
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 675–686

Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

675

Fast Abstractive Summarization with
Reinforce-Selected Sentence Rewriting

Yen-Chun Chen and Mohit Bansal

UNC Chapel Hill

{yenchun, mbansal}@cs.unc.edu

Abstract

Inspired by how humans summarize long

documents, we propose an accurate and

fast summarization model that first selects

salient sentences and then rewrites them

abstractively (i.e., compresses and para-

phrases) to generate a concise overall sum-

mary. We use a novel sentence-level pol-

icy gradient method to bridge the non-

differentiable computation between these

two neural networks in a hierarchical way,

while maintaining language fluency. Em-

pirically, we achieve the new state-of-the-

art on all metrics (including human eval-

uation) on the CNN/Daily Mail dataset, as

well as significantly higher abstractiveness

scores. Moreover, by first operating at

the sentence-level and then the word-level,

we enable parallel decoding of our neural

generative model that results in substan-

tially faster (10-20x) inference speed as

well as 4x faster training convergence than

previous long-paragraph encoder-decoder

models. We also demonstrate the general-

ization of our model on the test-only DUC-

2002 dataset, where we achieve higher

scores than a state-of-the-art model.

1 Introduction

The task of document summarization has two

main paradigms: extractive and abstractive. The

former method directly chooses and outputs the

salient sentences (or phrases) in the original doc-

ument (Jing and McKeown, 2000; Knight and

Marcu, 2000; Martins and Smith, 2009; Berg-

Kirkpatrick et al., 2011). The latter abstractive

approach involves rewriting the summary (Banko

et al., 2000; Zajic et al., 2004), and has seen sub-

stantial recent gains due to neural sequence-to-

sequence models (Chopra et al., 2016; Nallap-

ati et al., 2016; See et al., 2017; Paulus et al.,

2018). Abstractive models can be more concise

by performing generation from scratch, but they

suffer from slow and inaccurate encoding of very

long documents, with the attention model being

required to look at all encoded words (in long

paragraphs) for decoding each generated summary

word (slow, one by one sequentially). Abstrac-

tive models also suffer from redundancy (repeti-

tions), especially when generating multi-sentence

summary.

To address both these issues and combine

the advantages of both paradigms, we pro-

pose a hybrid extractive-abstractive architecture,

with policy-based reinforcement learning (RL) to

bridge together the two networks. Similar to how

humans summarize long documents, our model

first uses an extractor agent to select salient sen-

tences or highlights, and then employs an abstrac-

tor network to rewrite (i.e., compress and para-

phrase) each of these extracted sentences. To over-

come the non-differentiable behavior of our ex-

tractor and train on available document-summary

pairs without saliency label, we next use actor-

critic policy gradient with sentence-level metric

rewards to connect these two neural networks and

to learn sentence saliency. We also avoid com-

mon language fluency issues (Paulus et al., 2018)

by preventing the policy gradients from affect-

ing the abstractive summarizer’s word-level train-

ing, which is supported by our human evaluation

study. Our sentence-level reinforcement learn-

ing takes into account the word-sentence hierar-

chy, which better models the language structure

and makes parallelization possible. Our extractor

combines reinforcement learning and pointer net-

works, which is inspired by Bello et al. (2017)’s

attempt to solve the Traveling Salesman Problem.

Our abstractor is a simple encoder-aligner-decoder



676

model (with copying) and is trained on pseudo

document-summary sentence pairs obtained via

simple automatic matching criteria.

Thus, our method incorporates the abstractive

paradigm’s advantages of concisely rewriting sen-

tences and generating novel words from the full

vocabulary, yet it adopts intermediate extractive

behavior to improve the overall model’s quality,

speed, and stability. Instead of encoding and at-

tending to every word in the long input document

sequentially, our model adopts a human-inspired

coarse-to-fine approach that first extracts all the

salient sentences and then decodes (rewrites) them

(in parallel). This also avoids almost all redun-

dancy issues because the model has already cho-

sen non-redundant salient sentences to abstrac-

tively summarize (but adding an optional final

reranker component does give additional gains by

removing the fewer across-sentence repetitions).

Empirically, our approach is the new state-of-

the-art on all ROUGE metrics (Lin, 2004) as well

as on METEOR (Denkowski and Lavie, 2014)

of the CNN/Daily Mail dataset, achieving sta-

tistically significant improvements over previous

models that use complex long-encoder, copy, and

coverage mechanisms (See et al., 2017). The

test-only DUC-2002 improvement also shows our

model’s better generalization than this strong ab-

stractive system. In addition, we surpass the pop-

ular lead-3 baseline on all ROUGE scores with an

abstractive model. Moreover, our sentence-level

abstractive rewriting module also produces sub-

stantially more (3x) novel N -grams that are not

seen in the input document, as compared to the

strong flat-structured model of See et al. (2017).

This empirically justifies that our RL-guided ex-

tractor has learned sentence saliency, rather than

benefiting from simply copying longer sentences.

We also show that our model maintains the same

level of fluency as a conventional RNN-based

model because the reward does not leak to our ab-

stractor’s word-level training. Finally, our model’s

training is 4x and inference is more than 20x faster

than the previous state-of-the-art. The optional

final reranker gives further improvements while

maintaining a 7x speedup.

