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Fast Adaptive Equalization/Diversity Combining
for Time-Varying Dispersive Channels

Heung-No Lee and Gregory J. Pottie,Member, IEEE

Abstract—We examine adaptive equalization and diversity
combining methods for fast Rayleigh-fading frequency selective
channels. We assume a block adaptive receiver in which the
receiver coefficients are obtained from feedforward channel es-
timation. For the feedforward channel estimation, we propose
a novel reduced dimension channel estimation procedure, where
the number of unknown parameters are reduced usinga priori
information of the transmit shaping filter’s impulse response.
Fewer unknown parameters require a shorter training sequence.
We obtain least-squares, maximum-likelihood, and maximuma
posteriori (MAP) estimators for the reduced dimension channel
estimation problem. For symbol detection, we propose the use of a
matched filtered diversity combining decision feedback equalizer
(DFE) instead of a straightforward diversity combining DFE.
The matched filter form has lower computational complexity
and provides a well-conditioned matrix inversion. To cope with
fast time-varying channels, we introduce a new DFE coefficient
computation algorithm which is obtained by incorporating the
channel variation during the decision delay into the minimum
mean square error (MMSE) criterion. We refer to this as the
non-Toeplitz DFE (NT-DFE). We also show the feasibility of a
suboptimal receiver which has lower complexity than a recursive
least squares adaptation, with performance close to the optimal
NT-DFE.

Index Terms—Adaptive equalizer, channel parameter estima-
tion, fading dispersive channels.

I. INTRODUCTION

W IRELESS digital communications systems such as
IS-54, GSM, and personal communication systems

(PCS’s) suffer from many channel impairments, including sig-
nal fading, multipath delay spread, and Doppler spread. Signal
fading results in a very low instantaneous channel signal-to-
noise ratio (SNR), which necessitates diversity combining.
The multipath delay spread and stringent transmit filtering
requirements may cause severe intersymbol interference (ISI).
Thus, an equalizer is mandatory due to ISI-induced irreducible
error floors. These become significant once, the root-mean-
square (rms) delay spread of a multipath delay profile (MPDP),
exceeds about 1/10 the symbol period [1], [3], [8], [32].
This multipath-induced ISI problem in slow fading can be
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effectively dealt with using an equalizer and explicit diversity
combining.

However, the receiver design for the frequency-selective
fading channels is quite demanding in fast fading. For ex-
ample, in IS-54, with a carrier frequency of 900 MHz and
assuming a mobile moving at a maximum highway speed of
120 km/h, the maximum normalized Doppler fading rate
(the product of the maximum Doppler fading rate and the
symbol period) reaches up to 0.0042 [8]. This implies that the
minimum time between the two fading nulls is 5 ms ,
which is even shorter than the proposed burst length of 6.7
ms. To deal with such rapid fading and dispersive channels,
we need not only a fast and robust channel tracking algorithm
but also a highly optimized detection algorithm which makes
full use of all of the acquired channel information.

For tracking of fast changing dispersive channels, a block
adaptive decision feedback equalizer (DFE) based on feed-
forward channel estimation [4], [10], [20] has been shown to
be more effective than the conventional symbol by symbol
adaptation methods, such as least mean squares (LMS) or
even recursive least squares (RLS) [5], [26]. Other block
adaptive schemes, based on the feedforward channel estima-
tion but using the maximum-likelihood sequence estimator
(detector), can be found in [6], [9], and [11]. In this paper
we follow the block adaptive framework of [20]. In particular,
the receiver is assumed to operate on continuous transmitted
frames, where each frame consists of training and unknown
data segments. A “snap-shot” channel estimate is obtained
from the training segment. Channel tracking during the data
segments is performed by interpolating a set of the snap-shot
channel estimates. With the interpolated channel estimates,
the receiver filter coefficients are computed. Thus, the block
adaptive strategy we discuss in this paper will be applicable
to an IS-54 downlink [31] and future PCS’s [35].

In this paper we extend previous results [10], [20] on the
block adaptive strategy using channel estimate-based DFE.
First, we propose a new channel estimation method that is
robust against fast fading and also requires shorter training
sequences. We also compare two possible diversity-combining
DFE implementations and report a structure that is more
robust and less computationally complex for the block adaptive
strategy. We further propose a new DFE coefficient computa-
tion algorithm to deal with very fast fades. We illustrate the
improved performance of the receiver through computer simu-
lations. Finally, we show the feasibility of a low computational
complexity but suboptimal solution for tracking fast fades.
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Fig. 1. The basebandL-diversity channel model and the straightforward diversity-combining DFE receiver.

The remainder of this paper is organized as follows. Sec-
tion II describes the underlying system and channel model.
Section III describes the new channel estimation method and
derives channel estimators under different criteria. Section IV
discusses the channel interpolation scheme. Section V com-
pares the two possible diversity-combining DFE realizations
and derives the new DFE coefficient computation algorithm.
Section VI presents simulation results for the different receiver
schemes. Performance of an RLS channel tracking DFE is
presented for comparison. Finally, Section VII presents our
conclusions.

We adopt the following submatrix convention throughout
the paper:

• for an [ ] matrix , the row index ranges over
, and the column index

;
• denotes the submatrix of, including rows

of indexes from to and columns of indexes from
to ;

• denotes the submatrix of, including columns
from to and all rows;

• an underbar, i.e., , denotes a column vector, and
denotes the subvector of , including rows from

to .

II. BASEBAND EQUIVALENT CHANNEL MODEL

Fig. 1 includes the baseband equivalent channel model. A
square root raised cosine (SRRC) transmit filter with
a rolloff is assumed. The -diversity received
signals, corrupted by independent additive complex-valued
white Gaussian noise (AWGN), are assumed to be mutually
independent. Since , the received signal at each diversity
branch, is bandlimited with an excess bandwidth of

, -spaced sampling is considered, i.e.,
, where denotes the -spaced epoch index

throughout the paper. The noise is also assumed to be-
spaced sampled, and the sampled noise has a variance

. To represent symbol transmission at the rate of , we
use the zero-stuffed sequence such that the value of

at every odd is zero and at even represents the
symbol transmitted at the baud rate.

