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S U M M A R Y

We present an efficient numerical method for the simulation of transient electromagnetic fields

resulting from magnetic and electric dipole sources in three dimensions.

The method we propose is based on the Fourier synthesis of frequency domain solutions at a

sufficient number of discrete frequencies obtained using a finite element (FE) approximation of

the damped vector wave equation obtained after Fourier transforming Maxwell’s equations in

time. We assume the solution to be required only at a few points in the computational domain,

whose number is small relative to the number of FE degrees of freedom. The mapping which

assigns to each frequency the FE approximation at these points of interest is a vector-valued

rational function known as the transfer function. Its evaluation is approximated using Krylov

subspace projection, a standard model reduction technique. Computationally, this requires the

FE discretization at a small number of reference frequencies and the generation of a sufficiently

large Krylov subspace associated with each reference frequency. Once a basis of this subspace

is available, a sufficiently accurate rational approximation of the transfer function can be

evaluated at the remaining frequencies at negligible cost. These partial frequency domain

solutions are then synthesized to the time evolution at the points of interest using a fast Hankel

transform.

To test the algorithm, responses obtained by2-D and 3-D FE formulations have been calcu-

lated for a layered half-space and compared with results obtained analytically, for which we

observed a maximum deviation of less than 2 per cent in the case of transient EM modelling.

We complete our model studies with a number of comparisons with established numerical

approaches.

A first implementation of our new numerical algorithm already gives very good results using

much less computational time compared with time stepping methods and comparable times

and accuracy compared with the Spectral Lanczos Decomposition Method (SLDM).

Key words: Numerical solutions; Fourier analysis; Numerical approximations and analysis;

Electromagnetic theory; Marine electromagnetics.

1 I N T RO D U C T I O N

The transient electromagnetic (TEM) method has become one of

the standard techniques in geo-electromagnetism and is now widely

used, for example, for exploration of groundwater, mineral and hy-

drocarbon resources. The numerical computation of TEM fields is

of particular interest in applied geophysics. First introduced by Yee

(1966), the finite difference time domain (FDTD) technique has been

widely used to simulate the transient fields in 2-D and 3-D engineer-

ing applications by time stepping (Taflove 1995). In geophysics,

first attempts to numerically simulate transients were made by

Goldman & Stoyer (1983) for axisymmetric conductivity structures

using implicit time-stepping. Wang & Hohmann (1993) have devel-

oped an explicit FDTD method in 3-D based on Du Fort-Frankel

time-stepping.

Generally, explicit time stepping algorithms require small time

steps to maintain numerical stability. For the simulation of late-time

responses their computational cost must, therefore, be regarded as

very high. Several attempts have been made to reduce the numer-

ical effort, for example, by a special treatment of the air–earth in-

terface to circumvent excessively small time steps due to the ex-

tremely low conductivity of the air layer (Oristaglio & Hohmann

1984; Wang & Hohmann 1993). For explicit FDTD methods, it

thus seems that acceptable computing times can only be achieved

by parallelization using computer clusters (Commer & Newman

2004).
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Fast 3-D simulation of TEM fields 767

Implicit time-stepping, while removing the stability constraint

on the time step, requires the solution of a large linear system of

equations at each time step. While this seems daunting for 3-D

problems, recent advances in multigrid methods for the curl–curl

operator (Reitzinger & Schoeberl 2002; Aruliah & Ascher 2003;

Hiptmair & Xu 2006; Greif & Schötzau 2007) may make this a

viable option for TEM.

An alternative approach to time-stepping was proposed by

Druskin & Knizhnerman (1988) and has since been known as the

Spectral Lanczos Decomposition Method (SLDM). Their origi-

nal method uses a 3-D finite difference (FD) approximation of

Maxwell’s equations, which are cast into a system of ordinary differ-

ential equations. The solution of the latter is formulated as a mul-

tiplication of a matrix exponential with a vector of initial values.

Numerical evidence indicates that the convergence of the SLDM

depends mainly on the conductivity contrasts within the model. To

improve convergence, the FD grids have to be refined near jumps of

electrical conductivity within the discretized region. However, the

FD tensor product grids further increase the number of unknowns

even in regions where densely sampled solutions are not of particular

interest, for example, at greater depths. We note, however, that the

time-stepping technique that is inherent to SLDM can be combined

with other spatial discretizations.

The approach of modelling in the frequency domain with sub-

sequent transformation into the time domain was proposed by

Newman et al. (1986), who used a 3-D integral equation method

to provide the responses for typically 20–40 frequencies, which are

transformed into the time domain using a digital filtering technique

(Anderson 1979). However, the time domain results displayed de-

viations from reference solutions at late times due to the limited

accuracy of the 3-D responses.

The use of finite element (FE) discretizations for field problems in

geophysics dates back at least to Coggon (1971), who obtained so-

lutions to DC problems in 2-D using linear triangular elements and

also discussed the issue of placing the outer boundary of the com-

putational domain sufficiently far away from inhomogeneities and

sources in order to be able to apply simple homogeneous Dirichlet

or Neumann boundary conditions there. This issue was treated by

essentially an integral equation boundary condition in (Lee et al.

1981; Gupta et al. 1987, 1989), who refer to this approach as

a ‘hybrid’ or ‘compact FE’ scheme. FE approximations for 3-D

scalar and vector formulations were also employed by Livelybrooks

(1993).

Everett & Edwards (1993) have published a FE discretization for

the solution of a 2.5 D problem with subsequent Laplace transform

of the response of electric dipoles located on the seafloor. A FE solu-

tion of geo-electromagnetic problems for 2-D sources using isopara-

metric quadratic elements has been introduced by Mitsuhata (2000)

with respect to frequency domain modelling of dipole sources over

undulating surfaces.

Sugeng et al. (1993) have computed the step response solutions

for 31 frequencies over a range between 1 and 1000 kHz using

isoparametric FEs. The authors report small deviations in the late

time response.

One of the difficulties in the numerical modelling of electromag-

netic field problems using FE is the possible discontinuity of normal

field components across discontinuities of material properties. Stan-

dard Lagrange elements, sometimes called ‘nodal’ elements, which

force all field components to be continuous across element bound-

aries, cannot reproduce these physical phenomena. This difficulty

was resolved by the curl-conforming elements of Nédélec (1980,

1986), which are referred to as ‘edge elements’ in the engineer-

ing literature since the lowest order elements of this family carry

their degrees of freedom at element edges. The FE subspaces of the

Nédélec family perfectly capture the discontinuities of the electric

and magnetic fields along material discontinuities. The first appli-

cation of edge elements to geoelectric problems were probably Jin

et al. (1999), who developed a frequency-domain and time-domain

FE solution using SLDM for a small bandwidth of frequencies and

very short times, respectively.