Overall, our contribution is three fold: First

we propose a novel sentence-level RL technique

for the well-known task of abstractive summariza-

tion, effectively utilizing the word-then-sentence

hierarchical structure without annotated matching

sentence-pairs between the document and ground

truth summary. Next, our model achieves the

new state-of-the-art on all metrics of multiple ver-

sions of a popular summarization dataset (as well

as a test-only dataset) both extractively and ab-

stractively, without loss in language fluency (also

demonstrated via human evaluation and abstrac-

tiveness scores). Finally, our parallel decoding re-

sults in a significant 10-20x speed-up over the pre-

vious best neural abstractive summarization sys-

tem with even better accuracy.1

2 Model

In this work, we consider the task of summa-

rizing a given long text document into several

(ordered) highlights, which are then combined

to form a multi-sentence summary. Formally,

given a training set of document-summary pairs

{xi, yi}
N
i=1

, our goal is to approximate the func-

tion h : X → Y,X = {xi}
N
i=1

, Y = {yi}
N
i=1

such that h(xi) = yi, 1 ≤ i ≤ N . Further-

more, we assume there exists an abstracting func-

tion g defined as: ∀s ∈ Si, ∃d ∈ Di such that

g(d) = s, 1 ≤ i ≤ N , where Si is the set of sum-

mary sentences in xi and Di the set of document

sentences in yi. i.e., in any given pair of docu-

ment and summary, every summary sentence can

be produced from some document sentence. For

simplicity, we omit subscript i in the remainder

of the paper. Under this assumption, we can fur-

ther define another latent function f : X → Dn

that satisfies f(x) = {dt}
n
j=1

and y = h(x) =
[g(d1), g(d2), . . . , g(dn)], where [, ] denotes sen-

tence concatenation. This latent function f can be

seen as an extractor that chooses the salient (or-

dered) sentences in a given document for the ab-

stracting function g to rewrite. Our overall model

consists of these two submodules, the extractor

agent and the abstractor network, to approximate

the above-mentioned f and g, respectively.

2.1 Extractor Agent

The extractor agent is designed to model f , which

can be thought of as extracting salient sentences

from the document. We exploit a hierarchical neu-

ral model to learn the sentence representations of

the document and a ‘selection network’ to extract

sentences based on their representations.

1We are releasing our code, best pretrained models,
as well as output summaries, to promote future research:
https://github.com/ChenRocks/fast_abs_rl

https://github.com/ChenRocks/fast_abs_rl


677

b
i-L

S
T

M

b
i-L

S
T

M

b
i-L

S
T

M

b
i-L

S
T

M
Encoded Sentence Representations

r1 r2 r3 r4
L

S
T

M

L
S

T
M

L
S

T
M

Extraction Probabilities (Policy)

1

h4h0

0

h1

Context-aware Sent. Reps.

(from previous extraction step)

C
O

N
V

E
m

b
e
d
d
e
d
 W

o
rd

 V
e
c
to

rs

Convolutional Sentence Encoder

Figure 1: Our extractor agent: the convolutional encoder computes representation rj for each sentence.

The RNN encoder (blue) computes context-aware representation hj and then the RNN decoder (green)

selects sentence jt at time step t. With jt selected, hjt will be fed into the decoder at time t+ 1.

2.1.1 Hierarchical Sentence Representation

We use a temporal convolutional model (Kim,

2014) to compute rj , the representation of each in-

dividual sentence in the documents (details in sup-

plementary). To further incorporate global context

of the document and capture the long-range se-

mantic dependency between sentences, a bidirec-

tional LSTM-RNN (Hochreiter and Schmidhuber,

1997; Schuster et al., 1997) is applied on the con-

volutional output. This enables learning a strong

representation, denoted as hj for the j-th sentence

in the document, that takes into account the con-

text of all previous and future sentences in the

same document.

2.1.2 Sentence Selection

Next, to select the extracted sentences based on the

above sentence representations, we add another

LSTM-RNN to train a Pointer Network (Vinyals

et al., 2015), to extract sentences recurrently. We

calculate the extraction probability by:

utj =











v⊤p tanh(Wp1hj +Wp2et) if jt 6= jk

∀k < t

−∞ otherwise

(1)

P (jt|j1, . . . , jt−1) = softmax(ut) (2)

where et’s are the output of the glimpse opera-

tion (Vinyals et al., 2016):

atj = v⊤g tanh(Wg1hj +Wg2zt) (3)

αt = softmax(at) (4)

et =
∑

j

αt
jWg1hj (5)

Abstractor

djt

st
Summary	Sentence

(ground	truth)

g(djt)

Generated	Sentence

Reward

RL Agent

Extractor

Policy Gradient 

Update

Observation

d1

d2

d3

d4
Document	Sentences

Action (extract sent.)

Figure 2: Reinforced training of the extractor (for

one extraction step) and its interaction with the ab-

stractor. For simplicity, the critic network is not

shown. Note that all d’s and st are raw sentences,

not vector representations.

In Eqn. 3, zt is the output of the added LSTM-

RNN (shown in green in Fig. 1) which is referred

to as the decoder. All the W ’s and v’s are trainable

parameters. At each time step t, the decoder per-

forms a 2-hop attention mechanism: It first attends

to hj’s to get a context vector et and then attends

to hj’s again for the extraction probabilities.2 This

model is essentially classifying all sentences of the

document at each extraction step. An illustration

of the whole extractor is shown in Fig. 1.

2.2 Abstractor Network

The abstractor network approximates g, which

compresses and paraphrases an extracted docu-

ment sentence to a concise summary sentence. We

2Note that we force-zero the extraction prob. of already
extracted sentences so as to prevent the model from using re-
peating document sentences and suffering from redundancy.
This is non-differentiable and hence only done in RL training.



678

use the standard encoder-aligner-decoder (Bah-

danau et al., 2015; Luong et al., 2015). We add the

copy mechanism3 to help directly copy some out-

of-vocabulary (OOV) words (See et al., 2017). For

more details, please refer to the supplementary.

3 Learning

Given that our extractor performs a non-

differentiable hard extraction, we apply stan-

dard policy gradient methods to bridge the back-

propagation and form an end-to-end trainable

(stochastic) computation graph. However, sim-

ply starting from a randomly initialized network

to train the whole model in an end-to-end fash-

ion is infeasible. When randomly initialized, the

extractor would often select sentences that are

not relevant, so it would be difficult for the ab-

stractor to learn to abstractively rewrite. On the

other hand, without a well-trained abstractor the

extractor would get noisy reward, which leads

to a bad estimate of the policy gradient and a

sub-optimal policy. We hence propose optimiz-

ing each sub-module separately using maximum-

likelihood (ML) objectives: train the extractor to

select salient sentences (fit f ) and the abstractor to

generate shortened summary (fit g). Finally, RL is

applied to train the full model end-to-end (fit h).

3.1 Maximum-Likelihood Training for

Submodules

Extractor Training: In Sec. 2.1.2, we have

formulated our sentence selection as classifica-

tion. However, most of the summarization datasets

are end-to-end document-summary pairs with-

out extraction (saliency) labels for each sentence.

Hence, we propose a simple similarity method to

provide a ‘proxy’ target label for the extractor.