For the -spaced sampled system, the impulse responses
of the transmit and the channel filters can be realized with

-spaced tapped delay line FIR filters [20]. Each filter
is represented by a column vector. A -spaced sampled
version of the transmit filter is represented by a unit
energy [31 1] column vector , which corresponds to a
15-symbol truncation. The time-varying impulse response of
the channel is expressed as the baseband equivalent complex-
valued response and is represented by a [ ] column
vector having complex-valued time-varying taps, i.e.,

, where is the number of the
time-varying channel taps ( in this paper). Finally,
an overall channel impulse response is represented by,
i.e., , where denotes the convolution
operation.

The mountainous terrain multipath delay profile (MT-
MPDP) has the worst delay spread among the various land
mobile MPDP’s [1], [14], [29]. We use the MT-MPDP of
[20], where the -spaced channel coefficients have relative
average powers of dB, dB, and
dB, and . The rms delay spread of this model
is about 1/4 symbol period (10.40s for a symbol period

of 41.7 s). We assume that each tap gain undergoes
Rayleigh amplitude fading according to Jakes’ model [15]
with a time-correlation function

(1)

and a Doppler spreading spectrum

(2)

where implies the zeroth order Bessel function of the
first kind, and is the maximum Doppler fading rate.

Then, each channel tap coefficient is modeled as

(3)

where ,
is a normalization coefficient that makes the second moment
of equal to 1.0, is the complex-valued amplitude,
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and is the ( )th Doppler shift. In addition, wide sense
stationary uncorrelated scattering [24] of the three Rayleigh-
fading tap coefficients is assumed. This is simulated by having
independent random starting phases in (3). That is, for

and , each randomly
takes a real number at the start of each sample path generation
[20]. Finally, in this paper, assuming a symbol rate of
24 ksps, fast fading corresponds to Hz (

) and slow fading to Hz ( ).

III. SNAP-SHOT CHANNEL IMPULSE RESPONSEESTIMATION

The channel estimation is performed at the receiver by
observing the channel response to the training segment. We
make a “snap-shot” assumption that during the observation
interval , the channel is effectively time invariant. We
focus on a single channel branch to describe the channel
estimation procedure since each diversity channel branch has
an identical structure. Thus, we drop the indexes for epoch and
diversity, such as for a channel and for an overall
channel , during , . The estimators to
be derived are allconsistentestimators under the static channel
assumption. However, in fast fading this assumption leads to
an estimation error if is large.

In Section III-A we describe a novel reduced-dimension
channel estimation method and obtain a new channel esti-
mation equation. In Section III-B we apply three classical
optimality criteria to the new channel estimation equation
and obtain three estimators under each criterion. Section III-C
provides the minimum mean square estimation error analysis
of the three estimators. Section III-D discusses the training
sequences. In Section VI we investigate the performance of
these estimators, in terms of minimum-mean-square estimation
errors and bit-error rate (BER).

A. Problem Formulation for the Snap-Shot
Channel Estimations

The use of a bandwidth efficient transmit filter (the square
root raised cosine pulse shaping filter in Fig. 1) increases
the effective span of the overall channel impulse response
(CIR). For theflat fading channel, a receive filter matched
to the SRRC filter can be used to recover an isolated source
pulse with zero crossings every seconds. In the frequency-
selective channel, however, the composite pulse is
no longer Nyquist due to the multipath channel. Thus, we
need an estimate of the overall channel response for optimum
symbol detection.

From the system description of Section II, the overall
channel filter , which is the convolution of the SRRC filter

and the channel , spans 16 symbol periods and can be
represented by a [33 1] vector. To reduce the length of a
training sequence required, a truncated channel is used in the
channel estimation equation. That is, the estimation accuracy
is traded off for shorter training since a longer CIR requires
longer training sequences. We represent the truncated overall
CIR with a vector , where .

For the -spaced system, the received signal over an
observation period is described by

(4)

where is the -spaced zero-stuffed input symbol
sequence, i.e., it includes known training symbols for even
and 0.0 for odd . Since is the -spaced epoch index,
the zero-stuffed input sequence represents the input
symbols at the symbol rate of .

Note that there are unknown parameters in (4). Previous
channel estimation methods (e.g., see [9], [10], and [20]
for -spaced sampling and [30] and [33] for-spaced
sampling) estimate these parameters without exploiting the fact
that the overall CIR is a convolution of the transmit shaping
filter and the time-varying channel filter. In fact, the impulse
response of the shaping filter isa priori known to the receiver
and thus the unknown parameters are only the channel taps.

Using the a priori knowledge of the transmit filter, we
reduce the number of unknown parameters in the channel
estimation equation. The truncated CIR, the convolution
of a truncated transmit filter and the channel filter, can be
represented by , where is a [ ] matrix
whose elements can be determined for the SRRC filter
(Appendix A). Then, (4) can be rewritten as

(5)

Note that the number of unknown parameters in (5) is now
. This brings about a number of benefits. First, with

fewer unknown parameters, a shorter observation window is
needed. Second, with a shorter observation period, the snap-
shot channel estimation performs robustly in fast fading. Since
a snap-shot channel estimation problem relies on a fixed
channel during the observation period, a long observation
interval may become counterproductive [10], [20]. Finally,
the estimates will be more accurate when there are fewer
parameters to be estimated. Having obtained the estimates of
the channel, the overall channel can be computed from the
convolution of the estimate and the SRRC filter.