This paper introduces a method based on a FE discretization in

the frequency domain. We avoid the heavy computational expense

associated with solving a full 3-D problem for each of many fre-

quencies by a model reduction approach. The point of departure is

that the transients, which are synthesized from the frequency domain

solutions, are required only at a small number of receiver locations.

The synthesis of the transients at these locations, therefore, requires

only frequency domain solutions at these points. After discretiza-

tion in space, the frequency domain solution values at the receiver

points are rational functions of frequency. Using Krylov subspace

projection as a model reduction technique (cf. Antoulas 2005) it is

possible to approximate this function, known as the ‘transfer func-

tion’ in linear systems theory, by rational functions of lower order.

Computationally, the discretized frequency-domain problem for a

suitably chosen reference frequency is projected onto a Krylov sub-

space of low dimension, yielding the desired approximation of the

transfer function in terms of quantities generated in the Arnoldi pro-

cess, which is used to construct an orthonormal basis of the Krylov

subspace. This approximation, the evaluation of which incurs only

negligible cost, is then used for all the other frequencies needed

for the synthesis. While more difficult model reduction problems

such as those arising in semiconductor device simulation require

repeating this process at several reference frequencies across the

spectral bandwidth of interest, our experience has shown the time

evolution of the electromagnetic fields after a current shut-off to

be a very benign problem for which one or two reference frequen-

cies suffice. After obtaining frequency-domain approximations at

the receiver locations for all required frequencies in this way, the

associated transients are synthesized using a fast Hankel transform

(cf. Newman et al. 1986). The resulting algorithm thus has as its

main expense the FE solution at the reference frequency and the

Arnoldi process to construct the Krylov space. Since each Arnoldi

step requires the solution of a linear system with the coefficient ma-

trix associated with the reference frequency problem, we generate

a sparse LU factorization of this matrix, which we found feasible

for problem sizes of up to around 250 000 using the PARDISO soft-

ware of Schenk & Gärtner (2004). For much larger problems the

linear systems can instead be solved iteratively. Our computational

experiments demonstrate that the proposed method can, as an ex-

ample, compute transients at several receiver locations based on a

discretization with 100 000 degrees of freedom in roughly 5 min

wall clock time on current desktop hardware.

Our method is probably closest to that proposed by Druskin et al.

(1999). What distinguishes it from theirs, besides the use of a FE

discretization in place of FDs, is that we allow for one or more fre-

quency shifts, which, as our numerical examples will show, can dra-

matically accelerate convergence, whereas the approach of (Druskin

et al. 1999) corresponds to using a fixed zero shift. Moreover, in-

terpreting our approach in the context of model reduction allows

many more sophisticated model reduction techniques to be applied

to geo-electromagnetic problems.

We note that solutions to such multiple-frequency partial-field

problems have been published by Wagner et al. (2003) in the context

of an acoustic fluid–structure interaction problem.
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768 R.-U. Börner, O. G. Ernst and K. Spitzer

The remainder of this paper is organized as follows. Section 3

recalls the governing equations of time-harmonic electromagnet-

ics with a shut-off magnetic dipole source as well as the mappings

between time and frequency domains. In Section 4, we derive the

weak formulation of the resulting boundary value problem for the

electric field and present the FE discretization using tetrahedral

Nédélec elements. Our proposed Krylov subspace-based model re-

duction scheme is introduced in Section 5. To validate our approach,

we present in Section 6 a number of numerical experiments be-

ginning with a simple reference problem of a layered half-space

for which experiments with both an axisymmetric 2-D and a full

3-D formulation are performed. We complete the numerical ex-

periments with a series of comparisons with established numerical

approaches.

2 T H E O R E T I C A L B A C KG RO U N D

The behaviour of the TEM fields after a source current shut-off

is described by an initial boundary value problem for Maxwell’s

equations in quasi-static approximation

∇ × h − σe = j e, (1a)

∂t b + ∇ × e = 0, (1b)

∇ · b = 0, (1c)

where we denote by e(r , t) the electric field, h(r , t) the magnetic field,

b(r , t) = μh(r , t) the magnetic flux density, μ(r ) is the magnetic

permeability, and j e(r , t) external source current density, respec-

tively. The spatial variable r is restricted to a computational domain

� ⊂ R
3 bounded by an artificial boundary Ŵ, along which appropri-

ate boundary conditions on the tangential components of the fields

are imposed, whereas t ∈ R. The forcing results from a known sta-

tionary transmitter source with a driving current which is shut off

at time t = 0, and hence of the form

j e(r , t) = q(r )H (−t) (2)

with the vector field q denoting the spatial current pattern and H

the Heaviside step function. The Earth’s electrical conductivity is

denoted by the parameter σ (r ). We assume negligible coupling be-

tween displacement currents and induced magnetic fields, which is

valid at late times after current shut-off.

After eliminating b from (1) we obtain the second order partial

differential equation

∇ × (μ−1∇ × e) + ∂t σe = −∂t j e in � (3a)

for the electric field, which we complete with the perfect conductor

boundary condition

n × e = 0 on Ŵ, (3b)

at the outer walls of the model. It should be noted that by doing so,

the electric fields at the boundary Ŵ no longer depend on time t.

Switching to the frequency domain, we introduce the Fourier trans-

form pair

e(t) =
1

2π

∫ ∞

−∞

E(ω) eiωt dω =: (F−1 E)(t), (4a)

E(ω) =

∫ ∞

−∞

e(t) e−iωt dt = (Fe)(ω), (4b)

ω denoting angular frequency. The representation (4a) can be inter-

preted as a synthesis of the electric field e(t) from weighted time-

harmonic electric partial waves E(ω), whereas (4b) determines the

frequency content of the time-dependent electric field e. We thus

obtain the transformed version

∇ × (μ−1∇ × E) + iωσ E = q in �, (5a)

n × E = 0 on Ŵ, (5b)

of (3a) and (3b) provided that solutions exist for all frequencies

ω ∈ R. In (5a) we have used the fact that, for the time-dependence

eiωt differentiation with respect to the time variable t becomes multi-

plication with iω in the transformed equations as well as the formal

identity F [H (−t)] = −1/(iω), which reflects the fact that the step

response due to a current shut-off in a transmitter source is related

to an impulsive source by a time derivative ∂ t H (t) = δ(t), where δ

denotes the Dirac impulse, and F (δ) ≡ 1.

