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Abstract

The main focus of this thesis is on fast numerical methods, where adap-
tivity is an important mechanism to lowering the methods’ complexity. The
application of the methods are in the areas of wireless communication, an-
tenna design, radar signature computation, noise prediction, medical ultra-
sonography, crystal growth, flame propagation, wave propagation, seismology,
geometrical optics and image processing.

We first consider high frequency wave propagation problems with a vari-
able speed function in one dimension, modeled by the Helmholtz equation.
One significant difficulty of standard numerical methods for such problems
is that the wave length is very short compared to the computational domain
and many discretization points are needed to resolve the solution. The com-
putational cost, thus grows algebraically with the frequency ω. For scattering
problems with impenetrable scatterer in homogeneous media, new methods
have recently been derived with a provably lower cost in terms of ω. In this
thesis, we suggest and analyze a fast numerical method for the one dimen-
sional Helmholtz equation with variable speed function (variable media) that
is based on wave-splitting. The Helmholtz equation is split into two one-way
wave equations which are then solved iteratively for a given tolerance. We
show rigorously that the algorithm is convergent, and that the computational
cost depends only weakly on the frequency for fixed accuracy.

We next consider interface tracking problems where the interface moves
by a velocity field that does not depend on the interface itself. We derive fast
adaptive numerical methods for such problems. Adaptivity makes methods
robust in the sense that they can handle a large class of problems, including
problems with expanding interface and problems where the interface has cor-
ners. They are based on a multiresolution representation of the interface, i.e.
the interface is represented hierarchically by wavelet vectors corresponding to
increasingly detailed meshes.

The complexity of standard numerical methods for interface tracking,
where the interface is described by marker points, is O(N/∆t), where N
is the number of marker points on the interface and ∆t is the time step. The
methods that we develop in this thesis have O(∆t−1 log N) computational
cost for the same order of accuracy in ∆t. In the adaptive version, the cost
is O(Tol−1/p log N), where Tol is some given tolerance and p is the order of
the numerical method for ordinary differential equations that is used for time
advection of the interface.

Finally, we consider time-dependent Hamilton-Jacobi equations with con-
vex Hamiltonians. We suggest a numerical method that is computationally
efficient and accurate. It is based on a reformulation of the equation as a front
tracking problem, which is solved with the fast interface tracking methods to-
gether with a post-processing step. The complexity of standard numerical
methods for such problems is O(∆t−(d+1)) in d dimensions, where ∆t is the
time step. The complexity of our method is reduced to O(∆t−d| log ∆t|) or
even to O(∆t−d).
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Chapter 1

Introduction

In this thesis, we propose fast and accurate numerical methods for the high fre-
quency Helmholtz equation, interface propagation and time dependent Hamilton-
Jacobi equations.

We begin by high frequency wave propagation problems, which are modeled
by the Helmholtz equation. These problems arise in many applications. Cur-
rently the interest is driven by new applications in wireless communication (cell
phones, bluetooth) and photonics (optical fibers, filters, switches). Simulation of
high frequency waves is also used in more classical applications. Some examples in
electromagnetism are antenna design and radar signature computation. In acous-
tics simulation is used for noise prediction, underwater communication and medical
ultrasonography. One significant difficulty with numerical simulation of such prob-
lems is that the wavelength is very short compared to the computational domain and
thus many discretization points are needed to resolve the solution. Consequently,
the computational complexity of standard numerical methods grows algebraically
with the frequency. Therefore, development of effective numerical methods for high
frequency wave propagation problems is important.

Recently a new class of methods have been proposed, which, in principle, can
solve the wave propagation problem at a cost almost independent of the frequency
for a fixed accuracy. The new methods have been applied mostly to scattering
problems with an impenetrable scatterer in constant media. These methods are
significantly faster than direct methods. However, proving the low cost rigorously
is rather difficult, although there are now a few precise proofs about computational
cost and accuracy in terms of the frequency. For problems set in a domain with
varying media, much less has been done. The first part of this thesis addresses
such problems. We develop a fast method for the Helmholtz equation in a domain
with a varying wave speed. The Helmholtz equation is split into two one-way wave
equations which are then solved iteratively for a given tolerance. Moreover, we
show rigorously that in one dimension the asymptotic computational cost of the
method only grows slowly with the frequency, for fixed accuracy.

3



4 CHAPTER 1. INTRODUCTION

Next, we consider interface propagation problems where the interface moves by
a velocity field that does not depend on the interface itself. We derive fast adaptive
numerical methods for such problems. Problems with propagating interfaces occur
in many applications. Some examples are wave propagation, multiphase flow, crys-
tal growth, melting, epitaxial growth or flame propagation. Thus, development of
fast and accurate numerical methods for such problems is important. The complex-
ity of standard numerical methods for interface propagation, where the interface is
represented by marker points, is O(N/∆t), where N is the number of marker points
on the interface and ∆t is the time step. The computational cost of the methods
that we develop in this thesis is O(∆t−1 log N) for the same order of accuracy in ∆t.

In the adaptive version, the cost is O(Tol−1/p log N), where Tol is some given toler-
ance and p is the order of the numerical method for ordinary differential equations
(ODEs) that is used for time advection of the interface. The methods are based
on a multiresolution description of the interface. The interface is represented hier-
archically by wavelet vectors corresponding to increasingly detailed meshes. Such
representation makes it possible to use larger time steps for finer scales which leads
to the reduced computational cost. The adaptivity makes methods robust in the
sense that they can handle a large class of interfaces, including interfaces that have
corners and interfaces whose length changes rapidly in time. However, they are
only suitable for problems in which the velocity field does not depend on the inter-
face itself. They are thus, for instance, not suitable for fronts propagating with a
curvature-dependent speed.

Finally, we suggest a fast numerical method for time-dependent Hamilton-Jacobi
equations with convex Hamiltonians. Applications include seismology, geometrical
optics, mechanics and image processing. Standard numerical methods for Hamilton-
Jacobi equations are explicit and use discretizations in time and space. The com-
putational cost to obtain the solution at a fixed time T is of order O(∆t−(d+1)) in
d dimensions, where ∆t is the time step. The computational cost of our method is
O(∆t−d) or O(∆t−d| log ∆t|) for the same order of accuracy. The method is based
on the fact that the time dependent Hamilton-Jacobi equation can be solved by
characteristics, which can be reformulated as a front tracking problem. It has two
steps:

1. First, we reformulate the Hamilton-Jacobi equation as a front tracking prob-
lem and compute the multivalued solution using the fast interface tracking
method proposed in the second part of the thesis. The cost of this part of the
algorithm is O(∆t−d) or O(∆t−d| log ∆t|) in d dimensions.

2. Second, we reconstruct the viscosity solution from the multivalued solution
with an algorithm that has cost O(∆x−d), where ∆x ∼ ∆t is the spatial
discretization.

The thesis consists of two parts, the introduction and the included papers.
The first part is organized as follows. In Chapter 2, we introduce the equations
that are used to model high frequency wave propagation problems and discuss
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standard numerical methods that are used to solve these problems. Chapter 3
introduces numerical methods for high frequency wave propagation problems with
weakly frequency-dependent cost, including an outline of the method analyzed in
paper 1. Equations and standard numerical methods for interface tracking problems
are presented in Chapter 4. Numerical methods for interface tracking problems,
based on multiresolution description of the interface, followed by a brief description
of the fast interface tracking methods proposed in papers 2 and 3, are presented in
Chapter 5. Chapter 6 describes numerical methods for Hamilton-Jacobi equations,
including an outline of the fast method developed in the fourth paper. Finally,
Chapter 7 concludes the first part of the thesis by a brief description of included
papers.





Chapter 2

High Frequency Wave Propagation

Problems

The basic equation that describes wave propagation problems mathematically is
the scalar wave equation,

∂2

∂t2
u(x, t) − c(x)2∆u(x, t) = 0, (2.1)

where c is the speed of propagation, that can depend on x. The equation is subjected
to the initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x),

where f and g are given functions. The scalar wave equation is used e.g. in
acoustics, where the evolution of the pressure and particle velocity is modeled.