We now continue the problem formulation for the
estimation of the channel. It can be shown that

, which is a [ ] vector
that includes the -spaced sampled received signal during
an observation period , can be divided into even and odd
indexed parts, and each part produces a-spaced channel
estimation problem, i.e.,

(6)

where for the even symbol
sequence and for the odd
symbol sequence. is a Toeplitz matrix whose
elements are determined from the training sequence of length
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such that

(7)
is an [ ] SRRC matrix, ana priori matrix that

can be determined for the even and odd parts as described
in Appendix A. The [ ] noise vector is a multivariate
Gaussian with a zero-mean vector and a covariance matrix of

, where denotes the identity matrix.
From the two equations representing odd and even symbols,

two estimators of can be obtained. We choose the one that
yields a smaller theoretical mean square estimation error for
a given training sequence.

B. Three Classical Estimation Criteria for
the Snap-Shot Estimates of

Given the new estimation model of (6), least-squares es-
timation (LSE), maximum-likelihood estimation (MLE), and
maximum a posteriori (MAP) estimation criteria are con-
sidered for the estimation of. In the derivations of these
estimators the training matrix and thea priori matrix
are assumed to be fixed in their contents and dimensions. In
addition, we consider cases with in this paper. The
inverse matrices for each estimation operator to be derived
are assumed to be well-defined with an optimal or suboptimal
choice of the training sequence matrix. The optimal training
sequences will be discussed in Section III-D.

If there is noa priori statistical knowledge about the noise
and the channel, the LSE ofcan be considered, i.e.,

(8)
where the superscript “” implies the conjugate transpose
operation of a matrix and denotes the argument. This
results in the lowest complexity estimator among the three. The
[ ] matrix can be precomputed
and stored, and then an estimate ofcan be obtained by
multiplying it with the observation vector. We note that
Khayrallahet al. [36] have independently obtained a similar
LSE expression as (8) using the idea of incorporating the
knowledge of the modulation filter into a least square channel
estimation operation at the receiver in a GSM-based system.

The maximum-likelihood estimator of can be obtained as
follows:

(9)

where is the covariance matrix of the noise. Setting the
gradient of the quadratic term equal to zero, we obtain

(10)

Thus, MLE requires the second-order statistics of the noise,
such as the noise covariance matrix . MLE therefore
performs better than LSE provided that the noise is correlated

and the autocorrelation function of the noise is known. In our
estimation model of (6), however, we have assumed white
noise, i.e., , and thus LSE and MLE are identical.

Note that interpreting as a weighting matrix, MLE of
can be interpreted as optimally weighted LSE. Thus, MLE

and LSE are similar in a sense that both minimize a square
residual error but not the estimation error .

An estimator which directly minimizes the mean square
estimation error of requiresa priori statistical knowledge
of . The MAP estimator is in this category. In particular, the
MAP estimator is by definition

(11)

In our case, the noise vector is a multivariate Gaussian and
thus the posterior density is also a Gaussian distribution
where the mode and the mean coincide. With some algebraic
manipulations of the posterior density, we obtain

(12)

where . This MAP estimator of amounts to
the minimum mean square estimator of(Appendix B).

Note that MAP not only requires but also . Thus, in
practice it can be employed only after enough information
about the noise variance and multipath has been obtained.
While collecting the information, we can employ LSE. In
this paper, we assume that they are estimated. In particular,
diagonal elements of the channel correlation matrix, the
average powers of each multipath, i.e., the MPDP
defined in Section II, are assumed to be estimated; off-diagonal
elements are all zero valued assuming wide sense stationary
uncorrelated scattering of the multipath components.

C. The Mean Square Channel Estimation Errors

It is useful to compare the estimators in terms of their
theoretical mean square channel estimation error (MSCEE)
performance. We first derive the mean square estimation error
matrix for each criterion. Then, the MSCEE is obtained
from the trace of the mean square estimation error matrix.
These theoretical results will be compared with simulations in
Section VI.

MLE is an unbiased estimator. This can be easily verified
by taking theexpectationof the following equation, which is
obtained from substituting (6) into (10), i.e.,

(13)

and by using , where defines an [ ] vector
of element of zeros. Similar steps can be taken to show that
LSE is also unbiased. Thus, for MLE and LSE, the error
covariance matrix of the estimator is equal to the mean square
channel estimation error matrix. The mean square estimation
error matrix of MLE is

(14)
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The error covariance matrix of (14) attains the Cramer–Rao
lower bound (unbiased class), as shown in Appendix C. Thus,

is the best linear unbiased estimator for the estimation
problem of (6).

In our problem, however, is assumed; thus,
LSE and MLE produce identical results, i.e.,

(15)

and .
Since the MAP estimator is a biased estimator, we directly

obtain the mean square error matrix. By defining
, where ,

we have

(16)

Then, the MSCEE matrix is

(17)

As defined in (6) there are twoa priori matrices for the
even and the odd observation vectors, and thus two estimators
of can be obtained for each estimation criterion. From the
two, we select the one that produces a smaller mean square
estimation error.

D. Binary Training Sequences for LSE of

Crozier [4] tabulates binary training sequences (BTS’s;
binary sequences of 1 and1) for different channel lengths

and observation sequence lengths. The sequence is
designed to minimize thetrace of the error covariance matrix
of an LSE of . They are found either from exhaustive
computer search or using the “-sequences.” The same design
concept can be applied to the least squares estimator of,
and new training sequences which minimize thetrace of the
error covariance matrix of the LSE of can be obtained
by the procedure of Appendix D. However, for two reasons,
Crozier’s BTS will be used for our system simulations. First,
the improvement, afforded by the new sequence compared to
the BTS, is typically less than 1 dB in SNR, while the exact
SNR saving depends on the value of and . For a short
training sequence, the difference narrows. Thus, the BTS is
nearly optimal. Second, the elements of the new sequence
are real valued and not usually members of a digital signal
constellation.

IV. CHANNEL TRACKING BY INTERPOLATION

The periodic training provides a snap-shot channel estimate
at the end of each training interval. Then, during the unknown
data segments, the estimates of the time-varying channels are
obtained from interpolation on a set of estimates of. From
the interpolated estimates, optimum receiver coefficients such
as the matched filter and DFE filter coefficients are obtained.
We follow the interpolation framework of [20]. The main

difference here is that we interpolate the channel estimate,
instead of the overall channel estimate.