For a given number of discrete frequencies, the Fourier repre-

sentation (4a) of the solution e of (3) can be utilized to construct

an approximate solution in the time domain by a Fourier synthesis.

Causality of the field in the time domain allows for a representation

of the solution in terms of a sine or cosine transform of the real or

imaginary part of e, respectively (Newman et al. 1986):

e(t) =
2

π

∫ ∞

0

Re(E)
sin ωt

ω
dω =

2

π

∫ ∞

0

Im(E)
cos ωt

ω
dω. (6)

In practice, the infinite range of integration is restricted to a fi-

nite range and the resulting integrals are evaluated by a Fast Hankel

Transform (Johansen & Sorensen 1979). For the problems addressed

here, solutions for 80–150 frequencies distributed over a broad spec-

tral bandwidth with f ∈ [10−2, 109] Hz are required to maintain the

desired accuracy.

3 F I N I T E E L E M E N T D I S C R E T I Z AT I O N

I N S PA C E

For the solution of boundary value problems in geophysics, es-

pecially for geo-electromagnetic applications, FD methods have

mainly been utilized due to their low implementation effort. How-

ever, finite element methods offer many advantages. Using triangu-

lar or tetrahedral elements to mesh a computational domain allows

for greater flexibility in the parametrization of conductivity struc-

tures without the need for staircasing at curved boundaries, such as

arise with terrain or seafloor topography. In addition, there is a ma-

ture FE convergence theory for electromagnetic applications (Monk

2003). Finally, FE methods are much more suitable for adaptive

mesh refinement, adding yet further to their efficiency.

For the construction of a FE approximation, we first express the

boundary value problem (5) in variational or weak form (Monk

2003). The weak form requires the equality of both sides of (5a)

in the inner product sense only. The L2(�) inner product of two

complex vector fields u and v is defined as

(u,v) =

∫

�

u · v̄dV (7)

with v̄denoting the complex conjugate ofv. Taking the inner product

of (5a) with a sufficiently smooth (By sufficiently smooth we mean

that the mathematical operations that follow are well-defined.) vec-

tor field ϕ—called the test function—and integrating over �, we
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Fast 3-D simulation of TEM fields 769

obtain after an integration by parts
∫

�

[

(μ−1∇ × E) · (∇ × ϕ̄) + iωσ E · ϕ̄
]

dV

−

∫

Ŵ

(n × ϕ̄) · (μ−1∇ × E) dA =

∫

�

q · ϕ̄ dV . (8)

On Ŵ, the perfect conductor boundary condition (5b) gives no infor-

mation about (μ−1 ∇ ×E), so we eliminate this integral by choosing

ϕ such that n ×ϕ = 0 on Ŵ, which is the standard way of enforcing

the essential boundary condition (5b) in a variational setting.

Introducing the solution space

E := {v ∈ H(curl; �) : n × v = 0 on Ŵ} ,

in terms of the Sobolev space H(curl; �) =
{

v ∈ L2(�)3 : ∇ × v ∈ L2(�)3
}

, the weak form of the boundary

value problem finally reads

Find E ∈ E such that
∫

�

[(μ−1∇ × E) · (∇ × v̄) + iωσ E · v̄] dV

=

∫

�

q · v̄dV for all v ∈ E .
(9)

Due to the homogeneous boundary condition (5b) the trial and test

functions can be chosen from the same space E .

Before describing the FE discretization we note that in the bound-

ary value problem (5) we have already introduced an approximation,

namely the perfect conductor boundary condition (5b). This approx-

imation comes about because the boundary Ŵ of our computational

domain � is an artificial one in the sense that the physical prob-

lem is posed on an infinite domain, and we restrict ourselves to �

merely for computational convenience. Mathematically, the correct

boundary condition on Ŵ is that resulting in a solution which is the

restriction to � of the solution on the infinite-domain. Such ‘exact’

boundary conditions are usually non-local, hence computationally

inconvenient, and are often approximated by local boundary condi-

tions such as (5b). The physical justification is, of course, that the

electric field decays away from the transmitter source such that, at

a sufficient distance, it satisfies (5b) reasonably well. The practical

consequence is that � must be chosen sufficiently large that the

approximation due to the inexact boundary condition posed on Ŵ

is not larger than the discretization error. For high-resolution cal-

culations in 3-D this may result in a large number of unknowns,

which is somewhat ameliorated by using adaptively refined meshes.

Exact non-local boundary conditions for diffusive geoelectric prob-

lems are developed in Goldman et al. (1989) and Joly (1989). An

overview of exact boundary conditions for problems on truncated

domains can be found in Givoli (1992). In the geoelectrics litera-

ture this issue is already discussed in the classic paper by Coggon

(1971), who in the context of a potential calculation proposes a linear

combination of Dirichlet and Neumann boundary conditions along

Ŵ as an effective local boundary condition. Approximate non-local

boundary conditions based on integral operators are proposed in the

‘hybrid’ methods of Gupta et al. (1987) and Lee et al. (1981) as well

as the ‘compact FE method’ of Gupta et al. (1989). Such non-local

boundary conditions offer the advantage of allowing computational

domains containing only the regions of geophysical interest. In this

paper, for simplicity of presentation, we choose to treat this issue

by using a sufficiently large computational domain, but note that

numerical calculations must take this source of error into account.

To construct a FE solution of the boundary value problem (5) the

domain � is partitioned into simple geometrical subdomains, for

example, triangles for 2-D or tetrahedra for 3-D problems, such that

� =

Ne
⋃

e=1

�e. (10)

The infinite-dimensional function spaceE is approximated by a finite

dimensional function space Eh ⊂ E of elementwise polynomial

functions satisfying the homogeneous boundary condition (5b).

The approximate electric field Eh ≈ E is defined as the solution

of the discrete variational problem obtained by replacing E by Eh in

(9) (cf. Monk 2003).