Similar to the extractive model of Nallapati et al.

(2017), for each ground-truth summary sentence,

we find the most similar document sentence djt
by:4

jt = argmaxi(ROUGE-Lrecall(di, st)) (6)

Given these proxy training labels, the extractor is

then trained to minimize the cross-entropy loss.

3We use the terminology of copy mechanism (originally
named pointer-generator) in order to avoid confusion with
the pointer network (Vinyals et al., 2015).

4Nallapati et al. (2017) selected sentences greedily to
maximize the global summary-level ROUGE, whereas we
match exactly 1 document sentence for each GT summary
sentence based on the individual sentence-level score.

Abstractor Training: For the abstractor training,

we create training pairs by taking each summary

sentence and pairing it with its extracted docu-

ment sentence (based on Eqn. 6). The network

is trained as an usual sequence-to-sequence model

to minimize the cross-entropy loss L(θabs) =
− 1

M

∑M
m=1

logPθabs(wm|w1:m−1) of the decoder

language model at each generation step, where

θabs is the set of trainable parameters of the ab-

stractor and wm the mth generated word.

3.2 Reinforce-Guided Extraction

Here we explain how policy gradient techniques

are applied to optimize the whole model. To

make the extractor an RL agent, we can formu-

late a Markov Decision Process (MDP)5: at each

extraction step t, the agent observes the current

state ct = (D, djt−1
), samples an action jt ∼

πθa,ω(ct, j) = P (j) from Eqn. 2 to extract a doc-

ument sentence and receive a reward6

r(t+ 1) = ROUGE-LF1
(g(djt), st) (7)

after the abstractor summarizes the extracted sen-

tence djt . We denote the trainable parameters of

the extractor agent by θ = {θa, ω} for the decoder

and hierarchical encoder respectively. We can then

train the extractor with policy-based RL. We illus-

trate this process in Fig. 2.

The vanilla policy gradient algorithm, REIN-

FORCE (Williams, 1992), is known for high vari-

ance. To mitigate this problem, we add a critic

network with trainable parameters θc to predict

the state-value function V πθa,ω(c). The predicted

value of critic bθc,ω(c) is called the ‘baseline’,

which is then used to estimate the advantage func-

tion: Aπθ(c, j) = Qπθa,ω(c, j) − V πθa,ω(c) be-

cause the total return Rt is an estimate of action-

value function Q(ct, jt). Instead of maximizing

Q(ct, jt) as done in REINFORCE, we maximize

Aπθ(c, j) with the following policy gradient:

∇θa,ωJ(θa, ω) =

E[∇θa,ωlogπθ(c, j)A
πθ(c, j)]

(8)

And the critic is trained to minimize the square

loss: Lc(θc, ω) = (bθc,ω(ct) − Rt)
2. This is

5Strictly speaking, this is a Partially Observable Markov
Decision Process (POMDP). We approximate it as an MDP
by assuming that the RNN hidden state contains all past info.

6In Eqn. 6, we use ROUGE-recall because we want the
extracted sentence to contain as much information as possible
for rewriting. Nevertheless, for Eqn. 7, ROUGE-F1 is more
suitable because the abstractor g is supposed to rewrite the
extracted sentence d to be as concise as the ground truth s.



679

known as the Advantage Actor-Critic (A2C), a

synchronous variant of A3C (Mnih et al., 2016).

For more A2C details, please refer to the supp.

Intuitively, our RL training works as follow: If

the extractor chooses a good sentence, after the ab-

stractor rewrites it the ROUGE match would be

high and thus the action is encouraged. If a bad

sentence is chosen, though the abstractor still pro-

duces a compressed version of it, the summary

would not match the ground truth and the low

ROUGE score discourages this action. Our RL

with a sentence-level agent is a novel attempt in

neural summarization. We use RL as a saliency

guide without altering the abstractor’s language

model, while previous work applied RL on the

word-level, which could be prone to gaming the

metric at the cost of language fluency.7

Learning how many sentences to extract: In a

typical RL setting like game playing, an episode

is usually terminated by the environment. On the

other hand, in text summarization, the agent does

not know in advance how many summary sentence

to produce for a given article (since the desired

length varies for different downstream applica-

tions). We make an important yet simple, intuitive

adaptation to solve this: by adding a ‘stop’ ac-

tion to the policy action space. In the RL training

phase, we add another set of trainable parameters

vEOE (EOE stands for ‘End-Of-Extraction’) with

the same dimension as the sentence representation.

The pointer-network decoder treats vEOE as one

of the extraction candidates and hence naturally

results in a stop action in the stochastic policy.

We set the reward for the agent performing EOE

to ROUGE-1F1
([{g(djt)}t], [{st}t]); whereas for

any extraneous, unwanted extraction step, the

agent receives zero reward. The model is there-

fore encouraged to extract when there are still re-

maining ground-truth summary sentences (to ac-

cumulate intermediate reward), and learn to stop

by optimizing a global ROUGE and avoiding extra

extraction.8 Overall, this modification allows dy-

7During this RL training of the extractor, we keep the ab-
stractor parameters fixed. Because the input sentences for the
abstractor are extracted by an intermediate stochastic policy
of the extractor, it is impossible to find the correct target sum-
mary for the abstractor to fit g with ML objective. Though it
is possible to optimize the abstractor with RL, in out prelim-
inary experiments we found that this does not improve the
overall ROUGE, most likely because this RL optimizes at a
sentence-level and can add across-sentence redundancy. We
achieve SotA results without this abstractor-level RL.

8We use ROUGE-1 for terminal reward because it is a
better measure of bag-of-words information (i.e., has all the

namic decisions of number-of-sentences based on

the input document, eliminates the need for tuning

a fixed number of steps, and enables a data-driven

adaptation for any specific dataset/application.