Systems of wave equations are used to model elasticity and electromagnetism.
The elastic wave equation is

ρutt = f + (λ + 2µ)∇(∇ · u) − µ∇ × (∇ × u), (2.2)

where λ and µ are the so-called Lamé parameters describing the elastic properties
of the medium, ρ is the density, f is the body force and u is the displacement
vector. Maxwell’s equations are used to model problems in electromagnetics. They
are given by

∂D

∂t
− ∇ × H = −J

∂B

∂t
+ ∇ × E = 0

∇ · D = ρ

∇ · B = 0,

7



8 CHAPTER 2. HIGH FREQUENCY WAVE PROPAGATION PROBLEMS

where H is the magnetic field, J is the current density, D is the electric displace-
ment, E is the electric field, B is the magnetic flux density and ρ is the electric
charge density. In many situations, the elastic wave equation and the Maxwell equa-
tions can be reduced to sets of scalar wave equations for the individual components,
but typically these equations couple, e.g. via boundary conditions.

Assuming time-harmonic waves, i.e. waves of the form

u(x, t) = v(x)eiωt,

where ω is the frequency, the wave equation can be reduced to the Helmholtz
equation,

∆v(x) +
ω2

c(x)2
v(x) = f(x). (2.3)

Thus, the Helmholtz equation represents a time-harmonic form of the wave equa-
tion.

Another formulation of wave propagation problems is the scattering problem.
Scattering problems concern propagation of waves that collide with some object.
More precisely, let Ω be an object, a scatterer, that is illuminated by an incident
wave field uinc. Then, the wave field that is generated when uinc collides with Ω
is the scattered field us (see Figure 2.1). There are many examples of scattering
problems. One example in nature is a rainbow that appears when the sunlight is
scattered by rain drops. Another example is the scattering of light in air, which is
the reason for the blue color of the sky. To describe the scattering problem math-
ematically, let us consider an impenetrable obstacle Ω in R

3 and assume that the
speed of propagation outside Ω is homogeneous, c(x) = 1. The obstacle is illumi-
nated by some known incident wave uinc(x, t) which solves the constant coefficient
Helmholtz equation pointwise, for example a plane wave eiωx·ŝ in direction ŝ. We
also assume that utot = uinc + us = 0 on the boundary of the obstacle ∂Ω. Then,
the scattering problem is to find the scattered field us(x) such that it satisfies the
Helmholtz equation

∆us(x) + ω2us(x) = 0, x ∈ R
3 \ Ω̄ (2.4)

with boundary condition

us(x) = −uinc(x), x ∈ ∂Ω, (2.5)

and the Sommerfeld radiation condition

lim
r→∞

r

(

∂us

∂r
− iωus

)

= 0, (2.6)

where r = |x|, which guarantees that the scattered wave is outgoing. To solve this
problem numerically, it is typically reformulated as a boundary integral equation.
One version that is suitable for high frequency problems [17] is

1

2

∂u

∂n
(x) +

∫

∂Ω

(

∂Φ(x, y)

∂n(x)
− iηΦ(x, y)

)

∂u

∂n
(y)ds(y) = f(x), x ∈ ∂Ω, (2.7)
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Figure 2.1: Scattering problem. An incident field uinc collides with a scatterer Ω
and an scattered field us is generated.

where

f(x) =
∂uinc

∂n
(x) − iηuinc(x),

η = η(ω) > 0 is a coupling parameter that ensures the well-posedness of (2.7)
and ∂u/∂n is to be determined. Here Φ(x, y, ω) denotes the standard fundamental
solution of the Helmholtz equation in R

3, which becomes increasingly oscillatory
when ω → ∞.

One important difference between scattering problems in homogeneous media
and the domain problems (2.1) and (2.3) with variable media is in the way the
waves are scattered. In the domain problems the waves are, in principle, scattered
whenever the wave speed changes, while in the scattering problems the waves are
scattered only from the surface of the scatterer.
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2.1 Geometrical Optics

Direct computation of high frequency wave propagation problems requires many
discretization points/ elements to resolve the solution, and therefore it is very com-
putationally expensive. Instead, asymptotic approximations, such as geometrical
optics (GO), can be used. See for example [28, 78, 64]. The key idea in GO is
that the highly oscillating solution is represented as a product of a slowly vari-
able amplitude function A and an exponential function of the slowly variable phase
function φ multiplied by the large parameter ω. Hence, instead of the oscillating
wave field, the unknowns in GO are the phase and the amplitude, which vary on
a much coarser scale than the full solution (see Figure 2.2). They are therefore
easier to compute numerically, at a cost independent of the frequency. However,
the approximation is only accurate for large frequencies. It typically requires that
variations in the speed of propagation c(x) are on a scale much larger than the wave
length.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

2

3

4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−5

0

5

Figure 2.2: Real part of the solution of Helmholtz equation (top), the amplitude
(middle) and the phase (bottom). The amplitude and the phase vary on a much
coarser scale than the solution.

Consider the Helmholtz equation (2.3). In the GO approximation its solution
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is sought in the form (asymptotic WKB expansion)

u(x) = eiωφ(x)
∞
∑

k=0

Ak(x)(iω)−k. (2.8)

Substituting (2.8) in (2.3) and equating to zero the coefficients of equal powers of
ω yields the Hamilton-Jacobi type eikonal equation for the phase φ

|∇φ| =
1

c
, (2.9)

and a system of linear transport equations

2∇φ · ∇A0 + ∆φA0 = 0

. . . (2.10)

2∇φ · ∇An+1 + ∆φAn+1 = ∆An,

for the amplitudes Ak, k = 0, 1, . . . . For large frequencies, Ak, k > 0 in (2.8) can
be discarded, so only the transport equation for A0 remains to be solved in (2.10)
and u(x) ≈ A0(x)eiωφ(x).

If the eikonal equation (2.9) is solved by the method of characteristics, GO can
be formulated as a system of ordinary differential equations (ODEs). Let p = ∇φ
and define a Hamiltonian

H(x, p) = c(x)|p|.

Then, instead of (2.9), we solve the following system of ODEs

dx

dt
= ∇pH(x, p) = c(x)

p

|p|
, x(0) = x0, (2.11)

dp

dt
= −∇xH(x, p) = −|p|∇c(x), p(0) = p0, (2.12)

where (p(t), x(t)) is a bicharacteristic related to the Hamiltonian H(x, p). The
parametrization t corresponds to the phase of the wave φ(x(t)) = φ(x0) + t. In the
special case when H ≡ 1, (2.11, 2.12) reduces to

dx

dt
= c(x)2p, x(0) = x0, (2.13)

dp

dt
= −

∇c

c
, p(0) = p0, |p0| =

1

c(x0)
. (2.14)

There is also a system of ODEs for the amplitude.
Finally, one can introduce a kinetic model of GO. It is based on the inter-

pretation that rays are trajectories of particles following Hamiltonian dynamics.
Introduce the phase space (t, x, p) such that the evolution of particles in this space
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is given by the system of equations (2.11)–(2.12). Letting f(t, x, p) be a particle
density function, it will satisfy the Liouville equation

ft + ∇pH · ∇xf − ∇xH · ∇pf = 0, (2.15)

where ∇pH and ∇xH are given by (2.11)–(2.12),[7, 27]. With H(x, p) = c(x)|p| ≡
1 (2.15) reduces to the Vlasov-type equation

ft + c2p · ∇xf −
1

c
∇xc · ∇pf = 0, (2.16)

with initial data f0(x, p) vanishing whenever |p| 6= 1/c.
Asymptotic approximations, such as GO, cannot capture typical wave properties

such as diffraction. Diffracted waves are produced when the incident field hits edges
or vertices of the obstacle, or when the incident wave strikes the tangent points of
the smooth scatterer (creeping waves). To overcome the problem with diffracted
fields, asymptotic expansions with correction terms were proposed by Keller [45] in
his geometrical theory of diffraction (GTD). GTD makes up for the GO solution
on the boundary of the scatterer, where some terms of this solution vanish. GTD
expansion of the solution accounts for the phase and the amplitude of the diffracted
waves. It does so by means of several laws of diffraction which allow the use of the
same principles as in GO to assign a field to each diffracted ray.