To obtain the matrix form of (9), we express Eh as a linear com-

bination of basis functions {ϕi}
N
i=1 of Eh , that is,

E(r ) =

N
∑

i=1

Ei ϕi (r ). (11)

Testing against all functions in Eh is equivalent to testing against all

basis functions ϕ j , j = 1, . . . , N . Taking the jth basis function as

the test function and inserting (11) into (9) yields the jth row of a

linear system of equations

(K + iωM) u = f (12)

for the unknown coefficients Ei = [u]i , i = 1, . . . , N , where

[K] j,i =

∫

�

(μ−1∇ × ϕi ) · (∇ × ϕ̄ j ) dV, (13)

[M] j,i =

∫

�

σϕi · ϕ̄ j dV, (14)

[f] j =

∫

�

q · ϕ̄ j dV . (15)

The matrices K and M, known as ‘stiffness’ and ‘mass matrix’,

respectively, in FE parlance, are large and sparse and, since μ and

σ are real-valued quantities in the problem under consideration,

consist of real entries.

For a given source vector f determined by the right-hand side of

(5a), the solution vector u ∈ C
N of (12) yields the approximation

Eh of the electric field E we wish to determine.

4 M O D E L R E D U C T I O N

Our goal is the efficient computation of the FE approximation Eh in

a subset of the computational domain �. To this end, we fix a subset

of p ≪ N components of the solution vector u to be computed.

These correspond to p coefficients in the FE basis expansion (11),

and thus, in the lowest-order Nédélec spaces we have employed,

directly to components of the approximate electric field Eh along

selected edges of the mesh. We introduce the discrete extension

operator E ∈ R
N×p defined as

[Ei, j ] =

⎧

⎪

⎨

⎪

⎩

1, if the j th coefficient to be computed

has global index i,

0, otherwise.

Multiplication of a coefficient vector v ∈ C
N with respect to the

FE basis by E⊤ then extracts the p desired components, yielding the

reduced vector E⊤v ∈ C
p containing the field values at the points

of interest.

For the solution u, this reduced vector, as a function of frequency,

thus takes the form

t = t(ω) = E⊤(K + iωM)−1f ∈ C
p. (16)
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770 R.-U. Börner, O. G. Ernst and K. Spitzer

The vector-valued function t(ω) in eq. (16) assigns, to each fre-

quency ω, the output values of interest to the source (input) data

represented by the right-hand-side vector f.

Computing t(ω) for a given number of frequencies ω j ∈ [ωmin,

ωmax], j = 1, . . . , N f , by solving N f full systems and then ex-

tracting the p desired components from each is computationally

expensive, if not prohibitive, for large N . This situation is similar

to that of linear systems theory, where the function t is known as

a ‘transfer function’ and the objective is to approximate t based on

a model with significantly fewer degrees of freedom than N , hence

the term ‘model reduction’.

To employ model reduction techniques, we proceed by fixing a

reference frequency ω0 and rewriting (16) as

t = t(s) = E⊤[A0 − sM]−1f, A0 := K + iω0M, (17)

where we have also introduced the (purely imaginary) ‘shift param-

eter’ s = s(ω) := i(ω0 − ω). Setting further L := E ∈ R
N×p, r :=

A−1
0 f ∈ C

N , and A := A−1
0 M ∈ C

N×N , the transfer function be-

comes

t(s) = L⊤(I − sA)−1r. (18)

The transfer function is a rational function of s (and hence of ω),

and a large class of model reduction methods consist of finding

lower order rational approximations to t(s). The method we propose

constructs a Padé-type approximation with respect to the expansion

point ω0, that is, s = 0. The standard approach (Gragg & Lindquis

1983; Freund 2003; Antoulas 2005) for computing such approxima-

tions in a numerically stable way is by Krylov subspace projection.

For simplicity, we consider an orthogonal projection onto a Krylov

space based on Arnoldi’s method.

For an arbitrary square matrix C and non-zero initial vector x, the

Arnoldi process successively generates orthonormal basis vectors

of the nested sequence

Km(C, x) := span{x, Cx, . . . , Cm−1x}, m = 1, 2, . . .

of ‘Krylov spaces’ generated by C and x, which are subspaces of

dimension m up until m reaches a unique index L, called the grade

of C with respect to x, after which these spaces become stationary.

In particular, choosing C = A and x = r, m steps of the Arnoldi

process result in the ‘Arnoldi decomposition’

AVm = VmHm + ηm+1,mvm+1e⊤
m, r = βv1, (19)

in which the columns of Vm ∈ C
N×m form an orthonormal basis of

Km(A, r), Hm ∈ C
m×m is an unreduced upper Hessenberg matrix,

vm+1 is a unit vector orthogonal to Km(A, r) and em denotes the

mth unit coordinate vector in C
m . In particular, we have the relation

Hm = V⊤
mAVm . Using the orthonormal basis Vm , we may project

the vector r as well as the columns of L in (18) orthogonally onto

Km(A, r) and replace the matrix I − sA by its compression V⊤
m(I −

sA)Vm ontoKm(A, r). This yields the approximate transfer function

tm(s) :=
(

V⊤
mL

)⊤[

V⊤
m

(

I − sA
)

Vm]−1
(

V⊤
mr

)

= L⊤
m(Im − sHm)−1βe1, (20)

where we have set Lm := V⊤
mL and used the properties of the quan-

tities in the Arnoldi decomposition (19).

Given the task of evaluating the transfer function (16) for N f fre-

quencies ω j ∈ [ωmin, ωmax], our model reduction approach, to which

we refer as ‘model reduction in the frequency domain’ (MRFD), now

proceeds as detailed in Algorithm 1.

Algorithm 1Model reduction for TEM in the frequency domain

(MRFD).

FE discretization of problem (5) yields matrices K and M.

Select a reference frequency ω0 ∈ [ωmin, ωmax].

Set A0 := K + iω0M, A := A−1
0 M and r := A−1

0 f.

Perform m steps of the Arnoldi process applied to A and r yielding

decomposition (19).

for j = 1, 2, . . ., N f do
⌊

Set s j := ω0 − ω j

Evaluate approximate transfer function tm(s j )

according to (20).;

Note that computations with large system matrices and vectors

with the full number N of degrees of freedom are required only in the

Arnoldi process, after which the loop across the target frequencies

takes place in a subspace of much smaller dimension m ≪ N . As

a consequence, the work required in the latter is almost negligible

in comparison. Within the Arnoldi process the most expensive step

is the matrix-vector multiplication with the matrix A = A−1
0 M.

Currently, we compute an LU factorization of A0 in a pre-processing

step and use the factors to compute the product with two triangular

solves.