3.3 Repetition-Avoiding Reranking

Existing abstractive summarization systems on

long documents suffer from generating repeating

and redundant words and phrases. To mitigate

this issue, See et al. (2017) propose the coverage

mechanism and Paulus et al. (2018) incorporate

tri-gram avoidance during beam-search at test-

time. Our model without these already performs

well because the summary sentences are gener-

ated from mutually exclusive document sentences,

which naturally avoids redundancy. However, we

do get a small further boost to the summary quality

by removing a few ‘across-sentence’ repetitions,

via a simple reranking strategy: At sentence-level,

we apply the same beam-search tri-gram avoid-

ance (Paulus et al., 2018). We keep all k sentence

candidates generated by beam search, where k is

the size of the beam. Next, we then rerank all

kn combinations of the n generated summary sen-

tence beams. The summaries are reranked by the

number of repeated N -grams, the smaller the bet-

ter. We also apply the diverse decoding algorithm

described in Li et al. (2016) (which has almost no

computation overhead) so as to get the above ap-

proach to produce useful diverse reranking lists.

We show how much the redundancy affects the

summarization task in Sec. 6.2.

4 Related Work

Early summarization works mostly focused on ex-

tractive and compression based methods (Jing and

McKeown, 2000; Knight and Marcu, 2000; Clarke

and Lapata, 2010; Berg-Kirkpatrick et al., 2011;

Filippova et al., 2015). Recent large-sized corpora

attracted neural methods for abstractive summa-

rization (Rush et al., 2015; Chopra et al., 2016).

Some of the recent success in neural abstractive

models include hierarchical attention (Nallapati

et al., 2016), coverage (Suzuki and Nagata, 2016;

Chen et al., 2016; See et al., 2017), RL based met-

ric optimization (Paulus et al., 2018), graph-based

attention (Tan et al., 2017), and the copy mecha-

nism (Miao and Blunsom, 2016; Gu et al., 2016;

See et al., 2017).

important information been generated); while ROUGE-L is
used as intermediate rewards since it is known for better mea-
surement of language fluency within a local sentence.



680

Our model shares some high-level intuition with

extract-then-compress methods. Earlier attempts

in this paradigm used Hidden Markov Models and

rule-based systems (Jing and McKeown, 2000),

statistical models based on parse trees (Knight

and Marcu, 2000), and integer linear programming

based methods (Martins and Smith, 2009; Gillick

and Favre, 2009; Clarke and Lapata, 2010; Berg-

Kirkpatrick et al., 2011). Recent approaches in-

vestigated discourse structures (Louis et al., 2010;

Hirao et al., 2013; Kikuchi et al., 2014; Wang

et al., 2015), graph cuts (Qian and Liu, 2013),

and parse trees (Li et al., 2014; Bing et al., 2015).

For neural models, Cheng and Lapata (2016) used

a second neural net to select words from an ex-

tractor’s output. Our abstractor does not merely

‘compress’ the sentences but generatively produce

novel words. Moreover, our RL bridges the ex-

tractor and the abstractor for end-to-end training.

Reinforcement learning has been used to op-

timize the non-differential metrics of language

generation and to mitigate exposure bias (Ran-

zato et al., 2016; Bahdanau et al., 2017). Henß

et al. (2015) use Q-learning based RL for extrac-

tive summarization. Paulus et al. (2018) use RL

policy gradient methods for abstractive summa-

rization, utilizing sequence-level metric rewards

with curriculum learning (Ranzato et al., 2016)

or weighted ML+RL mixed loss (Paulus et al.,

2018) for stability and language fluency. We use

sentence-level rewards to optimize the extractor

while keeping our ML trained abstractor decoder

fixed, so as to achieve the best of both worlds.

Training a neural network to use another fixed

network has been investigated in machine trans-

lation for better decoding (Gu et al., 2017a) and

real-time translation (Gu et al., 2017b). They used

a fixed pretrained translator and applied policy

gradient techniques to train another task-specific

network. In question answering (QA), Choi et al.

(2017) extract one sentence and then generate the

answer from the sentence’s vector representation

with RL bridging. Another recent work attempted

a new coarse-to-fine attention approach on sum-

marization (Ling and Rush, 2017) and found de-

sired sharp focus properties for scaling to larger in-

puts (though without metric improvements). Very

recently (concurrently), Narayan et al. (2018) use

RL for ranking sentences in pure extraction-based

summarization and Çelikyilmaz et al. (2018) in-

vestigate multiple communicating encoder agents

to enhance the copying abstractive summarizer.

Finally, there are some loosely-related recent

works: Zhou et al. (2017) proposed selective gate

to improve the attention in abstractive summa-

rization. Tan et al. (2018) used an extract-then-

synthesis approach on QA, where an extraction

model predicts the important spans in the passage

and then another synthesis model generates the fi-

nal answer. Swayamdipta et al. (2017) attempted

cascaded non-recurrent small networks on extrac-

tive QA, resulting a scalable, parallelizable model.

Fan et al. (2017) added controlling parameters to

adapt the summary to length, style, and entity pref-

erences. However, none of these used RL to bridge

the non-differentiability of neural models.

5 Experimental Setup

Please refer to the supplementary for full training

details (all hyperparameter tuning was performed

on the validation set). We use the CNN/Daily Mail

dataset (Hermann et al., 2015) modified for sum-

marization (Nallapati et al., 2016). Because there

are two versions of the dataset, original text and

entity anonymized, we show results on both ver-

sions of the dataset for a fair comparison to prior

works. The experiment runs training and evalu-

ation for each version separately. Despite the fact

that the 2 versions have been considered separately

by the summarization community as 2 different

datasets, we use same hyper-parameter values for

both dataset versions to show the generalization of

our model. We also show improvements on the

DUC-2002 dataset in a test-only setup.

5.1 Evaluation Metrics

For all the datasets, we evaluate standard ROUGE-

1, ROUGE-2, and ROUGE-L (Lin, 2004) on full-

length F1 (with stemming) following previous

works (Nallapati et al., 2017; See et al., 2017;

Paulus et al., 2018). Following See et al. (2017),

we also evaluate on METEOR (Denkowski and

Lavie, 2014) for a more thorough analysis.