Two parameters are of importance for interpolation, relating
the performance of interpolation to the issues of training over-
head and interpolation delay. One parameter is the frequency
of periodic channel estimation, i.e., the length of a frame,
where a frame consists of a training block of length and
a data block of length , i.e., . According to
the sampling theorem, should satisfy . For
instance, if , the shortest null to null distance
of a fading tap is about 240 symbols. Thus,should be less
than 120 symbols. The other parameter is, the number of
estimates of used in each interpolation. In this paper only

will be considered. Thus, an interpolation over four
consecutive channel estimates, two past and two future, is
performed to obtain an interpolate ofat an epoch during
the middle data segment. The maximum interpolation delay
for is symbol periods. We use a sinc function (sin

) interpolator [20].
The snap-shot estimation leads to an estimation lag since the

channel is, in fact, continuously varying during the training
observation interval. As the result, an estimate, which is
obtained at the end of a training interval, say at an epoch

, does not best evaluate the channel . To be used
in the interpolation steps, the epoch of the estimateis chosen
to be , such that it is the median epoch of the
observation interval . This
choice is shown to minimize the mean square estimation errors
from our simulation.

At the expense of the interpolation delay, channel tracking
by interpolation provides immunity to the decision delay
problem that is inherent in recursive channel tracking methods
which rely on the detected symbols to obtain a channel state
update. This advantage, however, has not been fully utilized in
symbol detection in previous research; for example, see [10]
and [20]. In Section V a new DFE computation algorithm that
fully exploits interpolation will be developed.

V. DIVERSITY-COMBINING DFE

In this section we discuss how to obtain diversity-combining
DFE coefficients using the interpolated channel estimates. In
Section V-A we apply the MMSE criterion to the receiver
structure depicted in Fig. 1, and obtain the “straightforward”
solution. This reformulation of the DFE algorithm contributes
in two respects. First, we incorporate the channel variation
during the decision delay into the MMSE criterion, and thus
the solution will fully exploit the channel interpolation scheme
of Section IV. That is, the channel variations during the deci-
sion delay are available from interpolation, and all should be
utilized in finding the optimum receiver coefficients. Second,
from the straightforward solution we derive the “matched
filtered” solution, providing insights into how the two are
related.

For the channel-estimate based receiver, the coefficients
of diversity combining DFE are computed from the channel
estimates, which involves some form of matrix inversion.
The straightforward diversity combining DFE turns out to
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be problematic due to the severe eigenvalue spread in the
correlation matrix of the Wiener–Hopf equation. Advancing a
few critical steps from the straightforward solution, however,
we arrive at the matched filtered form of diversity combining
DFE which solves the problem of eigenvalue spreads, while
still taking into account the channel variation over the decision
delay.

A. The Minimum Mean Square Error
Diversity Combining DFE

The receiver side of Fig. 1 depicts the straightforward
diversity combining DFE. We apply the minimum mean square
error (MMSE) criterion to this structure and obtain the straight-
forward solution. Before the derivation, we now review nota-
tions and assumptions. still denotes the -spaced epoch
index and, thus, “even” corresponds to symbol rate sampling.

denotes the complex-valued AWGN at theth branch,
with zero mean and variance of . We assume that the addi-
tive noise sources for each diversity branch are mutually
independent and also independent of the input symbol. We also
assume that the input symbol sequence for even , i.e.,
the sequence without zero stuffing, consists of complex-valued
zero-mean unit variance and mutually uncorrelated random
variables. Each -spaced interpolated overall channel is
assumed perfectly estimated and is denoted by a [ ]
vector . We assume that is even, and . For
the receiver, denotes the -spaced feedforward filter
at th diversity branch. A [ ] vector denotes the

-spaced feedback filter. We choose the received signal
as the input signal to the adaptive filters and .
For the straightforward solution in Section V-B, we use
as the input signal to the adaptive filters and for
reasons to be discussed.

Now denoting , we
want to find the optimal vector that minimizes the
mean-square error at each decision instant ( ),
i.e.,

(18)

where is the required decision delay in units of . We
also assume that is even, and . The predecision
value is now described by

(19)

where
(assuming the past decisions were correct) and

. By defining
, can be written compactly

as .
Note that the length of is and thus the

length of the feedforward filter is also . At this
point, we are simply assuming a very large feedforward filter
length for the derivation of the matched filtered solution. The
desired relationship between the feedforward filter of a finite
length and the decision delay can be established later for each
solution.

Now each , the input vector to the feedforward filter
, can be written as

(20)

where is given in (20a), shown at the bottom of the
page,
and .

In what follows, assuming a decision at , we omit
the notation of epoch (the parenthesis) from the matrices for
brevity and retrieve it after the solution is derived. We also
omit the notation for the mathematicalconditioningoperation
in (18) but it is understood that the mathematicalexpectation
is meant to apply only to the noise and the input sequences.

Then the mean square measure of (18) can be compactly
written as . Invocation of the orthogonal-
ity principle gives , which results
in the Wiener–Hopf normal equation

(21)

Now denoting , ,
, , and

, (21) can be written as

(22)

and in a detailed form as

(23)

(20a)
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where we have used and
. Recall our assumption that the noise sources at each di-

versity branch are mutually independent and also independent
of the input. Next, each cross-correlation vector
can be shown to be the th column of , i.e.,

for (24)

The individual submatrices of (23) can be identified for
as

(25)

where is the Kronecker delta function and, a [
] noise autocorrelation matrix, is equal to .

The other [ ] submatrices of (23) are

for (26)

and for , .
In Appendix E the derivation for the matched filtered solu-

tion is continued from the results obtained so far. We term the
optimal solution obtained from (23) the “straightforward”
solution.