Another disadvantage of GO is that it fails when the amplitude A0 is unbounded,
at caustics where waves focus. One way to remedy this is to use Gaussian beams
[60, 57, 4].

2.2 Numerical Methods

In this section we describe different numerical methods for computing high fre-
quency wave propagation problems. We consider classical direct numerical methods
as well as GO based methods.

Direct Numerical Methods

Direct numerical methods for wave propagation include finite difference methods,
finite element methods and finite volume methods applied to (2.1) or (2.3). See,
e.g. [39, 31, 8, 49] for an introduction to such methods. When applied to high
frequency wave propagation problems, these methods require a certain number of
grid points or elements per wavelength to maintain a fixed accuracy. Hence, if N is
the number of grid points in each coordinate direction and ω is the frequency, one
needs at least N ∼ ω.

When applied to the d-dimensional Helmholtz equation, the methods lead to
sparse systems of equations of size Nd. Thus, direct methods, like Gaussian elim-
ination, become computationally too expensive in higher dimensions. The alter-
native is to use iterative methods. However, since the systems of equations are
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indefinite and ill-conditioned, iterative methods have a slow convergence rate. The
convergence rate can be improved by preconditioning, but finding a good precon-
ditioner for the Helmholtz equation is still a challenge [32]. See, however, [80] for
some recent breakthroughs in this area.

Scattering problems can be solved by integral equations of the type (2.7). This
is typically done with a collocation or Galerkin method, which again transforms
the problem into a large linear system of equations, now of size Nd−1. However,
the matrix in the system is dense and the computational cost of direct methods
is therefore normally O(N3(d−1)). Thus, when ω is large, direct methods are not
feasible. The alternative is to use iterative methods. Then, the computational cost
can be reduced to O(N2(d−1)). However, for large ω this can still be expensive.
Fast multipole methods can reduce the complexity to O(Nd log N) for any fixed
accuracy [61, 30].

Hence, the computational cost of direct numerical methods for all formulations
grows algebraically with the frequency ω. Therefore, at sufficiently high frequencies
(ω ≫ 1), direct numerical simulation is no longer feasible.

GO-based Methods

Methods based on the GO approximation are suitable for high frequency wave
propagation problems. For different mathematical models of GO, there are various
numerical methods.

PDE-based methods are used for the eikonal and transport equations (2.9) and
(2.10). The equations are solved directly on a uniform grid to control the error.
The eikonal equation is a Hamilton-Jacobi type equation and it has a unique viscos-
ity solution, which can be computed numerically by finite difference methods, for
example. Some of them are upwind-based methods like the fast marching method
[66, 76] and the fast sweeping method [75, 82]. For time-dependent eikonal equa-
tions one can use high-resolution methods of ENO and WENO type [54]. However,
at points where wavefronts collide and overlap, the viscosity solution is not enough
because the eikonal and the transport equation describe only one unique wave at
a time. Therefore, some other numerical techniques must be used. Some examples
are the big ray tracing method [5], the slowness matching method [71] or the do-
main decomposition based on detecting kinks in the viscosity solution [6]. In these
methods, the full solution is obtained by solving several eikonal equations.

Ray tracing methods [15, 43, 47, 72] are used to solve the ray equations (2.11)–
(2.12). That system can be augmented with another system of ODEs for the am-
plitude. The ODEs are solved with standard numerical methods, such as second
or fourth-order Runge-Kutta methods. The phase and the amplitude are calcu-
lated along the rays and interpolation must be used to obtain the solution in points
other than the grid points. However in regions with diverging or crossing rays, this
method is not efficient.

Methods based on the kinetic formulation of GO are phase space methods. The
Liouville equation (2.15) has a large number of independent variables, which makes
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computations very expensive. To overcome this problem, one can use wave-front
methods and moment-based methods.

Wave-front methods include tracing of wave fronts in the phase space. They
are based either on the kinetic formulation (2.16) or on the ray tracing formulation
(2.13,2.14). Solutions including the formation of caustics can be computed by
these methods. Some of the wave-front methods are the level set method [53] and
the segment projection method [29, 73], which are PDE-based methods, and the
wave front construction method [77], which is an ODE-based method. The wave
front construction method introduced in [77] uses marker points to represent the
interface. They are then evolved by (2.13,2.14). If the resolution of the interface
deteriorates, new marker points are added to preserve the accuracy of the solution.
These methods are described further in Chapter 4.

In moment-based methods, the kinetic transport equation set in the high-
dimensional phase space (t, x, p) is approximated by a finite system of moment
equations in the reduced space (t, x). In that way, the number of unknowns is
decreased. For more details, see [7, 63].



Chapter 3

Numerical Methods with Weakly

Frequency-Dependent Cost

The situation described in the previous chapter can be summarized as follows: For
direct methods the computational cost grows with frequency for fixed accuracy,
while for GO methods the accuracy grows with frequency for fixed computational
cost. Unfortunately, the frequency range and accuracy requirement of many realistic
problems is often intractable with either of these approaches.

Recently a new class of algorithms has been proposed that combines the cost
advantage of GO methods with the accuracy advantage of direct methods. They are
thus characterized by a computational cost that grows slowly with the frequency,
while at the same time being accurate also for moderately high frequencies. It
should be noted that one needs at least O(ω) points to resolve the solution. If that
many points are used, then the computational cost is, of course, at least O(ω). In
these methods, however, one does not resolve the solution, but computes instead
GO-like solutions. Therefore, one can only expect to get the full solution in O(1)
points.

The main interest of the new methods has been for scattering problems [10, 48,
24, 1, 41]. These methods are based on the integral formulation of the Helmholtz
equation (2.7). The key step is to write the surface potentials as a slowly vary-
ing function multiplied by a fast phase variation. Instead of approximating the
unknown function v := ∂u/∂n directly, the following ansatz is used

v(x, ω) ≈ ωeiωφ(x)V (x), x ∈ ∂Ω. (3.1)

The basic idea is that, using asymptotic analysis, the phase function φ can be
determined in such a way that V (x) is much less oscillatory than the original
unknown function v. More precisely, φ(x) is taken as the phase of the geometrical

optics approximation. For instance, when uinc is a plane wave in direction d̂, then
φ = x · d̂. Hence, the ansatz becomes

v(x, ω) = ωeiωx·d̂V (x, ω), (3.2)

15
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where V now varies slowly with ω. Each side of (2.7) is then multiplied by e−iωx·d̂

to obtain
1

2
V + DV − iηSV = i(ωd̂ · n̂ − η), (3.3)

where the operators S and D are defined as follows

SV (x) =

∫

∂Ω

Φ(x, y, ω)eiω(y−x)·d̂V (y)dy, (3.4)

DV (x) =

∫

∂Ω

∂Φ(x, y, ω)

∂n(x)
eiω(y−x)·d̂V (y)dy. (3.5)

Thus, the problem becomes to find the amplitude V (x, ω) by solving the integral
equation (3.3). The amplitude varies slowly away from the shadow boundaries and
can be represented by a fixed set of grid points, i.e. independently of the frequency.
The integral equation can be solved for example with the collocation method. In
this method, one needs to compute integrals of type

N
∑

j=1

cj

∫ b

a

Φ(xi, y, ω)ϕj(y)ds(y) = f(xi), i = 1, . . . , N. (3.6)

Although the amplitude is a slowly varying function, the integrals cannot be com-
puted independently of the frequency by direct numerical methods, since their
kernels are oscillatory (c.f. (3.4)–(3.5)). To overcome this problem, one can use hy-
brid methods, which, for instance, can be based on a collocation [40] or a Nyström
approach [10, 9]. Since the values of the integrands and their derivatives in crit-
ical points make the only significant contributions to the oscillating integrals, an
integration procedure based on localization around these points was introduced.
Since the amplitude near shadow boundaries is varying rapidly, those regions are
treated with special consideration. However, the method works mainly for prob-
lems with convex scatterers. For more information about these methods, as well as
their extensions to non-convex scatterers see [14].