We note that it may be more efficient to use more than one ref-

erence frequency to cover the frequency band of interest. In this

case, one may either use separate Krylov subspaces for the differ-

ent parts of the interval [ωmin, ωmax], necessitating additional LU

factorizations. Alternatively, one could use one subspace consist-

ing of the sum of the Krylov spaces associated with each reference

frequency. In Section 6, we give such an example using the former

approach in which two reference frequencies lead to sufficient ap-

proximations in less computer time than if only one is used. Current

Krylov subspace-based model reduction techniques in other disci-

plines employ much more refined subspace generation techniques,

in particular block algorithms to take into account all columns of L in

the subspace generation as well as two-sided Lanczos (Feldmann &

Freund 1994) and Arnoldi (Antoulas 2005) methods to increase the

approximation order of the transfer function. We intend to explore

these refinements for the present TEM application in future work.

However, we have been able to obtain surprisingly good results us-

ing this very basic method. A further enhancement is replacing the

LU factorization of A0 with an inner iteration once the former is no

longer feasible due to memory constraints.

For the simple model reduction approach taken here involving

only a Krylov subspace generated by A and the ‘right’ vector r in

(18), an error analysis of our MRFD method may be carried out

using the theory of matrix functions (cf. Saad 1992) to arrive at

an asymptotic convergence rate of the MRFD approximation with

respect to m depending on spectral properties of K and M. Such

an analysis is beyond the scope of this article and will be published

elsewhere.

5 N U M E R I C A L E X P E R I M E N T S

To validate the MFRD method we present a number of numeri-

cal experiments. We begin with the very simple reference prob-

lem of a vertical magnetic dipole source over a layered half-space,

and perform a number of experiments with both a 2-D axisym-

metric and a full 3-D formulation. The reason for including this

somewhat academic example is that an analytic solution is available

for comparison against the numerical approximation, thus permit-

ting an easy calibration of the size of the computational domain
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Fast 3-D simulation of TEM fields 771

(the distance of the outer boundary) as well as the mesh resolution

required to ensure the dominant error is due to the Krylov subspace

projection. We discuss the behaviour of the MRFD approximation

with respect to the size of the Krylov space as well as the location

and number of reference frequencies. We conclude with a series

of comparisons of our method with established approaches such as

SLDM and explicit FDTD on more realistic and challenging 3-D

conductivity structures.

In all experiments the FE discretization was carried out using the

Electromagnetics Module of the COMSOL Multiphysics package,

where we have used second order Lagrange elements on triangles

in the 2-D calculations and second order elements from Nédélec’s

first family on tetrahedra for 3-D.

The sparse LU decomposition required in our algorithm as well

as the triangular solves based on this decomposition were performed

using the PARDISO software of Schenk & Gärtner (2004, 2006).

Our own code is written in MATLAB, from where the appropriate

COMSOL and PARDISO components are called. All computations

were carried out on a 3.0 GHz Intel Xeon 5160 with 16 GB RAM

running Suse Linux 10.1.

In the discussions of the numerical experiments we specify fre-

quencies in Hertz denoted by f = ω/(2π ).

5.1 The layered half-space

We begin with a layered half-space conductivity structure depicted

in Fig. 1 consisting of a 30 � m layer of thickness 30 m at a depth of

100 m which is embedded in a uniform half-space of 100 � m. The

source is a vertical magnetic dipole at the surface z = 0. For the ana-

lytical reference solution we employ the quasi-static approximation

of Ward & Hohmann (1988), from which we obtain the time-domain

solution via a Hankel transform. The numerical results obtained by

the MRFD method are compared with the analytical 1-D model re-

sults for the approximate electric field obtained from the transfer

function tm as well as the transient electric field obtained by Fourier

synthesis of the transfer function.

The discrete set of frequencies at which a solution is sought is

given by f i ∈ [10−2, 109] Hz with 10 logarithmically equidistant

frequencies per decade, giving a total of 110 target frequencies. This

range of frequencies corresponds to a time interval of [10−6, 10−3]s

for the evaluation of the transient.

Each mesh that we use for the spatial discretization is refined

in the vicinity of the source to capture its singular behaviour. The

refinements result from three successive adaptive mesh refinement

steps of COMSOL’s default a posteriori error estimator, in which

the mesh refinement is performed by remeshing.

0 100 200 300
200

150

100

50

0

radial distance in m

d
e
p
th

in
m

ρ0 = 10
14

Ω·m

ρ1 = 100 Ω·m

ρ2 = 30 Ω·m

ρ3 = 100 Ω·m

coil 2D symmetry axis

model 1

model 2

model 3

−2400 2400

−2400

2400

z in m

r in m

Figure 1. Cross-section of the layered half-space conductivity model. The

conductive layer is 30 m thick. The dimension of the discretized models 1,

2 and 3 extends to up to ± 600, ±1200 and ±2400 m in the horizontal and

vertical directions. In the 2-D formulation the axis of symmetry is aligned

with the z-axis.

5.1.1 2-D axisymmetric formulation

In the 2-D axisymmetric configuration the dipole source is aligned

with the z-axis of a cylindrical coordinate system and approximated

by a finite circular coil of radius 5 m. The electric field is thus aligned

with the azimuthal direction and we obtain a scalar problem for this

component. The computational domain � is the rectangle {(r , z) :

0 ≤ r ≤ r max, − zmax ≤ z ≤ zmax} in the vertical r–z plane. Fig. 2

shows the three computational domains we consider, corresponding

to the values r max = zmax = 600, 1200 and 2400 m, respectively.

The source coil is modelled as a point source located at r 0 = 5,

z0 = 0, and we consider the fixed evaluation point r 1 = 100, z1 = 0

located on the surface at a distance of 100 m from the dipole source.

The mesh generation is carried out in such a way that (r 1, z1) is

a triangle vertex, and therefore, the value of the FE approximation

there corresponds exactly to a degree of freedom. With I = 1/(πr 2
0)

A denoting the current in the coil, chosen to result in a unit dipole

moment, and Ŵ0 denoting the portion of the domain boundary on

the symmetry axis r = 0, the 2-D axisymmetric formulation of the

boundary value problem (5) reads

−∂r

[

1

μr
∂r (r Eφ)

]

− ∂z

(

μ−1∂z Eφ

)

+ iωσ Eφ,

= iωI δ(r − r0)δ(z − z0) in �, (21a)

Eφ = 0 on Ŵ \ Ŵ0, (21b)

∂r Eφ = 0 on Ŵ0. (21c)

The FE discretization uses second-order (node-based) Lagrange el-

ements on a triangular mesh and Fig. 2 also shows a triangular mesh

for each domain with 5254, 8004 and 13 417 degrees of freedom,

respectively.