5.2 Modular Extractive vs. Abstractive

Our hybrid approach is capable of both extrac-

tive and abstractive (i.e., rewriting every sentence)

summarization. The extractor alone performs ex-

tractive summarization. To investigate the effect of

the recurrent extractor (rnn-ext), we implement a

feed-forward extractive baseline ff-ext (details in

supplementary). It is also possible to apply RL



681

Models ROUGE-1 ROUGE-2 ROUGE-L METEOR

Extractive Results

lead-3 (See et al., 2017) 40.34 17.70 36.57 22.21
Narayan et al. (2018) 40.0 18.2 36.6 -
ff-ext 40.63 18.35 36.82 22.91
rnn-ext 40.17 18.11 36.41 22.81
rnn-ext + RL 41.47 18.72 37.76 22.35

Abstractive Results

See et al. (2017) (w/o coverage) 36.44 15.66 33.42 16.65
See et al. (2017) 39.53 17.28 36.38 18.72
Fan et al. (2017) (controlled) 39.75 17.29 36.54 -
ff-ext + abs 39.30 17.02 36.93 20.05
rnn-ext + abs 38.38 16.12 36.04 19.39
rnn-ext + abs + RL 40.04 17.61 37.59 21.00
rnn-ext + abs + RL + rerank 40.88 17.80 38.54 20.38

Table 1: Results on the original, non-anonymized CNN/Daily Mail dataset. Adding RL gives statisti-

cally significant improvements for all metrics over non-RL rnn-ext models (and over the state-of-the-art

See et al. (2017)) in both extractive and abstractive settings with p < 0.01. Adding the extra reranking

stage yields statistically significant better results in terms of all ROUGE metrics with p < 0.01.

to extractor without using the abstractor (rnn-ext

+ RL).9 Benefiting from the high modularity of

our model, we can make our summarization sys-

tem abstractive by simply applying the abstractor

on the extracted sentences. Our abstractor rewrites

each sentence and generates novel words from a

large vocabulary, and hence every word in our

overall summary is generated from scratch; mak-

ing our full model categorized into the abstractive

paradigm.10 We run experiments on separately

trained extractor/abstractor (ff-ext + abs, rnn-ext +

abs) and the reinforced full model (rnn-ext + abs +

RL) as well as the final reranking version (rnn-ext

+ abs + RL + rerank).

6 Results

For easier comparison, we show separate tables

for the original-text vs. anonymized versions –

Table 1 and Table 2, respectively. Overall, our

model achieves strong improvements and the new

state-of-the-art on both extractive and abstractive

settings for both versions of the CNN/DM dataset

(with some comparable results on the anonymized

version). Moreover, Table 3 shows the gener-

alization of our abstractive system to an out-of-

domain test-only setup (DUC-2002), where our

model achieves better scores than See et al. (2017).

6.1 Extractive Summarization

In the extractive paradigm, we compare our model

with the extractive model from Nallapati et al.

9In this case the abstractor function g(d) = d.
10Note that the abstractive CNN/DM dataset does not in-

clude any human-annotated extraction label, and hence our
models do not receive any direct extractive supervision.

Models R-1 R-2 R-L

Extractive Results

lead-3 (Nallapati et al., 2017) 39.2 15.7 35.5
Nallapati et al. (2017) 39.6 16.2 35.3
ff-ext 39.51 16.85 35.80
rnn-ext 38.97 16.65 35.32
rnn-ext + RL 40.13 16.58 36.47

Abstractive Results

Nallapati et al. (2016) 35.46 13.30 32.65
Fan et al. (2017) (controlled) 38.68 15.40 35.47
Paulus et al. (2018) (ML) 38.30 14.81 35.49
Paulus et al. (2018) (RL+ML) 39.87 15.82 36.90
ff-ext + abs 38.73 15.70 36.33
rnn-ext + abs 37.58 14.68 35.24
rnn-ext + abs + RL 38.80 15.66 36.37
rnn-ext + abs + RL + rerank 39.66 15.85 37.34

Table 2: ROUGE for anonymized CNN/DM.

(2017) and a strong lead-3 baseline. For producing

our summary, we simply concatenate the extracted

sentences from the extractors. From Table 1 and

Table 2, we can see that our feed-forward extrac-

tor out-performs the lead-3 baseline, empirically

showing that our hierarchical sentence encoding

model is capable of extracting salient sentences.11

The reinforced extractor performs the best, be-

cause of the ability to get the summary-level re-

ward and the reduced train-test mismatch of feed-

ing the previous extraction decision. The improve-

ment over lead-3 is consistent across both tables.

In Table 2, it outperforms the previous best neural

extractive model (Nallapati et al., 2017). In Ta-

ble 1, our model also outperforms a recent, con-

11The ff-ext model outperforms rnn-ext possibly because
it does not predict sentence ordering; thus is easier to opti-
mize and the n-gram based metrics do not consider sentence
ordering. Also note that in our MDP formulation, we cannot
apply RL on ff-ext due to its historyless nature. Even if ap-
plied naively, there is no mean for the feed-forward model to
learn the EOE described in Sec. 3.2.



682

Models R-1 R-2 R-L

See et al. (2017) 37.22 15.78 33.90
rnn-ext + abs + RL 39.46 17.34 36.72

Table 3: Generalization to DUC-2002 (F1).

current work by Narayan et al. (2018), showing

that our pointer-network extractor and reward for-

mulations are very effective when combined with

A2C RL.

6.2 Abstractive Summarization

After applying the abstractor, the ff-ext based

model still out-performs the rnn-ext model. Both

combined models exceed the pointer-generator

model (See et al., 2017) without coverage by a

large margin for all metrics, showing the effec-

tiveness of our 2-step hierarchical approach: our

method naturally avoids repetition by extracting

multiple sentences with different keypoints.12

Moreover, after applying reinforcement learn-

ing, our model performs better than the best model

of See et al. (2017) and the best ML trained model

of Paulus et al. (2018). Our reinforced model out-

performs the ML trained rnn-ext + abs baseline

with statistical significance of p < 0.01 on all met-

rics for both version of the dataset, indicating the

effectiveness of the RL training. Also, rnn-ext +

abs + RL is statistically significant better than See

et al. (2017) for all metrics with p < 0.01.13 In

the supplementary, we show the learning curve of

our RL training, where the average reward goes

up quickly after the extractor learns the End-of-

Extract action and then stabilizes. For all the

above models, we use standard greedy decoding

and find that it performs well.

Reranking and Redundancy Although the

extract-then-abstract approach inherently will not

generate repeating sentences like other neural-

decoders do, there might still be across-sentence

redundancy because the abstractor is not aware

of other extracted sentences when decoding one.