Rigorous proofs of the low cost of these methods is difficult, and requires detailed
results on the asymptotic behavior of the exact solution near shadow boundaries.
An example of a result, due to Dominguez, Graham and Smyshlyaev [24], concerns
convex smooth scatterers in 2D. They show that for a Galerkin discretization with
N unknowns, where the integrals corresponding to (3.4), (3.5) are computed exactly,
the relative error in V (y) can be estimated as

rel. err ∼ kα

(

(

k1/9

N

)6

+ e−Ck1/3

)

,

where α is a small exponent less than one and k := ω/c is the wave number. Hence,
if N is slightly larger than k1/9 the error is controlled as k grows.

For full domain problems with variable wave speed, much less has been done.
In some sense this is more difficult than the scattering problem in a homogeneous
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medium, because the waves are reflected at all points where the wave speed changes,
not only at the surface of a scatterer. One attempt at lowering the computational
cost along the lines above has been to use ”plane wave basis functions” in finite
element methods [56, 34, 13]. The method can be seen as a discontinuous Galerkin
method with a particular choice of basis functions. However, except in simple cases,
these methods do not reduce the complexity more than by a constant factor. A
related method was proposed by Giladi and Keller [34]. It is a hybrid numerical
method for the Helmholtz equation, in which the finite element method is combined
with GO. The idea is to determine the phase factor which corresponds to the plane
wave direction a priori by solving the eikonal equation for the phase using ray
tracing, and then to determine the amplitude by a finite element method, choosing
asymptotically derived basis functions which incorporate the phase factor.

3.1 Fast Method for Solving the High Frequency Helmholtz

Equation in One Dimension

In this thesis, we suggest and analyze a numerical method for the high frequency
Helmholtz equation in a bounded, one-dimensional domain with a variable wave
speed function. The method is based on wave splitting. The Helmholtz equation is
split into one–way wave equations, with source functions which are solved iteratively
for a given tolerance. The source functions depend on the wave speed function and
on the solutions of the one–way wave equations from the previous iteration. The
solution of the Helmholtz equation is then approximated by the sum of the one–
way solutions at every iteration. To improve the computational cost, the source
functions are thresholded and, in the domain where they are equal to zero, the
one–way wave equations are solved with geometrical optics, with a computational
cost independent of the frequency. Elsewhere, the equations are fully resolved with
a Runge-Kutta method. We have been able to show rigorously in one dimension
that the algorithm is convergent and that for fixed accuracy, the computational
cost is just O(ω1/p) for a p-th order Runge-Kutta method. Numerical experiments
indicate that the growth rate of the computational cost is much slower than a direct
method, and can be close to the asymptotic rate.

We now give some more details of the method. We consider the 1D Helmholtz
equation

uxx +
ω2

c(x)2
u = ωf, x ∈ (−L, L), (3.7)

where ω is the frequency and c(x) is the wave–speed function such that supp(cx) ⊂
(−L, L). It is augmented with the non-reflecting boundary conditions

ux(−L) − iωu(−L) = −2iωA, (3.8)

ux(L) + iωu(L) = 0, (3.9)

which also incorporate an incoming wave with amplitude A. At high frequencies,
GO is a good approximation to the solution. We want to find a way to correct for
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the errors it makes at lower frequencies. A natural idea would be to use the system
of equations (2.10), which is obtained in GO when the solution is approximated by
(2.8). However, the series in (2.8) does not converge, even in simple settings. It
is only an asymptotic series. The main problem is that (2.9,2.10) only describes
waves travelling in one direction. In reality, waves are reflected whenever cx 6= 0.
We therefore introduce the functions v and w to describe waves propagating in the
right-going and the left-going directions, respectively. They satisfy the following
one-way wave equations,

iωv + c(x)vx −
1

2
cx(x)v =

α(x)(v + w)

2iω
, (3.10)

iωw − c(x)wx +
1

2
cx(x)w =

α(x)(v + w)

2iω
, (3.11)

where

α(x) =
1

2
ccxx −

1

4
c2

x. (3.12)

The full solution is the sum of these functions, u = v + w. We now make a WKB
type expansion of v and w in powers of ω,

v =

∞
∑

n=0

rnω−n, w =

∞
∑

n=0

snω−n. (3.13)

Then, (3.10) and (3.11) become

∞
∑

n=0

(

iωrn + c(x)∂xrn −
1

2
cx(x)rn −

α(x)

2i
(rn−1 + sn−1)

)

ω−n = 0,

∞
∑

n=0

(

iωsn − c(x)∂xsn +
1

2
cx(x)sn −

α(x)

2i
(rn−1 + sn−1)

)

ω−n = 0,

where r−1 = s−1 = 0. Defining vn = rnω−n and wn = snω−n and setting each
term to zero, we obtain for x ∈ (−L, L) and n ≥ 0

iωvn + c(x)∂xvn −
1

2
cx(x)vn = −

1

2iω
fn(x), (3.14)

iωwn − c(x)∂xwn +
1

2
cx(x)wn = −

1

2iω
fn(x), (3.15)

where
f0(x) = ωf(x), fn+1(x) = −α(x)(vn(x) + wn(x)). (3.16)

We then approximate u(x) = v(x) + w(x) by zm(x), obtained by taking the first m
terms in the sums in (3.13),

u(x) ≈ zm(x) =

m
∑

n=0

(vn(x) + wn(x)). (3.17)



3.1. FAST METHOD FOR SOLVING THE HIGH FREQUENCY HELMHOLTZ

EQUATION IN ONE DIMENSION 19

We also need to specify initial conditions for (3.14) and (3.15). We have proved in
the first paper that zm will satisfy the boundary conditions (3.8) and (3.9) for all
m if we let

vn(−L) =

{

A, n = 0
0, n > 0

, wn(L) = 0, ∀n. (3.18)

To sum up, we solve (3.14) and (3.15) for n = 0, 1, 2, . . . , m with the given initial
conditions (3.18) and the source function fn that is defined by (3.16). Then, the
solution u(x) of the Helmholtz equation (3.7) can be well approximated by zm given
in (3.17). For proof see Theorem 1 in the first paper. Moreover, in contrast to (2.8),
the series (3.17) converges quickly for large ω.

In a direct implementation, the computational complexity of solving (3.14),(3.15)
would grow algebraically with the frequency ω just as for the full Helmholtz equa-
tion, since the solution is oscillatory. To get around this we note that (3.14) and
(3.15) can be simplified when fn = 0. Then, using the ansatz vn = Aeiωφ in (3.14)
we obtain equations for A and φ,

∂xφ =
1

c(x)
, ∂xA =

cx(x)

2c(x)
A(x). (3.19)

This is in fact GO, and can be solved at a cost independent of the frequency. Similar
equations can be obtained when the ansatz is used in (3.15). Thus, the computa-
tional cost estimate can be improved by approximating the forcing functions with
zero when they are small. That is exactly what we do in our method.

More precisely, let f̂n be the approximate forcing function, and v̂n and ŵn

the corresponding approximate one-way wave equation solutions, with initial data
(3.18) and let

trunc(x, δ) =

{

0, |x| < δ
x, otherwise

be the truncation function. Then, we first calculate the forcing function from the
approximate one-way solutions in the same way as before, by (3.16) with v̂n and

ŵn instead of vn and wn and define f̂n as the thresholded version of fn

f̂n(x) = trunc(fn(x), Toln), Toln =
ωTol

2n+1L
, (3.20)

for some tolerance Tol. We use GO where f̂n = 0 and a fully resolved ODE method
elsewhere, see Figure 3.1.