We begin by illustrating the effects of the mesh width and the

location of the outer boundary Ŵ. To this end we consider the three

domains and meshes shown in Fig. 2. The meshes were chosen to

yield comparable resolution for each domain, with a refinement near

the magnetic dipole source and in the high-conductivity layer.

The FE discretization contains two sources of error: one arising

from the usual dependence of the error on the mesh width, that is,

resolution, the other arising from imposing the physically non-exact

boundary condition (21b) or (5b), respectively, at the non-symmetry

boundaries. As we are modelling a diffusion process, the error due

to the boundary condition decreases rapidly with the size of the

computational domain. An efficient discretization should balance

these two types of error, that is, the domain size and mesh width

should be chosen such that these two errors are of comparable mag-

nitude. Since, for each frequency ω, we are solving a damped wave

equation in which damping increases with frequency (at fixed con-

ductivity), the solutions at higher frequencies decay faster towards

the outer boundary. Therefore, the effect of the error due to the non-

exact boundary condition is greatest at the lowest frequency. In the

time domain this corresponds to late times, when all but the low

frequency components have decayed. The mesh resolution, on the

other hand, will result in the largest error at the highest frequency.

This error, however, is less problematic due to the 1/ω factor in the

Hankel transform (6) which damps the high-frequency errors.

In order to clearly distinguish the errors resulting from the dis-

cretization parameters mesh resolution and boundary placement

from those associated with the Krylov subspace projection, we

first carry out a naive ‘brute-force’ frequency-domain calculation

in which we solve the full problem (12) for each frequency. The

upper left-hand plot in Fig. 3 shows the real part of the transfer
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772 R.-U. Börner, O. G. Ernst and K. Spitzer

Figure 2. Finite element meshes for the 2-D formulation (from left- to right-hand side) for model 1 (5254 DOFS, width 600 m), model 2 (8004 DOFS, width

1200 m), and model 3 (13 417 DOFS, width 2400 m).
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Figure 3. Real part of transfer function t computed by direct evaluation of (12) (upper left-hand side), transient eφ (t) (lower left-hand side), and associated

relative errors (right-hand column) for different domain sizes.

function Re E φ( f ) obtained this way evaluated at the receiver point

(r 1, z1). We observe good agreement with the analytical solution

for all three domains. Looking at the error in the transfer function

in the upper right-hand plot reveals the effect of the error due to

the boundary condition in the low frequencies, which is seen to

decrease as the domain is enlarged. At the high frequencies the

somewhat finer resolution used for the largest domain results in

the smallest error here. The synthesized transient is displayed on

the lower left-hand side, showing excellent agreement for all do-

main sizes with the two smaller domains displaying a slightly larger

error for late times due to the larger low-frequency error. This ob-

servation is more pronounced in the plot on the lower right-hand

side showing the error in the transient. The early-time errors, in

particular, show that the mesh resolution is sufficient in all three

cases.

Fig. 4 displays the result of solving the problem on the 1200 m do-

main using the MRFD algorithm with a single reference frequency

f 0 = 103 Hz and a Krylov subspace of dimension m = 20, 50,

100 and 200, respectively. In the transfer function plot on the upper

left-hand side and the corresponding error plot on the upper right,

we observe good agreement with the analytic solution for all values

of m up until a frequency of f = 105 Hz at which point the approxi-
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Figure 4. Real part of transfer function tm (upper left-hand side), transient eφ (t) (lower left-hand side), and associated relative error (right-hand column)

computed for f 0 = 103 Hz. 2-D model size 1 200 m.

mation with m = 20 begins to deteriorate. When the dimension m =

200 is reached we observe a sufficient approximation across all fre-

quencies. In the transients, however, we note that the high-frequency

errors for all approximations have been damped, and it is the error

for frequencies greater than 105 Hz that makes the m = 20 and 50

approximations inaccurate at early times.

To give an indication of the gain in efficiency from using the

MRFD approach we note that, for the 1200 m domain with 8004

degrees of freedom, the total computing time necessary to reach

convergence with a Krylov subspace dimension of m = 100 was

6.1 s, compared with 21 s for the brute-force variant of evaluating

eq. (12) directly for same 110 frequencies. We note, however, that

this gain in speed becomes much more pronounced for large scale

3-D problems where a direct computation of the transfer function is

not advisable.

In Fig. 5, we illustrate the dependence of the MRFD approxi-

mation on the choice of the reference frequency f 0 for the 1200 m

domain by comparing the results for the five reference frequencies

f 0 = 0, 102, 104, 105 and 106 Hz, respectively. Fig. 5(a) shows the

result for f 0 = 0 Hz, which corresponds to the SLDM variant pro-

posed in Druskin et al. (1999). We observe good agreement with

the analytical solution for the low-frequency part independent of the

Krylov space dimension, whereas for the higher frequencies with

f > 105 Hz the approximate transfer function deteriorates even for

the largest considered Krylov subspace of dimension m = 200. This

observation corresponds to a substantial error in the transient for

early times, which likewise decreases with increasing Krylov space

dimension. With increasing reference frequency f 0 (cf. Figs 5b–e),

the part of the transfer function which agrees well with the analyti-

cal solution gets shifted towards higher frequencies until, for f 0 =

106 Hz, a reasonable fit can be established even with the small Krylov

space of dimension m = 20. Moreover, the deficiency in the low fre-

quency part of the transfer function causes considerable error in the

late time part of the transient, which is not eliminated up to m =

200. A sufficiently good approximation of the transient at late times

would thus require a much larger Krylov space for this reference

frequency.