Hence, we incorporate an optional reranking strat-

egy described in Sec. 3.3. The improved ROUGE

scores indicate that this successfully removes

some remaining redundancies and hence produces

more concise summaries. Our best abstractive

12A trivial lead-3 + abs baseline obtains ROUGE of
(37.37, 15.59, 34.82), which again confirms the importance
of our reinforce-based sentence selection.

13We calculate statistical significance based on the boot-
strap test (Noreen, 1989; Efron and Tibshirani, 1994) with
100K samples. Output of Paulus et al. (2018) is not available
so we couldn’t test for statistical significance there.

Relevance Readability Total

See et al. (2017) 120 128 248

rnn-ext + abs + RL + rerank 137 133 270

Equally good/bad 43 39 82

Table 4: Human Evaluation: pairwise comparison

between our final model and See et al. (2017).

model (rnn-ext + abs + RL + rerank) is clearly su-

perior than the one of See et al. (2017). We are

comparable on R-1 and R-2 but a 0.4 point im-

provement on R-L w.r.t. Paulus et al. (2018).14

We also outperform the results of Fan et al. (2017)

on both original and anonymized dataset versions.

Several previous works have pointed out that ex-

tractive baselines are very difficult to beat (in

terms of ROUGE) by an abstractive system (See

et al., 2017; Nallapati et al., 2017). Note that our

best model is one of the first abstractive models

to outperform the lead-3 baseline on the original-

text CNN/DM dataset. Our extractive experiment

serves as a complementary analysis of the effect of

RL with extractive systems.

6.3 Human Evaluation

We also conduct human evaluation to ensure ro-

bustness of our training procedure. We measure

relevance and readability of the summaries. Rel-

evance is based on the summary containing im-

portant, salient information from the input article,

being correct by avoiding contradictory/unrelated

information, and avoiding repeated/redundant in-

formation. Readability is based on the summa-

rys fluency, grammaticality, and coherence. To

evaluate both these criteria, we design the follow-

ing Amazon MTurk experiment: we randomly se-

lect 100 samples from the CNN/DM test set and

ask the human testers (3 for each sample) to rank

between summaries (for relevance and readabil-

ity) produced by our model and that of See et al.

(2017) (the models were anonymized and ran-

domly shuffled), i.e. A is better, B is better, both

are equally good/bad. Following previous work,

the input article and ground truth summaries are

also shown to the human participants in addition

to the two model summaries.15 From the results

shown in Table 4, we can see that our model is

better in both relevance and readability w.r.t. See

et al. (2017).

14We do not list the scores of their pure RL model because
they discussed its bad readability.

15We selected human annotators that were located in the
US, had an approval rate greater than 95%, and had at least
10,000 approved HITs on record.



683

Speed

Models total time (hr) words / sec

(See et al., 2017) 12.9 14.8

rnn-ext + abs + RL 0.68 361.3

rnn-ext + abs + RL + rerank 2.00 (1.46 +0.54) 109.8

Table 5: Speed comparison with See et al. (2017).

6.4 Speed Comparison

Our two-stage extractive-abstractive hybrid model

is not only the SotA on summary quality met-

rics, but more importantly also gives a significant

speed-up in both train and test time over a strong

neural abstractive system (See et al., 2017).16

Our full model is composed of a extremely fast

extractor and a parallelizable abstractor, where the

computation bottleneck is on the abstractor, which

has to generate summaries with a large vocabulary

from scratch.17 The main advantage of our ab-

stractor at decoding time is that we can first com-

pute all the extracted sentences for the document,

and then abstract every sentence concurrently (in

parallel) to generate the overall summary. In Ta-

ble 5, we show the substantial test-time speed-up

of our model compared to See et al. (2017).18 We

calculate the total decoding time for producing all

summaries for the test set.19 Due to the fact that

the main test-time speed bottleneck of RNN lan-

guage generation model is that the model is con-

strained to generate one word at a time, the total

decoding time is dependent on the number of to-

tal words generated; we hence also report the de-

coded words per second for a fair comparison. Our

model without reranking is extremely fast. From

Table 5 we can see that we achieve a speed up of

18x in time and 24x in word generation rate. Even

after adding the (optional) reranker, we still main-

tain a 6-7x speed-up (and hence a user can choose

to use the reranking component depending on their

downstream application’s speed requirements).20

16The only publicly available code with a pretrained model
for neural summarization which we can test the speed.

17The time needed for extractor is negligible w.r.t. the ab-
stractor because it does not require large matrix multiplica-
tion for generating every word. Moreover, with convolutional
encoder at word-level made parallelizable by the hierarchical
rnn-ext, our model is scalable for very long documents.

18For details of training speed-up, please see the supp.
19We time the model of See et al. (2017) using beam size of

4 (used for their best-reported scores). Without beam-search,
it gets significantly worse ROUGE of (36.62, 15.12, 34.08),
so we do not compare speed-ups w.r.t. that version.

20Most of the recent neural abstractive summarization sys-
tems are of similar algorithmic complexity to that of See et al.
(2017). The main differences such as the training objective
(ML vs. RL) and copying (soft/hard) has negligible test run-
time compared to the slowest component: the long-summary

Novel N -gram (%)

Models 1-gm 2-gm 3-gm 4-gm

See et al. (2017) 0.1 2.2 6.0 9.7

rnn-ext + abs + RL + rerank 0.3 10.0 21.7 31.6

reference summaries 10.8 47.5 68.2 78.2

Table 6: Abstractiveness: novel n-gram counts.

7 Analysis

7.1 Abstractiveness

We compute an abstractiveness score (See et al.,

2017) as the ratio of novel n-grams in the gen-

erated summary that are not present in the in-

put document. The results are shown in Table 6:

our model rewrites substantially more abstractive

summaries than previous work. A potential rea-

son for this is that when trained with individual

sentence-pairs, the abstractor learns to drop more

document words so as to write individual sum-

mary sentences as concise as human-written ones;

thus the improvement in multi-gram novelty.

7.2 Qualitative Analysis on Output Examples

We show examples of how our best model selects

sentences and then rewrites them. In the supple-

mentary Figure 2 and Figure 3, we can see how

the abstractor rewrites the extracted sentences con-

cisely while keeping the mentioned facts. Adding

the reranker makes the output more compact glob-

ally. We observe that when rewriting longer text,

the abstractor would have many facts to choose

from (Figure 3 sentence 2) and this is where the

reranker helps avoid redundancy across sentences.

