5N2/2 — 6N + 2 ad. (8)

While the development above is quite cumbersome, it should X(k1,2uk1) X(z) Mod(z_Wki) k1 odd (16)be noted that, especially for small transforms, the
post-multiplications dominate the computational load. N-I
particularly for multiplies (Ex. 8x8 DCT: 24 multiplications for where Xk(z) X(z) Mod(zN/2 + 1) u=O..N/2—1 (17)the real DPI' and 60 for the post-multiplications).

N/2-I

UI 2-D Real DFT Calculation using and X(z) = [x(nj,n2) + x(n1,n2+N/2)
Polynomial Transforms =0

—
x(n1+N/2,n2)

—
x(n1+N/2,n2+N/2)] zi (18)

The real DPI' will be computed using polynomial transforms in
a way described in [5,10] to which we refer for details, Below.
the main steps are simply recalled. We want to evaluate: We note that (17) is a length N/2 polynomial transform with

a root z2 defined modulo (N/2 + 1) which can be computed
similarly to (13) using N2/2(log2N-1) real additions when

N-i N-I X(k1,k2) is real. Note that (15) and (18) require together N2
X(k1,k2) = x(n1,n2) WIlki W12k2 W e'0l1' (9) additions. At last, (16) can be rewritten as (14). and thus

evaluated as N/2 odd DPI's of length N/2.

Where N = 2m. Since x(n1,ri2) is real, X(k1k2) is equal to All together, the real DPI' of N by N has been mapped into
[X(N-k1,N-k2)], • denoting complex conjugates. 3N/2 odd DFTs of length N/2 on real data and a real DPI' of

N/2 by N/2, at the cost of 3N2/4 log2N+5N2/4 real additions.
For k2 odd, equation (9) can be written as [5]:

W Computation of the real odd DFT's
X(k1,k2) X(z) Mod(z — Wk2) k2 odd (10)

The length-N odd Dfl's required for the evaluation of 2-D
DFTs have the general form:

N-i

where X(z) X(z) Wftiki Mod(z2 + 1) (11) N-I

ni=0 Xk x(n) W" W2N = e' (19)
I=0

N/I-i
and X(z) = x(u1,n2)

—
x(n1,n2-i-N/2)] z2 (12) We introduce the following shorthands

N-I

since (z - Wk2). k2 being odd, is a factor of (zN/2 + 1), which is ocos—DFT(k,n) x(n) co8(2'')) k=0..N—1 (20)
in turn a factor of (zN — 1). For x(n1,n2) real, (12) requires
N2/2 real additions. Now. k1 in (11) is replaced by k1k2 (which
is a valid permutation since k2 and N are relatively prime). N-i
Then, we can replace Wk2 by z in (11) since they are osin—DFI'(k,n) = x(n) (21)
equivalent by (10). This leads to:

N-i N-i

Xk(z) X(z) fiki Mod(ZN/I + 1) (13) o—DCT(k,n) = x(n) cos(2(2k)(20)) k=0..N—1 (22)10

This is a polynomial transform of length N and a root z and thus (19) is equal to:
defined modulo (zNf2 + 1) which can be computed with an
FPF radix-2 type algorithm and uses N2/2log2N real additions
for X with real coefficients. Since XikS(Z) is of degree N/2- 1 Xi = ocos—DFT(k,N) — j oein—DFT(k,N) (23)
and k2 odd equal to (2u+1). (10) can be rewritten as:

N/I-i
X(k1(2u+1),(2u+1)) = E y(k1,l) w' W (14)

Now we use a similar approach as in [9] to evaluate (23). The
1=0 real part is reduced to:

N/2-iwhere y(kl) is the l-th coefficient of the polynomial X1(z). _______ocos—DFT(k,n) = x(2n) 27t(k+1)nEquation (14) represents N odd DFT's of length N/2 whose 1=0computation will be adressed in the next section.
N/4-i

When both k1 and k2 are even, equation (9) reduces to a + (x(2n+l)-x(N-2n-1)) ca(221)(2)) (24)
real DF'F of size N/2 by N/2 on the real signal given by: n=O

40.8.2
1539

where we use the fact that o-DC1'(2N-k-1,N) =- crDcr(k,N).
Thus, with N/4 input and N/2 output additions, the odd
cos-DF1 of N has been reduced to one of N/2 and an odd
DCf of N/4. The imaginary part becomes:

N/2-1

osin-.DFT(k,n) = i: x(2n)

N/4-1
+ (x(2n+l)+x(N—2n—1)) 5(2(2k2nf 1))

Using trigonometric identities [9], this is equal to:

N/2.1
osin—DFT(k,n) = i: x(2n)

Nf41
+ i (_l)" (x(2n+1)÷x(N-2n—1)) <27t(Nf2_(2k+l))(2n+l))

or an odd sin-Dfl' of N/2 and an odd DCT of N/4 at the
cost of 3N/4 additions. Turning to the computation of the odd
DCT, we use a mapping similar to [3]:

y(n) = x(2n) y(N—n—l) = —x(2n+1)

Thus, (22) becomes:

o—DCT(k,n) = x(n) kO..N—1

Now, as seen in ('9] o-DCT (k,N) and o—DCT (N-k-iN) are
obtained from ocos-DFT(k,N) and osin-DFT(k,N) by a simple
rotation or 3 multiplications and 3 additions.

Evaluating the computational complexity of this approach to
the odd DF1 computation of length N real signals, it is seen
that it requires:

N12 (Log2N—1) mu. 3N/2 (Log2N-l) ad.

Mote that when this real odd DF1 algorithm is used for
complex signals (by transforming separately the real and
imaginary part and adding the result) it leads to the same
number of multiplies as the Rader/Brenner FF1' but to
substantially less additions.