5.1.2 3-D formulation

In the 3-D formulation we discretize the full electric field using

second-order tetrahedral Nédélec (vector) elements on a cube of

edge length 2400 m centred at the origin. The degrees of freedom

of the FE approximation are, therefore, associated with the edges

and faces of the tetrahedral elements. The vertical magnetic dipole

source is approximated by a square loop of 10 m edge length located

in the plane defined by z = 0 centred at the origin. Electric currents

flowing inside the loop are associated with currents assigned to the

edges of those tetrahedral elements which coincide with the loop po-

sition. The receiver, centred at the point (x = 100, y = 0, z = 0) m,

that is, 100 m away from the centre of the coplanar transmitter loop,

is formed by a square loop of 4 m edge length. The y-components

of the electric fields in the receiver loop are thus associated with

the two edges perpendicular to the x-direction at x = 98 and 102

m, respectively. Analogously, the x-components of the electric field

can be obtained at y = −2 and 2 m and x = 100 m. Fig. 6 shows a

horizontal cross-section of the 3-D tetrahedral mesh at z = 0, dis-

playing the distribution of the tetrahedra refined near the source as

in the 2-D case. The complete 3-D mesh consists of 12 218 tetra-

hedra, which corresponds to 79 844 degrees of freedom. We note

that second-order tetrahedral elements of Nédélec’s first family have

20 degrees of freedom per element and that the number of global de-

grees of freedom scale roughly as 6 times the number of tetrahedra.

Again, the mesh is generated in such a way that the four segments

of the receiver coil coincide with edges of tetrahedra. In evaluating

the transfer function, we determine the electric field along one of

these four edges, namely that centred at (x = 98, y = 0, z = 0) m

and oriented in the y-direction, which again corresponds to one FE

degree of freedom.

Figs 7(a)–(c) shows the real part of the approximated transfer

function tm for the 3-D discretization for the Krylov subspace di-

mensions m = 20, 50 and 200 and reference frequencies f 0 = 102,

103, 104 and 105 Hz.

As in the 2-D case (cf. Fig. 5), the error between analytical and

approximate transfer function is small near the reference frequency,

whereas the deviation in the low frequency part is larger than in the

2-D case. For f 0 = 102 Hz the relative error of the transient (Fig. 7a,

right-hand side) is large for early times. Adding more Krylov vectors

does not improve the agreement. However, increasing the Krylov

dimension improves the agreement at late times significantly. The

latter is bounded by a lower limit imposed by the distance of the

domain boundaries, a discretization feature which cannot be com-

pensated by a larger Krylov space, but can only be further reduced

by a larger computational domain. By increasing the reference
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Figure 5. Real part of transfer function tm (left-hand side) and associated relative error of transient electric field (right-hand side) for different Krylov subspace

dimensions and reference frequencies. 2-D model size 1200 m.

frequency (cf. Figs 7b–c), the error in the early times can be fur-

ther reduced. Attaining better agreement at late times would require

a larger Krylov space.

Again as in the 2-D example, we observe that the Hankel trans-

form in the synthesis of the time domain solution effectively damps

out the errors in the transfer function in the high frequencies

f > 106 Hz, resulting in good agreement of the transient with the

analytical solution for a Krylov subspace dimension of m = 200.

Closer inspection of the approximate transfer functions for different

reference frequencies indicates that ‘local’ convergence near the ref-

erence frequencies is observable already for small Krylov subspace

dimensions. Therefore, it seems attractive to construct an improved

approximation of the transfer function by incorporating more than

one reference frequency into the MRFD process.

The benefit of using approximate transfer functions associated

with several reference frequencies and separate, low-dimensional

Krylov spaces is twofold: first, the accuracy may be enhanced sig-

nificantly, particularly at late times of the transient. On the other

hand, smaller Krylov spaces results in a significant decrease of the

computational effort.

Fig. 8 shows the gain in accuracy when using two reference fre-

quencies. Using 40 Krylov subspace basis vectors for f 0 = 102 Hz

and 100 Krylov subspace basis vectors for f 0 = 104 Hz, the fit of

the approximated transfer function tm is good for a frequency band

from 10 to 106 Hz. The transient electric field at the receiver shows

an equally good agreement for both early and late times. The rela-

tive error between approximate and analytical transient is less than

1.5 per cent over the complete time interval.

The computational cost of the MRFD method is dominated by

the LU factorization of the matrix A0 as well as the triangular back-

solves based on this factorization at each step of the Arnoldi pro-

cess. Fig. 9 gives a breakdown of the computer time required for the

MRFD algorithm applied the 3-D layered half-space model using

one and two reference frequencies. For the model with 79 844 de-

grees of freedom one LU factorization requires 12 s of computing

time. Once an LU factorization is available the Krylov subspace is
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Figure 6. Horizontal cross-section of the 3-D finite element mesh (plane at

z = 0) used for numerical experiments. A total of 500 triangular boundary

faces are aligned with the interface at z = 0. The full 3-D mesh consists

of 12 218 tetrahedral elements corresponding to 79 844 DOFS. Transmitter

and receiver loops are denoted by TX and RX, respectively.

constructed requiring only triangular backsolves utilizing the LU

factors. The computational effort grows quadratically with the

Krylov space dimension. Hence, the total computing time for the

MRFD method is dominated by the construction of a sufficiently

large Krylov subspace. The final step of Fourier transforming the

approximate transfer function into the time domain adds only neg-

ligible effort.

When only one reference frequency is used the total CPU time for

the MRFD method is 280 s, including 12 s for one LU factorization,

267.28 s for construction of 200 Krylov basis vectors, and remaining

0.72 s for transforming the transfer function into the time domain.

Therefore, once the Arnoldi basis of the Krylov space has been

generated, the cost of the sweep over the remaining frequencies is

essentially negligible in comparison to that of the Arnoldi process.

Since each new reference frequency requires the LU factoriza-

tion of a new matrix A0, we require as many LU factorizations as

reference frequencies. Our numerical experiments have shown that,

due to the limited complexity of the layered half-space model two

reference frequencies are sufficient.

In this case the time required for the two LU factorizations is

24 s. Building up the low frequency part of the transfer function

associated with the Krylov basis for f 0 = 102 Hz requires 40 Arnoldi

steps and 25.5 s. The second reference frequency is associated with

the build-up of the high frequency part of the transfer function. The

construction of its Krylov basis with m = 100 takes 89.5 s. The total

computing time amounts 138.5 s including 0.35 s required for the

concluding Hankel transform. Incorporating yet further reference

frequencies will save further computer time as long as the savings

in the Krylov part compensate the increased effort of the additional

LU factorizations.

5.2 Agreement with other numerical approaches

We further compare the accuracy of the MRFD method against

results obtained by the SLDM (Druskin & Knizhnerman 1988)

and the FDTD method (Commer & Newman 2004). To this end,

more complex, non-trivial conductivity models relevant to geo-

electromagnetic applications in ore and marine exploration will be

considered.