8 Conclusion

We propose a novel sentence-level RL model

for abstractive summarization, which makes the

model aware of the word-sentence hierarchy. Our

model achieves the new state-of-the-art on both

CNN/DM versions as well a better generalization

on test-only DUC-2002, along with a significant

speed-up in training and decoding.

Acknowledgments

We thank the anonymous reviewers for their help-

ful comments. This work was supported by a

Google Faculty Research Award, a Bloomberg

Data Science Research Grant, an IBM Faculty

Award, and NVidia GPU awards.

attentional-decoder’s sequential generation; and this is the
component that we substantially speed up via our parallel
sentence decoding with sentence-selection RL.



684

References

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,
Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron C.
Courville, and Yoshua Bengio. 2017. An actor-critic
algorithm for sequence prediction. In ICLR.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Michele Banko, Vibhu O. Mittal, and Michael J. Wit-
brock. 2000. Headline generation based on statis-
tical translation. In Proceedings of the 38th An-
nual Meeting on Association for Computational Lin-
guistics, ACL ’00, pages 318–325, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad
Norouzi, and Samy Bengio. 2017. Neural combi-
natorial optimization with reinforcement learning.
arXiv preprint 1611.09940.

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.
2011. Jointly learning to extract and compress. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies - Volume 1, HLT ’11, pages
481–490, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Lidong Bing, Piji Li, Yi Liao, Wai Lam, Weiwei
Guo, and Rebecca J. Passonneau. 2015. Abstractive
multi-document summarization via phrase selection
and merging. In ACL.

Asli Çelikyilmaz, Antoine Bosselut, Xiaodong He, and
Yejin Choi. 2018. Deep communicating agents for
abstractive summarization. NAACL-HLT.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and
Hui Jiang. 2016. Distraction-based neural networks
for modeling documents. In IJCAI.

Jianpeng Cheng and Mirella Lapata. 2016. Neural
summarization by extracting sentences and words.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 484–494, Berlin, Germany.
Association for Computational Linguistics.

Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia
Polosukhin, Alexandre Lacoste, and Jonathan Be-
rant. 2017. Coarse-to-fine question answering for
long documents. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 209–220.
Association for Computational Linguistics.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 93–98, San
Diego, California. Association for Computational
Linguistics.

James Clarke and Mirella Lapata. 2010. Discourse
constraints for document compression. Computa-
tional Linguistics, 36(3):411–441.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the EACL
2014 Workshop on Statistical Machine Translation.

Bradley Efron and Robert J Tibshirani. 1994. An intro-
duction to the bootstrap. CRC press.

Angela Fan, David Grangier, and Michael Auli. 2017.
Controllable abstractive summarization. arXiv
preprint, abs/1711.05217.

Katja Filippova, Enrique Alfonseca, Carlos Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with lstms. In
Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing
(EMNLP’15).

Dan Gillick and Benoit Favre. 2009. A scalable global
model for summarization. In Proceedings of the
Workshop on Integer Linear Programming for Nat-
ural Langauge Processing, ILP ’09, pages 10–18,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Jiatao Gu, Kyunghyun Cho, and Victor O. K. Li. 2017a.
Trainable greedy decoding for neural machine trans-
lation. In EMNLP.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640, Berlin, Germany. Association for
Computational Linguistics.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O. K. Li. 2017b. Learning to translate in real-
time with neural machine translation. In EACL.

Sebastian Henß, Margot Mieskes, and Iryna Gurevych.
2015. A reinforcement learning approach for adap-
tive single- and multi-document summarization. In
International Conference of the German Society for
Computational Linguistics and Language Technol-
ogy (GSCL-2015), pages 3–12.

Karl Moritz Hermann, Tomáš Kočiský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems (NIPS).

Tsutomu Hirao, Yasuhisa Yoshida, Masaaki Nishino,
Norihito Yasuda, and Masaaki Nagata. 2013.
Single-document summarization as a tree knapsack
problem. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1515–1520, Seattle, Washington, USA.
Association for Computational Linguistics.

http://arxiv.org/abs/1607.07086
http://arxiv.org/abs/1607.07086
https://doi.org/10.3115/1075218.1075259
https://doi.org/10.3115/1075218.1075259
https://openreview.net/pdf?id=Bk9mxlSFx
https://openreview.net/pdf?id=Bk9mxlSFx
http://dl.acm.org/citation.cfm?id=2002472.2002534
http://arxiv.org/abs/1803.10357
http://arxiv.org/abs/1803.10357
http://www.aclweb.org/anthology/P16-1046
http://www.aclweb.org/anthology/P16-1046
https://doi.org/10.18653/v1/P17-1020
https://doi.org/10.18653/v1/P17-1020
http://www.aclweb.org/anthology/N16-1012
http://www.aclweb.org/anthology/N16-1012
http://arxiv.org/abs/1711.05217
http://dl.acm.org/citation.cfm?id=1611638.1611640
http://dl.acm.org/citation.cfm?id=1611638.1611640
http://arxiv.org/abs/1702.02429
http://arxiv.org/abs/1702.02429
http://arxiv.org/abs/1610.00388
http://arxiv.org/abs/1610.00388
http://arxiv.org/abs/1506.03340
http://arxiv.org/abs/1506.03340
http://www.aclweb.org/anthology/D13-1158
http://www.aclweb.org/anthology/D13-1158


685

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(9):1735–
1780.

Hongyan Jing and Kathleen R. McKeown. 2000. Cut
and paste based text summarization. In Proceed-
ings of the 1st North American Chapter of the As-
sociation for Computational Linguistics Conference,
NAACL 2000, pages 178–185, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Yuta Kikuchi, Tsutomu Hirao, Hiroya Takamura, Man-
abu Okumura, and Masaaki Nagata. 2014. Single
document summarization based on nested tree struc-
ture. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 315–320, Baltimore,
Maryland. Association for Computational Linguis-
tics.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Kevin Knight and Daniel Marcu. 2000. Statistics-
based summarization - step one: Sentence compres-
sion. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial
Intelligence, pages 703–710. AAAI Press.