For this case, also the solution u(x) of the Helmholtz equation (3.7) can be well
approximated by

u(x) ≈ ẑm(x) :=

m
∑

n=0

(v̂n(x) + ŵn(x)). (3.21)

For the proof, see Theorem 1 in the first paper. Thus, the system of one-way
wave equations can be solved independently of the frequency in the part of the
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|f_n|

Figure 3.1: Function |fn|. In a domain where |fn(x)| < Toln, f̂n(x) = 0 and we can

use GO to solve the system of one way wave equations, otherwise f̂n(x) = fn(x)
and some p-th order ODE numerical scheme can be used.

domain where f̂n = 0. In the part of the domain where f̂n 6= 0, a direct ODE
numerical method can be used. The solution of (3.7) is then approximated by

(3.21). Moreover, we have shown that the size of the region where f̂n 6= 0 is O(1/ω)
and that this implies an almost frequency-independent computational complexity
(see Theorem 1 in the first paper). More precisely, with the right choice of stepsize,

∆xf ∼
Tol1/p

ω1+1/p
, (3.22)

the computational cost will be O(ω1/p), where p is the order of the ODE scheme.
This is a significant improvement compared to the direct methods, where the com-
plexity is O(ω). For a more detailed description of the method, see the first paper
in this thesis.

Let us now show one example. Consider the non-symmetric function c(x) that is
shown in Figure 3.2 (top). The absolute value of the solution for ω = 16 is plotted
in Figure 3.2 (bottom). The oscillations are due to the reflected waves which would
not be present in GO. The error, computational cost and the number of iterations
needed to compute the solution using our method for Tol = 0.1, are shown in
Figure 3.3. We use the 4-th order Runge-Kutta method to compute the solution in
intervals where |fn(x)| > Toln. The computational cost grows essentially as ω1/4,
as predicted by the asymptotic theory.
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Figure 3.2: Function c(x) (top). Absolute value of the solution of the Helmholtz
equation for ω = 16 (bottom).
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Figure 3.3: Comparison between the finite-difference method and our method with
tolerance Tol = 0.1, for 256 ≤ ω ≤ 4096, when the speed function is given in Figure
3.2. The error (top), the computational cost (middle) and the number of iterations
needed to compute the solution with our method (bottom). The 4-th order Runge-
Kutta method is used to compute the solution in intervals where |fn(x)| > Toln.



Chapter 4

Interface Tracking

Propagating interfaces occur in many applications. Wave propagation, multiphase
flow, crystal growth, melting, epitaxial growth and flame propagation are some
examples. Therefore, development of fast and accurate numerical methods for
interface tracking is very important. In this chapter, we present the equations that
are used to model propagation of interfaces in a time-varying velocity field. We
also give an overview of existing numerical methods for the problem, and discuss
their advantages and disadvantages.

We consider interfaces that move with some given velocity field that does not
depend on the interface. If we assume that the interface can be parametrized so
that it is described by the function x(t, s) : R+ × R

q → R
d for a fixed time t, with

the parametrization s ∈ Ω ⊂ R
q, then it satisfies the following ODE

dx(t, s)

dt
= F (t, x(t, s)), x(0, s) = γ(s), s ∈ Ω, (4.1)

where F (t, x) : R+ × R
d → R

d is the given velocity field and γ(s) : Rq → R
d is the

initial interface. Depending on how the interface is represented, different numerical
methods are used to solve (4.1).

4.1 Standard Front Tracking

In standard front tracking methods, the interface is represented explicitly by a set
of marker points, which are then propagated using some ODE numerical method,
see Figure 4.2 (left). For a fixed time, a front in two dimensions, d = 2, q = 1,
is usually reconstructed by line segments, and a front in three dimensions, d = 3,
q = 2, by a triangulation.

Let us now consider the case q = 1. Marker points are then defined by

xj(t) = x(t, sj), j = 0, . . . , N,

23
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where {sj}, j = 0, . . . , N is a discretization of Ω. When q = 2 and d ≥ 3, one uses
a triangulation of Ω where sj are the nodes of triangles covering Ω. Note that sj

are then vectors in R
q.

The equation (4.1) becomes

dxj(t)

dt
= F (t, xj(t)), xj(0) = γ(sj), j = 0, . . . , N. (4.2)

It is solved using some standard ODE method with a time step ∆t.
One difficulty with these methods is that they are not suitable for problems

in which the length or the area of the interface increases with time. The distance
between marker points then becomes larger and the interface cannot be accurately
resolved. As an illustration, let us consider the following velocity field

F (t, x) =

[

tanh(−y2 + 0.25)
sin(2πx)

]

, (4.3)

and solve (4.1) until T = 4, with γ(s) being a line segment on the x-axis between
zero and one. The problem is solved for different number of points on the interface,
N = 2000, N = 5000, N = 8000, and N = 10000. The solution is shown in
Figure 4.1. It can be observed that the interface cannot be accurately resolved at
the final time, even when N = 10000. A standard way to resolve this problem
is to adaptively add points whenever the distance between two consecutive points
becomes larger than some given tolerance, i.e. if for two points on the interface xj

and xj+1

|xj − xj+1| > Tol (4.4)

for some given tolerance Tol, add a new point between them. This can be done by
interpolation. For an illustration, see Figure 4.2 (right).

Another drawback is that these methods become complicated for problems in
which the interface changes topology (e.g. when two interfaces merge). In that
case, the connectivity of marker points has to be changed correctly, which is rather
complicated, although it can be done [36, 35].

Let us finally note that the cost to propagate one marker point with a time step
∆t to a fixed time is O(1/∆t). Consequently, the cost to propagate a front that
is described by N marker points is O(N/∆t). The accuracy is O(∆tp) for a p-th
order ODE method.

4.2 Level Set Methods

The level set method was introduced by Sethian and Osher [53]. In this method,
the interface is represented implicitly as a level set of a continuous function φ.
There are two formulations, the boundary value formulation and the initial value
formulation, [67].
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Figure 4.1: The interface at T = 4 obtained by moving N marker points. The
velocity field is given by (4.3). The initial interface is the line segment between
x = 0 and x = 1 on the x-axis.
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t = ∆ t

t = 2∆ t

Figure 4.2: Interface construction. The interface is represented by marker points
that are propagated by some numerical ODE method. When the points are too far
apart, new marker points are inserted.
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In the initial value formulation, we assume that the level set value of a point on
the front with path x(t, s) is zero, i.e.,

φ(t, x(t, s)) = 0. (4.5)

Differentiating with respect to t, we obtain

φt + ẋ · ∇φ = 0. (4.6)

Assuming that the front moves in the normal direction with speed c, i.e.

F = c
∇φ

|∇φ|
,

the initial value formulation is

φt + c|∇φ| = 0, given φ(x, t = 0). (4.7)

For and illustration, see Figure 4.3.

φ = 0

φ = 0

φ = 0

φ(0,x,y)

φ(1,x,y)

φ(2,x,y)

Figure 4.3: Transformation of front motion into an initial value problem.

To obtain the boundary value formulation, one lets φ(x(t, s)) be the arrival time
t of the front. To derive the equation, we thus assume that

φ(x(t, s)) = t. (4.8)
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Differentiating (4.8) with respect to t, we obtain

ẋ · ∇φ = 1.

Again, assuming that c is the speed in the normal direction, the boundary value
formulation is given by

|∇φ|c = 1, φ = 0 on γ. (4.9)

For an illustration, see Figure 4.4. If the speed c depends only on the position,
c = c(x), then the equation (4.9) becomes the eikonal equation.

T = 2

T = 1

T = 0

T = 0

T = 1

T = 2 Initial curve

Figure 4.4: Transformation of front motion into a boundary value problem.

When ẋ only depends on x and ∇φ, equations (4.7) and (4.9) can be written in
the form of Hamilton-Jacobi equations

αφt + H(x, ∇φ) = 0, (4.10)

where the Hamiltonian H and α, for the initial value problem, are given by

H(x, ∇φ) = c
√

φ2
x + φ2

y + φ2
z, α = 1 (4.11)

and, for the boundary value problem, by

H(x, ∇φ) = c
√

φ2
x + φ2

y + φ2
z − 1, α = 0. (4.12)
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In general, ẋ can also depend on higher derivatives of φ, to model for instance fronts
propagating with curvature-dependent speed [53].