B. A Straightforward Solution

The main purpose of this subsection is to illustrate the
shortcomings of the straightforward solution of (23). In doing
so, we use , the received signal after the receive SRRC
filter as depicted in Fig. 1, to be the input signal to the adaptive
filters and . The benefit of this approach is that
the required filter length of the -spaced feedforward
filter can be shorter than that of . The solution
is isomorphic to (23) with some minor modifications to
(20)–(26), which are given as follows:

• now replaces ;
• thus, represents the composite pulse

, truncated with length ;
• the th element of the noise autocorrelation matrix in

(25) is now ; note that from the
definition of the SRRC filter in Section II, the composite
pulse , approximates the -spaced sampled raised
cosine pulse with rolloff , and is the
main tap of value 1.0;

• a [ ] subvector
replaces the full [ ] vector

in (20);
• thus, for the rest of the equations, represents the

[ ] submatrix ;
• the cross-correlation vectors, each individual submatrix

of , and that of are truncated to have
the correct dimension of [ ], [ ], and
[ ], respectively.

The decision delay of this solution takes the form
(equality with a sufficient number of feedback

filter taps), where is the main tap location of the channel
. We note that when the channel variation over is

ignored, the straightforward solution of and reduces
to the one of [20].

In fact, the -spaced feedforward filter
can be obtained from solving

(27)

and the [ ] -spaced feedback filter from

(28)

We now illustrate two major drawbacks of the straightfor-
ward methods. First, the computational complexity increases
exponentially with diversity order. The complexity is order

, provided we use a Cholesky factorization to solve
(27). Second, a more serious problem is that the matrix
[ becomes extremely unstable for a diversity
order , i.e., a huge condition number (the ratio of the
largest and the smallest eigenvalue) occurs.

A large eigenvalue spread occurs when the cross-correlation
submatrices of of (23) have large values. Recalling that
since theexpectationdoes not apply to the channels from
(18), the cross correlation between any two diversity channels
at any given time is not zero valued in general. These nonzero
off-diagonal matrices in are the main cause of the large
eigenvalue spreads of the matrix . For a simple illustration,
consider a two-by-two correlation matrix, i.e.,

for which a diagonalization

reduces to (29)

where from the Schwartz inequality and whereis
denoted as . It is evident
from this example that there will be only one significant
eigenvalue when the cross correlationtends to its maximum.
Likewise, the condition number of may become very large
whenever the cross-correlation submatrices have large values.
In our simulation, at high SNR (more than 15 dB), the order
of the condition number of matrix for a relatively small

( ) often reaches up to 10for or 10 for .
Therefore, without a regularization technique to relieve the
eigenvalue spreads, the DFE coefficients obtained at high SNR
often become unreliable due to magnification of the channel
estimation errors.

C. A Matched Filtered DFE Solution

We now discuss the matched filtered diversity-combining
DFE, depicted in Fig. 2. The receive signals are matched
filtered by . The matched filtered signals are then
combined and sampled at the symbol rate without loss of
information. The -spaced sampled combined signal is then
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Fig. 2. The matched filtered diversity-combining DFE and the equivalentT -spaced SCAF channel.

fed to the -spaced feedforward filter . The correlation
matrix of this structure does not suffer from large eigenvalue
spreads.

From the presentation in [2] it can be observed that, al-
though not explicitly stated, the-diversity-combining DFE
problem can be transformed into an equivalent symbol-spaced
sampled single-channel DFE problem when a matched filter
is used for each diversity branch. This implies that for a
finite-length diversity-combining DFE, the dimension of the
correlation matrix becomes independent of diversity order.
Thus, there will be no cross-correlation submatrices to spread
the eigenvalues. This motivated us to consider the matched
filtered DFE solution.

The derivations in [2], however, are performed using a
quasistatic channel assumption and focus on obtaining mean
square errors of an infinite-order DFE from which the Chernoff
upper bounds on bit-error probability can be related. What
we need, however, is a solution (with finite filter lengths)
that takes into account the rapid channel variation over a
decision delay. This can be accomplished relatively easily
with the matrix representation of signals and filters as we have
developed in Section V-A. In Appendix E the derivation for the
matched filtered solution is continued from the straightforward
solution (23). In this section we summarize the result.

For the matched filtered diversity-combining DFE, the de-
cision delay is the summation of the matched filter and
feedforward filter lengths. It is defined in units of -spaced
epochs as

or in units of

-spaced epochs as (30)

where is the length of -spaced feedforward filter .
We again assume that is the current epoch, for the

description of the matched and DFE filters. The [ ]

matched filter can be identified as

(31)

Note the decreasing epoch index of the vector elements. Thus,
each matched filter at an epochneeds previous snap-shot
channel estimates.

To describe the DFE filters, it is convenient to first define
a -spaced sampled summed channel autocorrelation function
(SCAF) at the epoch , i.e.,

for

(32)
where the th diversity channel autocorrelation function

is defined as

for , and for
. Note that the phases of the main terms

are equalized. Thus, the main term is the result of
constructive additions while the rest are not.

Now, the th element of an [ ] correlation matrix
can be described as

for (33)

An [ ] cross-correlation vector can be identified as,
for

(34)
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Finally, an [ ] matrix is, for , ,
and

(35)

Then, the -spaced feedforward filter can be obtained
from solving , and the feedback filter from

. We refer to this as the matched filtered non-
Toeplitz DFE (NT-DFE). Note that this solution utilizes all of
the channel state information during the last period.
When time invariance of the channel over the decision delay
is assumed, the channel matrix of (20) becomes block
Toeplitz, and all of the epoch terms inside the parenthesis of
(33)–(35) are ignored. We refer to this as a matched filtered
Toeplitz DFE (T-DFE).