V Complexity evaluation and comparison

Using the above introduced odd DF1' algorithm leads to the
following load for a real DF'T of N by N, N a power of 2:

N2/2 Lo82N — 7/6 N2 + 4 mu.

5N2/2 Log2N — 13/6 N2 + 56/3 ad.

a) The Chen et al. algorithm for a row/column approach with
a l-D IJCT that uses:

N Log2N — 3/2 N + 4 mu. 3/2 N Log2N — 3/2 N + 2 ad. (32)

b) The polynomial approach from [7] which is slighty more
efficient then the one in [61.

(25) c) A row/column approach with the i-D DCT algorithm from
[9] which uses:

N/2 Log2N mu. N/2 (3 Log2N-2) + I ad. (33)

d) The proposed method.

The complexities are compared in table 1 and operation
(26) counts are given in table 2. Asymptotically, it reduces the

number of multiplies by a factor of 4 and saves 1/6 of the
adds when compared to currently proposed algorithms (a,b
above).

VI implernentation considerations

The above algorithm, while achieving substancial computational
savings, has a rather involved structure. But for the expected
application (image coding with blocks of 8xB or 16x16), the
transform can be explicitely written in linear code [11].
Therefore, the structural complexity dissappears completely.

(28) Furthermore, using signal processors or specialized processors
with a large number of registers (for ex. TMS 320 with 144
registers) allows to perform the whole transform in the
registers, thus avoiding the data transfer problem during the
transform evaluation. This should lead to fast implementations
where the computational savings are fully translated into
time savings.

VII Conclusion
(20) A fast 2-D DCT algorithm was proposed which reduces the

number of multiplies by 50 to 75 % with comparable number
of additions.

This was achieved by showing that a 2-D DCJ can be
obtained from a real 2-D DFT with 1.5 multiplies per point
and by developping efficient real odd DP7 algorithms which
are used when a 2-D DEl' is evaluated through polynomial
transforms.

Acknowledgement.

The author wishes to thank Prof. }LJ. Nussbaumer for commenting
the manuscript, the "Fonds National Suisse de Ia Recherche
Scientifique" for supporting this research and Michael Unser for
invaluable help.

References:
and, with the optimized mapping for the DCT, the complexity
for a real DCT of N by N is:

N2/2 Log2N - 2N + N2/3 + 8/3 mu.

5N2/2 Log2N — 6N + N2/3 + 62/3 ad.

These results compare favorably with existing algorithms. For
completeness, we compare it with:

1540

[1] AK. Jam, "Image Data Compression : A Review",
Proceedings of the IEEE, Vol.69, No.3, March 1981. pp.
349-389.

[2] W-H. Chen, C.H. Smith, and S.C. Fralick, "A Fast
Computational Algorithm for the Discrete Cosine

(31) Transform", IEEE Trans. on Communications, Vol. COM-25,
pp.1004-i009. Sept. 1977.

[3] M.J. Narasimha, and A.M. Peterson, "On the Computation
of the Discrete Cosine Transform", IEEE Trans. on
Communications, Vol. COM-26, pp. 934-936. June 1978.

40.8.3

(27)

(30)

[4] HJ. Nussbaumer. 'Fast Polynomial Transform
Computation of the 2-D DCT', Proc. of the mt. Con!, on
Digital Signal Processing, pp. 276-283, Florence, 1981.

[5] I'Ll. Nussbaumer, Fast Fourier Transform and Convolution
Algorithms. 2nd. ed.. Springer. Berlin, 1982.

[6] N. Nasrabadi, and R. King, "Computationally Efficient
Discrete Cosine Transform Algorithm", Flee. Letters, 6th
Jan. 1983, Vol.19, No. 1, pp. 24-25.

[7] S-C. Pei. and E-F. Huang, "Improved 2D Discrete Cosine
Transforms Using Generalized Polynomial Transforms and
DF1"s", Proc. IEEE mt. Conf. on Communications,
Amsterdam. 1984, pp. 242-244.

[8] J. Makhoul, "A Fast Cosine Transform in One and Two
Dimensions", IEEE Trans. on ASSP, Vol. ASSP-28, No. 1,
Feb. 1980, pp. 27-34.

[9] M. Vetterli, and H.J. Nussbaumer, "Simple FFT and DCT
Algorithms with Reduced Number of Operations", Signal
Processing, Vol. 6, No. 4, July 1984.

[10] H.J. Nussbaumer, and P. Quandalle, "Fast Computation of
Discrete Fourier Transforms Using Polynomial
Transforms", IEEE Trans. on ASS?, Vol. ASSP-27, pp.
169-181, 1979.

[11] LR. Morris, "Automatic Generation of Time Efficient
Digital Signal Processing Software ", IEEE Trans. Acoust.,
Speech, Signal Processing, Vol. ASSP-25, pp.74-78, Feb.
1977.

TABLE I: Computational complexity for the algorithms a)-d)

Algorithm Multiplications Additions

a)

b)

c)

d)

2N2Log2N-3N2+8N

2N2Log2N

N2Log2N

N2 N2 0

Log2Ni-—.-2N+

3N2Log2N-3N2+4N

5N2 Log2 N-2N2

3N2Log2N—2N2+2N

5N2 N2 62
Log2+3—6N+--

TABLE II: Operation counts for the algorithms a)-d)

b) c) d)

N mults adds mults adds mults adds mults adds

8 256 416 384 832 192 464 104 474

16 1408 2368 2048 4608 1024 2592 568 2570

32 7424 12416 10240 23552 5120 13376 2840 12970

64 37376 61696 49152 114688 24576 65664 13528 62442

128 181248 295424 229376 540672 114688 311552 62552 291434

256 854016 1377280 1048576 2490368

40.8.4

524288 1442304 283480 133105

1541

a)