To solve the initial value problem (4.7) numerically, one can use upwind nu-
merical methods for Hamilton-Jacobi equations. The schemes are explicit and use
techniques from hyperbolic conservation laws to solve Hamilton-Jacobi equations.
Higher order methods for the initial value formulation include methods of ENO
(essentially non-oscillatory) and WENO (weighted essentially non-oscillatory) type
proposed by Osher and Shu in [54].

Methods used for the boundary value formulation (4.9) include the fast marching
methods introduced by Sethian in [66]. The main idea in the fast marching methods
is to use only upwind values to construct the solution φ in (4.9). In other words,
to compute the solution at a new grid point, only the previously computed values
at the neighboring grid points are used. The algorithm starts from the boundary
data, and calculates the solution outward from the boundary in a computationally
efficient way. The computational cost is O(N log N) where N is the total number
of grid points. With some modifications, the cost can be reduced to O(N), see for
example [79]. The order of accuracy of the method is one. Constructing higher
order fast marching methods is complicated, but possible [3]. Other methods with
O(N) complexity include fast sweeping methods [44, 82, 74] and group marching
methods [46].

In general, the level set methods have a nice property, namely that the equations
(4.7) and (4.9) are the same regardless of the dimension of the problem. Moreover,
they do not change, even if the interface changes topology. Hence, topology changes,
like interface merging for example, are easily handled by these methods. This
property is very important in practical applications. Another advantage is that the
error is controlled by the choice of the spatial discretization and, in the case of the
initial value formulation, by the time discretization. Consequently, the methods
are suitable for expanding interfaces.

On the other hand, since the interface is represented as the level set of a higher
dimensional function φ, the dimension of the problem is always increased by one,
leading to higher computational cost. Moreover, the initial value formulation re-
quires that the time step ∆t satisfies a CFL condition with respect to the maximum
velocity over the whole domain, i.e. maxΩ c∆t < ∆x, where ∆x is the step used in
the spatial discretization. Thus, the main problem of this approach is the compu-
tational cost. For example, the cost to solve (4.7) is O(N/∆t) in any dimension,
where N is the total number of grid points. However, often, the cost can be re-
duced by using local level set methods such as the narrow band level set method
introduced by Chopp in [16]. The main idea of this method is to perform calcu-
lations only near the zero level set. The computational cost is then decreased to
O(N (d−1)/d log N/∆t), where N is the total number of grid points and d is the
dimension of the problem. For more details, see [2, 52, 55, 69, 70].
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4.3 The Segment Projection Method

In the segment projection method, the interface is divided into several parts, called
segments. The segments overlap, and are chosen in such a way that they can
be expressed as functions of one variable. For example, when the interface is a
curve with points (x, y), they are either expressed by (fj(y), y) or (x, gj(x)) for
some functions fj(y) and gj(x), where j is the index of the segment. The fj and
gj functions are discretized on a uniform Eulerian grid in the y and x-direction,
respectively. The information about their connectivity also has to be provided. For
an illustration, see Figure 4.5. Hence, the interface is represented by marker points
as in the standard front tracking methods, but the discretization is Eulerian as in
the level set methods.

The front is moved by evolving the segments by PDEs given by the equations
of motion. After every time step, the segments have to be reinitialized and the
information about their connectivity has to be updated. Handling topology changes
is a bit simpler than in the standard front tracking methods, but still complicated.
Moreover, it is difficult to extend this method to higher dimensions. For a more
detailed description of the method and its applications see [29, 73].

Figure 4.5: Segment structure when the interface is a circle. Left: y-segments,
(x, gj(x)), right: x-segments (fj(y), y).





Chapter 5

Multiresolution Interface Tracking

In this chapter, we describe interface tracking methods, where a multiresolution
approximation of the interface is used for the interface description. This kind of
methods are the topics of the second and the third papers of this thesis.

5.1 Multiresolution Description of the Interface

In multiresolution front tracking methods, the interface is represented hierarchically
by increasingly detailed meshes. Starting from a representation on the finest level
by a mesh that consists of marker points, the mesh is then coarsened level by level
by removing points. For each removed point, a wavelet vector is computed as the
difference between the point and a so-called predicted point, which only depends on
the coarser level mesh. In that way, only points from the last coarse discretization
and the wavelet vectors need to be saved. This representation is then used for the
front tracking.

More precisely, assume that γ(s) is twice continuously differentiable with respect
to s, and non-self intersecting. Moreover, assume that the finest mesh consists
of N = 2J discretization points, and for 0 ≤ j ≤ J define the marker points
xj,k = γ(sj,k), sj,k = k2−j , k = 0, . . . , 2j on the curve γ. Then, the jth level
multiresolution approximation of the curve is defined by the polyline

γj =
⋃

0≤k<2j−1

l(xj,k, xj,k+1),

where l(xj,k, xj,k+1) is the line segment between points xj,k and xj,k+1. Note that
since sj,2k = sj−1,k, we have xj,2k = xj−1,k for k = 0, . . . , 2j−1, and the polyline
γj−1 therefore consists of every second point in γj . The wavelet vectors wj,2k+1 for
k = 0, . . . , 2j−1 − 1 are then defined as follows.

1. Compute the so-called predicted point by the midpoint formula, x∗
j,2k+1 =

(xj−1,k + xj−1,k+1)/2,

31
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2. Define wj,2k+1 as the difference between the actual point and the predicted
point, wj,2k+1 = xj,2k+1 − x∗

j,2k+1.

Hence, given xj−1,k and wj,2k+1, we can reconstruct γj by first computing x∗
j,2k+1

and then adding wj,2k+1. We repeat this for each level. Finally, the zeroth level
multiresolution representation of γ is γ0 = l(x0,0, x0,1). This is illustrated in Figure
5.1. Thus, to construct a multiresolution approximation of a curve, we first make
a fine discretization of the interface, and then define wavelet vectors by

wj,2k+1 = xj,2k+1 − (xj−1,k + xj−1,k+1)/2. (5.1)

In this way, the curve γ can be uniquely represented, with a level of detail J ,
by the edge points x0,0 and x0,1 and the wavelet vectors wj,2k+1, j = 1, . . . , J ,
k = 0, . . . , 2j−1 −1. Note that one can reconstruct the curve’s points xj,k on level J
from the edge points and the wavelet vectors by reversing the previously described
process. The cost is O(N), where N = 2J .
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Figure 5.1: Constructing the polyline γj which represents the multiresolution ap-
proximation of the curve γ.
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Remark 1. In the special case when the wavelet vectors wj,2k+1 are normal to the
line segment l(xj−1,k, xj−1,k+1), only the lengths of wavelet vectors and edge points
need to be saved. This approximation is known as a normal mesh, [38].

So far we have used the midpoint formula to compute the predicted points.
It is a special case of a process called subdivision. Subdivision is a procedure to
iteratively create smooth curves and surfaces from an initial mesh [12, 20, 21, 25].
More precisely, let x = {xk} be a sequence. A local, stationary subdivision scheme
is then characterized by a bounded linear operator S : ℓ∞ 7→ ℓ∞, defined by a finite
sequence a = {ak} as follows:

(Sx)k =
∑

ℓ

ak−2ℓxℓ.

To build a smooth function, we start from a sequence x0 and associate to it a
function f0(x) which is piecewise linear and interpolates x0,k on the integer grid,
f0(k) = x0,k. We can then apply the subdivision scheme S iteratively and define
xj for all j > 0 by

xj+1 = Sxj .

Similar to γj above, each xj defines a piecewise linear function fj that interpolates
xj,k in sj,k = k2−j . For many S these functions fj converge to a smooth limit
function.

A subdivision scheme is interpolating if (Sx)2k = xk. Interpolating schemes are
described by the mask that is used to compute odd (in k) points. For example, a
two-point subdivision scheme is the midpoint scheme that is defined by the mask
[1/2, 1/2], i.e. (Sx)2k+1 = (xk + xk+1)/2.

The order of an interpolating subdivision scheme S is the largest q such that
SP (k) = P (k/2) for all polynomials P of degree p < q. We always assume that q
is at least one, so that S1 = 1, where 1 is a sequence which has all entries equal to
1. For example, the order of the two-point subdivision scheme is q = 2.