Chen Li, Yang Liu, Fei Liu, Lin Zhao, and Fuliang
Weng. 2014. Improving multi-documents summa-
rization by sentence compression based on expanded
constituent parse trees. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 691–701. Asso-
ciation for Computational Linguistics.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. A sim-
ple, fast diverse decoding algorithm for neural gen-
eration. arXiv preprint, abs/1611.08562.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out: Proceedings of the ACL-04 Work-
shop, pages 74–81, Barcelona, Spain. Association
for Computational Linguistics.

Jeffrey Ling and Alexander Rush. 2017. Coarse-to-fine
attention models for document summarization. In
Proceedings of the Workshop on New Frontiers in
Summarization, pages 33–42. Association for Com-
putational Linguistics.

Annie Louis, Aravind Joshi, and Ani Nenkova. 2010.
Discourse indicators for content selection in summa-
rization. In Proceedings of the 11th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, SIGDIAL ’10, pages 147–156, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Empir-
ical Methods in Natural Language Processing
(EMNLP), pages 1412–1421, Lisbon, Portugal. As-
sociation for Computational Linguistics.

André F. T. Martins and Noah A. Smith. 2009. Sum-
marization with a joint model for sentence extraction
and compression. In Proceedings of the Workshop
on Integer Linear Programming for Natural Lan-
gauge Processing, ILP ’09, pages 1–9, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Yishu Miao and Phil Blunsom. 2016. Language as a
latent variable: Discrete generative models for sen-
tence compression. In EMNLP.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning.
In Proceedings of The 33rd International Confer-
ence on Machine Learning, volume 48 of Proceed-
ings of Machine Learning Research, pages 1928–
1937, New York, New York, USA. PMLR.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of doc-
uments. In AAAI Conference on Artificial Intelli-
gence.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos
santos, Caglar Gulcehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. In CoNLL.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Ranking sentences for extractive summariza-
tion with reinforcement learning. NAACL-HLT.

Eric W Noreen. 1989. Computer-intensive methods for
testing hypotheses. Wiley New York.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In ICLR.

Xian Qian and Yang Liu. 2013. Fast joint compres-
sion and summarization via graph cuts. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1492–1502,
Seattle, Washington, USA. Association for Compu-
tational Linguistics.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In ICLR.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389, Lisbon, Portugal.
Association for Computational Linguistics.

http://dl.acm.org/citation.cfm?id=974305.974329
http://dl.acm.org/citation.cfm?id=974305.974329
http://www.aclweb.org/anthology/P14-2052
http://www.aclweb.org/anthology/P14-2052
http://www.aclweb.org/anthology/P14-2052
http://dl.acm.org/citation.cfm?id=647288.721086
http://dl.acm.org/citation.cfm?id=647288.721086
http://dl.acm.org/citation.cfm?id=647288.721086
https://doi.org/10.3115/v1/D14-1076
https://doi.org/10.3115/v1/D14-1076
https://doi.org/10.3115/v1/D14-1076
http://arxiv.org/abs/1611.08562
http://arxiv.org/abs/1611.08562
http://arxiv.org/abs/1611.08562
http://www.aclweb.org/anthology/W04-1013
http://www.aclweb.org/anthology/W04-1013
http://aclweb.org/anthology/W17-4505
http://aclweb.org/anthology/W17-4505
http://dl.acm.org/citation.cfm?id=1944506.1944533
http://dl.acm.org/citation.cfm?id=1944506.1944533
http://dl.acm.org/citation.cfm?id=1611638.1611639
http://dl.acm.org/citation.cfm?id=1611638.1611639
http://dl.acm.org/citation.cfm?id=1611638.1611639
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
http://arxiv.org/abs/1802.08636
http://arxiv.org/abs/1802.08636
http://www.aclweb.org/anthology/D13-1156
http://www.aclweb.org/anthology/D13-1156
http://aclweb.org/anthology/D15-1044
http://aclweb.org/anthology/D15-1044


686

Mike Schuster, Kuldip K. Paliwal, and A. General.
1997. Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083. Association for Computational Linguistics.

Jun Suzuki and Masaaki Nagata. 2016. Rnn-based
encoder-decoder approach with word frequency es-
timation. In EACL.

Swabha Swayamdipta, Ankur P. Parikh, and Tom
Kwiatkowski. 2017. Multi-mention learning for
reading comprehension with neural cascades. arXiv
preprint, abs/1711.00894.

Chuanqi Tan, Furu Wei, Nan Yang, Weifeng Lv, and
Ming Zhou. 2018. S-net: From answer extraction to
answer generation for machine reading comprehen-
sion. In AAAI.

Jiwei Tan, Xiaojun Wan, and Jianguo Xiao. 2017.
Abstractive document summarization with a graph-
based attentional neural model. In ACL.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur.
2016. Order matters: Sequence to sequence for sets.
In International Conference on Learning Represen-
tations (ICLR).

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 2692–2700. Curran Associates,
Inc.

Xun Wang, Yasuhisa Yoshida, Tsutomu Hirao, Kat-
suhito Sudoh, and Masaaki Nagata. 2015. Sum-
marization based on task-oriented discourse parsing.
IEEE/ACM Trans. Audio, Speech and Lang. Proc.,
23(8):1358–1367.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Mach. Learn., 8(3-4):229–256.

David Zajic, Bonnie Dorr, and Richard Schwartz. 2004.
Bbn/umd at duc-2004: Topiary. In HLT-NAACL
2004 Document Understanding Workshop, pages
112–119, Boston, Massachusetts.

Qingyu Zhou, Nan Yang, Furu Wei, and Ming Zhou.
2017. Selective encoding for abstractive sentence
summarization. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1095–
1104. Association for Computational Linguistics.

http://arxiv.org/abs/1711.00894
http://arxiv.org/abs/1711.00894
http://arxiv.org/abs/1706.04815
http://arxiv.org/abs/1706.04815
http://arxiv.org/abs/1706.04815
https://doi.org/10.1109/TASLP.2015.2432573
https://doi.org/10.1109/TASLP.2015.2432573
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.18653/v1/P17-1101
https://doi.org/10.18653/v1/P17-1101