From inspection of (33)–(35), it is worthwhile to note that
the -diversity-combining DFE problem has been transformed
into an equivalent single-channel-spaced DFE problem, as
depicted in Fig. 2. Denoting as the symbol-spaced epoch
index, the equivalent -spaced channel is the [ ]
vector whose elements are the of (32),
i.e., is the first element of the vector . The
equivalent -spaced noise is denoted by and the noise
autocorrelation function is . Then, the -spaced
sampled can be described by ,
where . Now,
for an [ ] input vector

, the predecision value analogous to (19) can be
defined as . Then, following
the standard procedure analogous to (20)–(26), the matched
filtered solution of (33)–(35) can be reproduced.

In summary, we have derived the matched filtered diversity-
combining DFE, which provides a lower complexity and more
stable solution than the straightforward approach does. The
dimension of the correlation matrix [ ] stays the
same for any diversity order. Note that there are no cross-
correlation submatrices to spread the eigenvalues; instead,
the eigenvalue spread of the correlation matrix is now fully
determined by the SCAF vector . Also note that SCAF
values in (32) correspond to ISI terms relative to
the phase-equalized main term , and that their energies
relative to the main term decrease for increasing. Thus,
the correlation matrix tends to be more stable for increasing

. It is well known that explicit diversity reduces ISI. In
the matched filtered diversity-combining DFE, it also helps
to stabilize the DFE computation algorithm. Thus, the DFE
coefficients obtained from the channel estimates become less
susceptible to channel estimation noise enhancement.

Comparing NT-DFE and T-DFE of the matched filtered
diversity-combining DFE, the NT-DFE is optimal because it
uses all of the channel state information during the decision
delay which is provided by channel interpolation. The T-DFE
uses only partial information and is thus suboptimal, but it has
lower complexity than the NT-DFE. The NT-DFE provides a
performance advantage over the T-DFE only when the channel
is in fast fading and tracked with a reasonable accuracy.
In Section VI the above comparisons will be made through
computer simulations.

VI. SYSTEM SIMULATIONS AND DISCUSSION OFRESULTS

The performance of the complete system was investigated
through complex baseband computer simulations. A Monte
Carlo method with 2000–50 000 independent trials was used.
To evaluate the adaptation on continuously transmitted frames,
each trial consisted of 5–16 frames, where a frame is a block
of symbols including the training symbols. During
a trial, each fading coefficient of the-diversity channels
was continuously varied at a given fading rate according to
(3). From trial to trial, an independent set of channels was
generated by selecting a new set of random starting phases

in (3) at the start of each trial. The -spaced complex-
valued additive noise samples were independently generated.
The modulation schemes used were quadrature phase-shift
keying (QPSK) and differentially encoded QPSK (DQPSK)
to compare to the existing literature. The SNR in this section
implies the long-term average SNR of the three-path fading
channel.

A. Mean Square Error Performance of the Channel Estimators

In Fig. 3 the performance of two channel estimators, LSE
and MAP, in terms of the MSCEE are assessed both in
theory and in simulation. For the simulation results, the
channel estimate, which is obtained at the end of the training
observation window, is compared with , where is the
median epoch of the window.

Fig. 3(a) shows the MSCEE for (the training length,
the truncation length ) and Fig. 3(b) for (11, 6).
We first note the effect of truncation at high SNR. Recall
the channel estimation of (5) where we truncate the length
of the overall channel to be symbol intervals. The slow
fading curves for stay very close to
theory out up to 30 dB, whereas the slow fading curves for

deviate from theory at high SNR due to
the truncation errors. This suggests that truncation at
is sufficient for the purpose of channel estimation. Second,
in both figures we observe that the fast-fading curves show
some deviations from the slow-fading curves at 30 dB. These
degradations are due to the snap-shot assumption that during
the observation periods , the channel is fixed.
Thus, we do observe some MSCEE degradations from the
theory due to the truncation error and snap-shot assumption;
however, they are very much suppressed and do not form
an irreducible MSCEE floor. Finally, we note the marked
advantage of MAP estimation over LSE at low SNR’s. For
the BER simulations in the following sections we use ( )
=(11,6) and a frame length .

B. BER Performance in Slow Fading

In Fig. 4 the BER performances of two receivers are
compared with theoretical matched filter bounds (MFB). The
MFB is the lowest attainable bound since it is obtained
assuming the transmitted pulses are far enough apart so that no
ISI occurs. A similar approach reported in [19] has been used
to obtain the MFB’s for our three-path channel model.Flat
fading indicates the matched filter bound for the single-path
Rayleigh-fading channel.
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(a)

(b)

Fig. 3. Theoretical and simulation mean square channel estimation errors (MSCEE’s). (a) For (Nt; Nc) = (7, 4). (b) For (Nt; Nc) = (11, 6).

In Fig. 4 “LSE and interpolation NT-DFE” refers to the
use of least-squares channel estimation, channel tracking by
interpolation, and NT-DFE. “RLS channel tracking T-DFE”
refers to the use of a recursive least-squares algorithm to track
the time-varying channel (i.e., without channel interpolation)

and the T-DFE for symbol detection. The T-DFE is used
since the channel states during the decision delay are not
available with the recursive adaptation. With regard to the use
of the RLS algorithm, the channel-estimate approach, instead
of a conventional direct adaptation on the DFE coefficients
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Fig. 4. QPSK average BER as a function of SNR in slow fading—RLS channel tracking T-DFE, LSE NT-DFE, and theoretical matched filter
bounds are compared.

without channel estimation, is selected since the channel-
estimate based DFE (without diversity) has been shown to
be more effective than the direct DFE adaptation [5], [26].
Specifically, we use the exponential windowing RLS algorithm
from [26]. To be a fair comparison, the same known training
blocks are inserted in the data stream. Thus, during the training
segment, the RLS algorithm and DFE filters are refreshed at
the same rate. Furthermore, the exponential weighting factor

of the RLS algorithm is optimized at various SNR’s, fade
rates, and channel lengths. For this, the following equation is
adopted from [26]:

(36)

The filter orders used in the simulation are (
. The channel is slow fading with Hz

( ). We note that the slopes of the BER
curves for both methods (e.g., about 10per 10 dB SNR for

) are close to those of their MFB’s and steeper than those
(e.g., 10 per 10 dB for ) of the theoretical flat-fading
channel. This indicates that both receivers take advantage of
the implicit diversity gain, which is inherent in the frequency-
selective channel. The RLS T-DFE and LSE NT-DFE show
comparable performance in slow fading.