The approximation of the interface can be improved if some higher order sub-
division scheme is used to calculate the predicted points. Some examples of higher
order subdivision schemes that are also called the Lagrange subdivision schemes
are:

• "4-point" subdivision scheme, order q = 4,

mask =

[

1

16
{−1, 9, 9, −1}

]

,

• "6-point" subdivision scheme, order q = 6,

mask =

[

1

256
{3, −25, 150, 150, −25, 3}

]

,



34 CHAPTER 5. MULTIRESOLUTION INTERFACE TRACKING

• "8-point" subdivision scheme, order q = 8,

mask =

[

1

2048
{−5, 49, −245, 1225, 1225, −245, 49, −5}

]

.

When the interface propagates, i.e. x = x(t, s), we construct the wavelet vectors
in the same way. Let sj,k = k2−j . Then, the curve x(t, s) can be described by

xj,k(t) = x(t, sj,k), 0 ≤ k ≤ 2j .

Note that still xj,2k(t) = xj−1,k(t). Let xj(t) = {xj,k(t)} and wj(t) = {wj,k(t)}.
The wavelet vectors are now defined by the relation

wj(t) = xj(t) − Sxj−1(t), (5.2)

where S is a subdivision operator. This is done recursively, as before, and gives a
multiresolution description of the interface in terms of x0(t) and wj(t), j = 1, . . . , J ,
if the finest mesh has 2J points.

Remark 2. Note that for a fixed t, (5.2) is equivalent to (5.1) if S is the 2-point
subdivision scheme. Indeed, the relation (5.2) written component-wise becomes

wj,2k+1 = xj,2k+1 − S({xj−1,l}
k+1
l=k ) = xj,2k+1 − (xj−1,k + xj−1,k+1)/2.

5.2 Governing Equations

Let us now describe the equations that are to be solved in the front propagation
problem, if the interface is represented by the described multiresolution approxi-
mation. Inserting (5.2) in (4.1), we get

dwj+1

dt
= F (t, xj+1(t)) − SF (t, xj(t)) = F (t, Sxj(t) + wj+1(t)) − SF (t, xj(t)).

Setting
G(t, x, w) = F (t, Sx + w) − SF (t, x),

we have the following system of ODEs

dwj+1(t)

dt
= G(t, xj(t), wj+1(t)),

dx0(t)

dt
= F (t, x0(t)), (5.3)

which together with (5.2) describes the dynamics of the system. For the midpoint
subdivision scheme, (5.3) can be written component-wise, with some abuse of no-
tation, as

dwj+1,2k+1(t)

dt
= G(t, xj,k(t), xj,k+1(t), wj+1,2k+1(t)), (5.4)

where

G(t, xL, xR, w) = F

(

t,
xL + xR

2
+ w

)

−
F (t, xL) + F (t, xR)

2
.
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5.3 The Basic Fast Numerical Method

Let us now introduce the Basic fast numerical method for interface propagation.
The method is based on a multiresolution representation of the interface described
above, and exploits the following property of wavelet vectors. If S is a linear,
stationary and interpolatory subdivision operator of order q and

x(t, s) ∈ Cq+ℓ([0, T ] × [0, 1];Rd),

then
∣

∣

∣

∣

dℓwj(t)

dtℓ

∣

∣

∣

∣

≤ Cℓ(T )2−jq. (5.5)

Hence, wavelet vectors and their derivatives decay as 2−qj , where q is the order of
the subdivision scheme used to compute predicted points, and j is the level [22, 65,
62]. This means that the finer scales evolve more slowly than the coarser scales,
and in a numerical ODE solver, longer time steps can be used to evolve the wavelet
vectors from higher levels. This is exactly the idea behind the method presented
in [65]. The method uses a time step doubling technique to solve equations (5.3).
This technique includes a time step that is uniform inside each level j, but differs
for different levels. More precisely, the smallest time step, called the reference time
step ∆t, is chosen at level zero and then doubled at every level, so that the time
step at level j is ∆tj = 2j∆t. In order to describe the method in more details, we
first introduce the following notation. The numerical approximation is denoted by

tn
j = n∆tj , xn

j,k ≈ xj,k(tn
j ), wn

j,k ≈ wj,k(tn
j ).

Furthermore, let S be a linear interpolatory subdivision of even order q, i.e.

(Sxj)2k+1 =

q
∑

i=1

aixk−q/2+i, (Sxj)2k = xj,k, (5.6)

where ai, i = 1, . . . , q are coefficients1. Since we are interested in computing the
solution up to time T , we also define the integer Mj such that T = Mj∆tj . Let Ij

be the index set 0, . . . , 2j and Īj the index set 1, . . . , 2j − 1. Then xj,k is defined for
all k ∈ Ij , and wj,k for all k ∈ Īj . These values are related via the reconstruction

xn
j+1,2k+1 = (Sx2n

j )2k+1 + wn
j+1,2k+1, 2k + 1 ∈ Īj , (5.7)

xn
j+1,2k = x2n

j,k, k ∈ Ij .

Note that the time levels of the points xj are 2n since the time step doubling
technique is used and the time step at the level j is twice the time step at the level
j + 1.

1See masks for subdivision schemes in the previous section.
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The forward Euler method is as follows. On the zeroth level, for tn+1
0 ≤ T and

k ∈ Ī1

xn+1
0,k = xn

0,k + ∆t0F (tn
0 , xn

0,k)

where n = 0, 1, . . . , M0 − 1 and tM0

0 = T .
At level j > 0, for tn+1

j ≤ T and 2k + 1 ∈ Īj

wn+1
j,2k+1 = wn

j,2k+1 + ∆tjG(tn
j , {x2n

j−1,l}
k+q/2
l=k−q/2+1, wn

j,2k+1) (5.8)

where n = 0, 1, . . . , Mj − 1 and t
Mj

j = T , c.f. (5.4). Note that q surrounding points

x2n
j−1,k−q/2+1, . . . , x2n

j−1,k+q/2 are needed to calculate (Sxj−1)2k+1 in (5.3). Instead
of the forward Euler scheme, one can use higher order Runge-Kutta schemes. Note
that the order of the subdivision scheme has to be higher than the order of the
ODE scheme for accuracy reasons, see below.

Let us now give the cost and the approximation error estimate for the methods
above. The cost at each level is simply the number of unknowns multiplied by the
number of time steps, where the number of unknowns is 2j and the number of time
steps is ⌊T/∆tj⌋. The total propagation cost is the sum of the costs on every level,
i.e.

J
∑

j=0

2j

⌊

T

∆tj

⌋

∼ T

J
∑

j=0

2j

2j∆t
∼ O

(

log N

∆t

)

. (5.9)

The cost of the method is then the sum of the total propagation cost and the cost
for reconstruction of the interface at the final time, which is O(N). This gives the
cost O(log N/∆t + N). Hence, this is significantly improved as compared to the
standard front tracking methods and the narrow band level set methods, where the
cost is O(N/∆t), assuming N marker points.

Let us now consider the approximation error. Here we will use the result (5.5)
from [62]. Let τn

j,k be the local truncation error in time step n for wavelet coefficient
k at level j, which we here simply assume is given by the p + 1 order derivative of
the exact solution for a p-th order method, with p = 1 for the forward Euler. Then,
if N = 2J and assuming stability, the global error εJ is formally estimated as

εJ ≤

J
∑

j=0

[T/∆tj ]
∑

n=0

max
k∈Īj

|τn
j,k| ≤

J
∑

j=0

[T/∆tj ]
∑

n=0

max
k∈Īj

∣

∣

∣

∣

∆tp+1
j

dp+1wj,k

dtp+1

∣

∣

∣

∣

(5.10)

(5.5)

≤ CT∆tp
J
∑

j=0

2(p−q)j .