5.2.1 Layered half-space model

The first example compares the layered half-space model response

with an SLDM solution. The FD grid used with the SLDM experi-

ment is depicted in Fig. 10. Due to the nature of the tensor product

grids used there, unnecessarily fine grid cells occur at the outer

boundaries of the discretized region.

Both meshes lead to solutions of comparable accuracy. However,

compared with a solution vector of 108 000 entries for the SLDM

approach, the total number of degrees of freedom is only 79 844 for

the adaptively refined FE discretization (cf. Fig. 6).

Fig. 11 shows a comparison of the transient electric field at x =

98 m computed with our MRFD approach with that produced by the

SLDM method. We observe excellent agreement of both approxi-

mations.

5.2.2 Complex conductivity model

Next, we consider a conductivity model with a complex 3-D conduc-

tor at a vertical contact presented by Commer & Newman (2004).

The model section in Fig. 12 consists of a 1 � m dipping body at a

vertical contact of two resistors of 100 and 300 � m covered by a

thin 10 � m conductive layer. The transmitter source is an electric

line source of 100 m length layered out perpendicular to the profile,

parallel to the strike of the conductor.

The computational domain for the 3-D FE model is a box of

4 000 m side length. The entire mesh consists of 34 295 tetrahedra,

which corresponds to 214 274 degrees of freedom. The considered

time interval of the transient suggested the choice of two reference

frequencies with f 0 = 10 and 102 Hz. For both frequencies, the

desired dimension of the Krylov subspace has been chosen to be

m = 40.

Fig. 13 shows the transient electric field measured perpendicular

to the profile at three different locations on a profile in compari-

son with results obtained with the FDTD method. In general, the

solutions compare well for all receiver positions especially at early

times. The largest deviation occures at late times for the receiver

900 m away from the transmitter. We note however, that the time of

the sign reversals fit very well.

5.2.3 Marine EM simulation

We conclude our numerical experiments with a model situation

which is typical for the emerging sector of marine controlled source

electromagnetic applications (Edwards 2005). An electric dipole

source will be used as a transmitter which is laid out at the seafloor.

A set of receivers measure the inline electric field components after

source current turn-off (Fig. 14).

As a numerical example, we consider the case of a small resistive

body embedded in a good conducting environment. The computa-

tional domain is a box of 2400 m side length. The mesh consists of

12 147 tetrahedral elements corresponding to 76 388 degrees of free-

dom. As reference frequencies, 102 and 104 Hz have been choosen

with a desired Krylov subspace dimension of m = 50 for both cases.

The source is an electric dipole which is laid out at the seafloor in

profile direction. Measurements of the in-line electric fields are taken
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Figure 7. Real part of transfer function tm (left-hand side) and associated relative error of transient (right-hand side) at x = 98 m for different Krylov subspace

dimensions, reference frequency f 0 = 102 Hz (a), f 0 = 103 Hz (b), f 0 = 104 Hz (c), f 0 = 105 Hz (d), 3-D model size 2400 m.
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Figure 8. Transfer function and transient error in 3-D layered half-space example using two reference frequencies f 0 = 102 Hz and f 0 = 104 Hz used to

generate Krylov subspaces of dimension m = 40 and 100, respectively. The relative error in the transient is below 1.5 per cent.

at 100 and 150 m away from the source at locations directly over the

resistive body.

We observe excellent agreement at early times after current shut-

off. At very early times, the response resembles that of a DC source,

whereas at late times the response rapidly damps out. We attribute

the deviations at late times to the restricted model size which does

not correspond to the desired transient time interval.

6 C O N C L U S I O N S

We have developed an effective algorithm for simulating the electro-

magnetic field of a transient dipole source. Using a Krylov subspace

projection technique, the system of equations arising from the FE

discretization of the time-harmonic equation is projected onto a

low-dimensional subspace. The resulting system can be solved for a

wide range of frequencies with only moderate computational effort.

In this way, computing transients using a Fourier transform becomes

feasible.

We have carried out numerical experiments for a layered half-

space using a 2-D and 3-D FE discretization. By comparing with

the analytical solution the MRFD parameters particularly affecting

approximation quality, namely domain size, mesh resolution, choice

of reference frequency, and dimension of Krylov space, could be

adjusted. For large scale 3-D problems the choice of two or more
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Figure 9. Breakdown of computing time for 3-D layered half-space model for one and two reference frequencies. In the first case one LU factorization is

followed by a longer phase of Krylov subspace generation, in the second two LU factorizations are each followed by shorter Krylov phases.
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Figure 10. Full extent (a) and excerpt (b) of the finite difference grid (x–y

plane, z = 0) used for the 3-D layered half-space SLDM calculation.

10 10 10 10

10

10

10

time in s

e
y
 i
n

 V
/m

MRFD

SLDM

Figure 11. Comparison of transient electric fields e y at x = 98 m obtained

by MRFD and SLDM.

reference frequencies further contributes to good agreement be-

tween approximate and analytical solution, and saves computing

costs at the same time. Comparisons with other established meth-

ods as SLDM and FDTD have shown the MRFD method to be in

good agreement.

We also emphasize that the FE discretization provides more flex-

ibility with regard to the parametrization of conductivity varations,

topography, dipping layers and bathymetry. Adaptive mesh refine-

ment, which is essential for strongly varying gradients in the fields,

as well as a posteriori error approximation, are also much more

easily handled in a FE context.

A further advantage of the frequency domain calculations is that

no initial field data are required, as is the case for time domain

simulation schemes.

Finally, we mention some possible improvements of the MRFD

method: we have chosen the Arnoldi process for generating the

Krylov subspace basis, and used a one-sided approximation to

approximate the transfer function. A better approximation with a

smaller Krylov space can be achieved using two-sided projections

and more efficient Krylov subspace basis generation based on the

unsymmetric block Lanczos process. Block Krylov methods as well

as projection spaces generated by vectors associated with differ-

ent reference frequencies are another approach to explore. In addi-

tion, for very large 3-D calculations the time and memory cost for

computing the LU decomposition of the matrix A0 can become ex-

cessive, so that multigrid methods recently developed specifically

for the curl–curl operator could replace the linear system solves with

A0 required at each step of the Krylov subspace generation. We will

investigate these enhancements in future work.
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Figure 12. Vertical cross-section of complex 3-D conductivity structure from Commer & Newman (2004).
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