C. BER Performance in Fast Fading

In Fig. 5 the BER performance of the RLS T-DFE with
DQPSK signaling is evaluated for . Since

the T-DFE ignores the channel variation over the receive filter
lengths (i.e., the matched and feedforward filter), longer filters
might become counterproductive in fast fading (this behavior
is also observed in [10] without diversity). Thus, at
Hz we use shorter filters of , which
have been determined to be optimal from our simulations. We
observe that at Hz, the irreducible BER’s are too
high (0.1 for and 0.01 for ) to be of any practical
use. Therefore, we confirm that RLS actually fails to track the
three-tap fast Rayleigh-fading channel.

In Fig. 6 the BER performances of LSE and MAP NT-DFE
receivers with DQPSK signaling are evaluated at
Hz. “MAP NT-DFE” refers to the use of maximuma posteriori
channel estimation, channel tracking by interpolation, and NT-
DFE. We note that both receivers show a superior and robust
BER performance against fast fading. LSE and MAP NT-DFE
curves are not even flat out up to 30 dB. We also show results
for the NT-DFE, which is denoted by “ideal CIR NT-DFE”
(the use of perfect channel at all epochs). The NT-DFE exhibits
no sign of irreducible error floors, in contrast to the T-DFE,
which will display irreducible error floors even with the ideal
CIR supplied. An example can be found in [10], where a DFE
receiver, using T-DFE without diversity, shows relatively high
irreducible BER floors even using perfect channel estimates at
all epochs.

We observe that LSE and MAP NT-DFE curves show less
than 1 dB difference below a BER of 10. This suggests that
the use of LSE is a reasonable design choice, at least for an
uncoded system. In addition, we note that the throughput rate
at this BER is .



LEE AND POTTIE: ADAPTIVE EQUALIZATION/DIVERSITY COMBINING 1157

Fig. 5. DQPSK average BER as a function of SNR for RLS channel tracking Toeplitz DFE receiver.

Fig. 6. DQPSK average BER as a function of SNR—LSE and MAP NT-DFE, with channel tracking by interpolation, are compared. Ideal CIR NT-DFE
implies NT-DFE with perfect channel information.

D. The Sources of the BER Degradation in Fast Fading

In Fig. 7 the NT-DFE and T-DFE receivers are compared in
fast fading. For each receiver, we also compare three different
modes of obtaining channel impulse responses. They are: 1)

interpolation on the maximuma posteriorichannel estimates,
2) interpolation on perfect channel estimates, and 3) use of the
correct channel values at all epochs (ideal channel reference).
Comparison of these curves should identify the main cause
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Fig. 7. QPSK average BER simulations to determine the source of error floors.

of BER degradations in fast fading. The optimal filter orders
for the T-DFE are again . The filter
orders used for the NT-DFE are (20, 5, 5).

First, note that the T-DFE curves show higher BER floors.
Even the ideal CIR T-DFE produces a higher BER floor
than the MAP NT-DFE does. This illustrates the detrimental
consequence of ignoring the channel variation during the
decision delay of a T-DFE receiver. Second, by comparing
the NT-DFE curves, it can be seen that the BER degradations
are mainly due to the interpolation errors. The interpolator
performs poorly in the middle of the data segment, and the
decision errors occur predominantly in the middle of the data
segment. This problem persists even at , for which the
BER at 30 dB is about 310 (not shown in the figures).

E. The Suboptimal T-DFE and the DFE Update Periods

In Fig. 8 we investigate the impact on the BER of in-
creasing the DFE update periods, where is the number
of symbol periods between any two updates of DFE filters.
Again, the BER performances of the T-DFE and NT-DFE
are compared at Hz. We use the optimal filter
orders for the Toeplitz case. For
the non-Toeplitz case, (20, 5, 5) are used for , while
shorter filter orders (16, 4, 4) are used for other values of.
The MAP channel estimator is used for both. First, note that
the performance difference of the two deepens for a higher
diversity order and for a higher SNR. Second, the NT-DFE
receiver maintains its superiority to T-DFE only for ,
as the BER gain quickly disappears for . This suggests
that if larger than one is selected for a lower computational
complexity, the use of a T-DFE receiver is suitable.

F. Computational Complexity

In Table I we summarize the number of complex multi-
plications and divisions required for the RLS T-DFE, LSE
T-DFE, and LSE NT-DFE. The first and second rows indicate
the required number of operations for the channel tracking
techniques. For channel tracking by interpolation, we assume
that the -sampled sinc function is stored. Then, the in-
terpolated channel can be obtained from complex
multiplications and the convolution ofand requires another

. The matched filter coefficient vector can be
obtained without any computation since it is a pure mapping
from the interpolated overall channel. The third row indi-
cates the number of operations required to form the summed
channel autocorrelation function, the correlation matrix, the
cross-correlation vector, and the feedback filter matrix. The
fourth row gives the required number of computations to
solve for the feedforward filter with length provided
the Cholesky factorization [24] is used. The shaded region
implies that the numbers of multiplication can be divided by

, where is the DFE filter update period in units of symbol
period.

The last row gives sample calculations for
with a typical set of filter lengths and channel estimation pa-
rameters .
This gives and . For T-
DFE receivers, the required number of operations for a DFE
update period of is also calculated and presented inside
parentheses. The sample calculation, together with the BER
results in Fig. 8, shows the feasibility of the T-DFE receiver
in a practical application. That is, at a per-symbol complexity
of less than 100 complex multiplications and divisions, we
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Fig. 8. QPSK average BER as a function of the DFE filter update period (�).

TABLE I
THE NUMBER OF COMPLEX MULTIPLICATIONS AND DIVISIONS REQUIRED

achieve BER of about 10 for or 10 for , at
the reasonable SNR of 20–30 dB.

VII. CONCLUDING REMARKS

We have presented robust channel estimation methods which
require little training overhead over the fast Rayleigh-fading
dispersive channel. It has been shown through simulations
that channel tracking by interpolation along with our proposed
channel estimation method is significantly better than the RLS
channel tracking method and previously published feedforward

channel estimation methods in terms of both the throughput
and the BER performance.

For the block adaptive diversity-combining DFE scheme, we
have proposed the matched filtered approach because of its sta-
ble performance in the presence of channel estimation errors.
The matched filtered DFE simplifies the-diversity combining
decision feedback equalizer into an equivalent single-channel
DFE problem. This provides a reduced computational burden
in tracking the optimum coefficients of the receiver and leads
to a well-conditioned correlation matrix.
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We have derived a matched filtered diversity-combining NT-
DFE which takes into account the channel variation over the
decision delay. This NT-DFE can obtain the full benefit of
the channel interpolation and thus provides a benchmark for
performance. While optimal, the NT-DFE incurs relatively
high computational complexity, and thus for a suboptimal
but low-complexity solution, we propose the use of the T-
DFE, which still provides better performance than the RLS
algorithm.

For higher SNR’s, however, the BER curves of the NT-DFE
still tend to flatten out, due to interpolation errors. Design of
an interpolation strategy to overcome this problem would be
an interesting research exercise.

APPENDIX A
THE SRRC FILTER MATRIX

An example with and is sufficient to
describe the procedure of obtaining the SRRC filter matrices
in Section III. denotes the 31-tap -spaced SRRC filter,
i.e., , where is the main tap of
the SRRC vector. Then, a [12 1] truncated overall CIR
can be described by a matrix and a vector multiplication as

, where is a [12 3] Toeplitz matrix which can be
described by the first row and the first column.

The first row is and the first column is
. Thus, is

(A.1)

Finally, a [6 3] matrix in (6) for even is obtained from
taking the six even rows of . Similarly, taking the six odd
rows constitutes for odd .

APPENDIX B
THE MMSE ESTIMATOR OF

The MAP estimator coincides with the MMSE estimator
of . Define the linear estimator that achieves the MMSE as

, where is the linear estimation operator. Then,
will satisfy the following equality:

(B.1)

The orthogonality relation leads to
and finally

(B.2)

where
and

. We note that is identical to the MAP operator
in (12).

APPENDIX C
CRAMER–RAO LOWER BOUND

The maximum-likelihood estimator derived in Section III-B
achieves the Cramer–Rao lower bound for unbiased estimators.
The Cramer–Rao lower bound for unbiased estimators is

(C.1)

where is the Fisher information matrix defined as

(C.2)

We will prove the equality, i.e., .
Note

(C.3)

then

(C.4)

Since we already know
from (14), the equality in (C.1) is proved.

APPENDIX D
OPTIMUM TRAINING SEQUENCES

LSE applied to an [ ] observation vector
produces the least-square estimate of, i.e.,

(D.1)

where and is an [ ] vector. Then,
the covariance matrix of the estimator is

(D.2)

Therefore, the optimum sequences (stored in matrix) are
the sequences that satisfy

(D.3)

Given and , the optimum binary training sequence
(OBTS) satisfies (D.3) and makes the matrix as close
as possible to diagonal.

From (15), the covariance matrix of is

(D.4)

Now, the optimal training sequence is the sequence that makes
to be as close as possible to diagonal. This

optimization problem can be approached by representing the
convolution operation in a matrix and vector multiplica-
tion form as , where is an
[ ] vector, F is now an [ ] matrix, and is the



LEE AND POTTIE: ADAPTIVE EQUALIZATION/DIVERSITY COMBINING 1161

[ ] OBTS vector. Then, the new optimal sequencethat
minimizes the trace can be obtained as

(D.5)

whereF is the generalized inverse ofF [34]. The vector
should be scaled so that the energy of the scaled vectoris .

APPENDIX E
DERIVATION OF THE MATCHED FILTERED NT-DFE SOLUTION

In this section we continue the derivation of the NT-
DFE solution from the straightforward solution (23). The
simultaneous matrix equations of (23) can now be rewritten
as

for

for (E.1)

and similarly for up to , and the last matrix equation for
the feedback part is

(E.2)

Substituting (E.2), arranged in terms of , into (E.1), each
of the matrix equations of (E.1) becomes

(E.3)

Now, by defining and
, and rearranging with respect to ,

(E.3) produces

for each (E.4)

where the [ ] matrix is equal to the
submatrix of

(E.5)

and the elements of the [ ] vector are defined as

(E.6)

We note from (E.4) that each feedforward filter can be
decomposed into a matched filter at each diversity branch and
a -spaced feedforward filter which is common to all the
diversity branches.

Next, premultiplying and substituting of (E.4) into
the correspondingth equation of (E.3), and then summing
over all the equations, produces

(E.7)

Now define a [ ] matrix , and
note , and similarly for

. Also note that of (E.7) is just the th
column of , i.e., . Finally, substituting
(E.4) into (E.2), we have the feedback coefficients

(E.8)

From inspection of (E.4) and (E.7), all of the necessary
information on the matched filtered diversity-combining struc-
ture can be obtained. Specifically, the matched filter coeffi-
cients of (31) can be determined from , the combined
signal of the diversity matched filter outputs is the input signal
to the -spaced feedforward filter , and the decision delay
should be for a -spaced feedforward
filter length with .

In particular, considering for a feedforward
filter with length , (E.7) can be reduced to

(E.9)

where . The
[ ] feedback filter can be obtained from

(E.10)

where the [ ] matrix
.
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