The accuracy is then O(∆tp) when p < q. This is proved rigorously in [62]. More-
over, when p > q, we have

εJ ∼ ∆tp2(p−q)J = ∆tpNp−q.
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Assuming N ∼ ∆t−1, one then obtains

εJ ∼ ∆tq. (5.11)

Hence, from (5.10) and (5.11) it follows that the accuracy of the Basic method
is O(∆tmin(p,q)) assuming that the number of points on the interface N ∼ ∆t−1.
Hence, the error can be bounded independently of N . For instance, we can take
p = 1 for forward Euler with the midpoint subdivision scheme (q = 2).

In the case of the fourth-order Runge-Kutta method (p = 4), we should choose
at least the 6-point subdivision scheme (q = 6) in order to get an error of order
four, that can be bounded independently of the number of points N .

A drawback of this method is that it assumes that the wavelet coefficients change
approximately uniformly in time within a level, and thus uses the same time step for
all wavelet vectors within a level. This is, for instance, not suitable for problems
in which the interface has corners, since in that case the wavelet vectors decay
more slowly than 2−qj in a neighborhood of the corner. It is also not suitable if
the velocity field F varies strongly along the interface. Another problem, similar
to standard front tracking, occurs if the interface changes its length significantly,
which often happens in practice. Then it cannot be accurately resolved. Hence,
more refined methods have to be used for such problems.

5.4 Adaptive Multiresolution Front Tracking

In this thesis, we suggest numerical methods for interface tracking that remedy some
of the disadvantages of the basic multiresolution front tracking methods described
above. They keep the same description of the interface but are more robust than the
Basic method in the sense that they can handle the cases when wavelet vectors on
the same level change at very different rates, which happens for instance when the
interface has corners. We also introduce space adaptivity, to deal with expanding
interfaces.

Time Adaptivity

For problems in which the wavelet vectors do not change uniformly within a level,
we suggest a time adaptive method. We solve equations (5.3) using a time adaptive
forward Euler method or a time adaptive Runge-Kutta method. To compute the
predicted points, we use the two-point subdivision scheme in the first case, and the
six-point scheme in the latter case. The time step is automatically chosen based
on the size of the local truncation error. We thus use the same adaptive solver
on each level, and let it detect the appropriate time step in this way, and not
based on the asymptotic decay in (5.5). The method we propose, thus falls into
the general category of multirate or multiadaptive ODE methods. See, for instance
[51, 33, 18, 37]. Our method is tailored to the wavelet ODE system. It is a proof
of concept that shows the potential of using this kind of adaptive methods. More
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elaborate multirate and multiadaptive methods for this problem can doubtless be
developed.

When all wavelet vectors decay at the same speed, then the adaptive method
behaves essentially as the Basic time step doubling method. In problems where
wavelet vectors change at different rates within a level, when the front has corners,
for instance, then the time doubling technique would either give the wrong results
or become too expensive, since the time step has to be small near the corners,
and a very small reference time step has to be chosen. Our method remedies this
problem by adjusting the time step locally for each wavelet vector or edge point
according to the change of the velocity field. Hence, the method is suitable both
for problems where the interface has corners, and for problems where the velocity
field varies strongly along the interface. See Figures 5.3 - 5.4 for a comparison
between our method and the Basic method in a problem where the interface has
corners. The interface shown in Figure 5.3 (left) is propagated until time T = 1
using the Basic method and the time adaptive method introduced in this thesis.
The error and the computational cost of both methods are shown in Figure 5.4. It
can be observed that the computational cost of our method is much lower than the
computational cost of the Basic method. Moreover, the error of the Basic method
grows fast with the number of points N , while the error of our method remains
bounded independently of N .

A major additional difficulty in our method is that a recursive interpolation has
to be done due to the variable time step. Let us explain this on a simple example.
Assume the 2-point subdivision scheme. Assume also that we have computed all
wavelet vectors wj,k and the corresponding points xj,k. Let them be given at time
levels tj,k. Here, tj,k, wj,k and xj,k are vectors, eg. tj,k = {tn

j,k}n≥0 and tn
j,k for

a fixed n is called a time level. Note that wj,k and xj,k have the same time levels
tj,k, but time levels for different j or k differ. Assume that we want to compute
wj+1,2k+1(∆t) for a fixed k. Then we need to solve (5.3) in [0, ∆t]. No matter
which ODE solver we use, we need points xj,k(∆t) and xj,k+1(∆t). Since the
time step is chosen locally, it usually happens that approximations of xj,k(∆t) and
xj,k+1(∆t) are not available from previous computations, see Figure 5.2. Hence,
we have to interpolate. The problem is that we cannot interpolate xj,k(tj,k) and
xj,k+1(tj,k+1) directly, since that would decrease the accuracy of our method. Note
that the spacing of time levels is chosen based on the rate of change of the wavelet
vectors wj,k(t); the point values xj,k(t) change much faster. Thus, we interpolate
the corresponding wavelet vectors wj,k(tj,k) and wj,k+1(tj,k+1), and then compute
xj,k(∆t) and xj,k+1(∆t) by (5.2). For example, we compute xj,k(∆t) by

xj,k(∆t) = wj,k(∆t) +
(xj−1, k−1

2

(∆t) + xj−1, k−1

2
+1(∆t))

2
. (5.12)

However, since we cannot interpolate xj−1,k(tj−1,k) either, we have to repeat this
process recursively. We thus need to interpolate wj,k(tj,k) all the way to j = 1.
Then, x0,0 and x0,1 appear in (5.12) and these we can interpolate accurately, since
they are computed directly by the adaptive method. The interpolation may thus,
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at worse, involve J steps if J is the finest level. This is still just an O(log N) cost,
however, and does not significantly alter the previous complexity estimates. For
details, see the second paper in this thesis.

t
j,k+1

∆ t

t
j,k

Figure 5.2: Time levels tj,k and tj,k+1 at which xj,k (wj,k) and xj,k+1 (wj,k+1) are
given, respectively. If xj,k(∆t) or xj,k+1(∆t) are needed, we have to interpolate.
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Spatial Adaptivity

For problems in which the length of the interface changes with time, we suggest a
space and time adaptive method. The time adaptivity is done in the same way as
above. The goal of the space adaptivity is the same as in standard front tracking:
adding points adaptively to maintain a good resolution of the front. In the mul-
tiresolution setting, this is however more difficult. The space adaptive method that
we propose uses the length of the wavelet vectors as a sensor. More precisely, if the
size of a wavelet vector is larger than some given tolerance Tol, new points/wavelet
vectors are added. Unfortunately, this is not as straightforward as it sounds. Let us
explain the way space adaptivity is done by a simple example. Keep in mind that
we also have time adaptivity, and thus use recursive interpolation, described above.
Moreover, two different wavelet vectors are basically never given on the same time
levels. Assume the situation of Figure 5.5. Time levels are represented by dots,
and the specific time level at which the size of the wavelet vector becomes larger
than a given tolerance Tol is represented by a square and denoted by t∗

j,k. If the
sizes of all wavelet vectors wn

j,k are less than Tol, we define t∗
j,k := −1. Assume, as

before, the two point subdivision scheme and that we have computed all wavelet
vectors up to level j. Then, for every pair k and k + 1 at level j, we check if t∗

j,k or
t∗
j,k+1 is non-negative. If that is the case, we add a new wavelet vector wj+1,2k+1

at t = max(t∗
j,k, t∗

j,k+1) and compute it for t ∈ [max(t∗
j,k, t∗

j,k+1), T ], where T is the
final time.

As an illustration, in Figure 5.6 we show interfaces at the final time T = 4
obtained by the standard space-time adaptive method, and our space-time adaptive
multiresolution based method when the velocity field is given by (4.3).

In the standard space-time adaptive method, points are propagating instead of
wavelet vectors as in our method. Solutions obtained by both methods are good,
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Figure 5.5: Time levels tj,k. Dots represent the time levels and squares represent a
time level at which the size of the wavelet vector wj,k becomes larger than a given
tolerance.

but the computational cost of our method is more than ten times lower than the
cost of the standard method. More precisely, the total number of time steps in the
standard method is 797775, while the total number of time steps in our method
is 77289. However, both methods give better results than the standard method
without adaptivity, c.f. Figure 4.1.

At least for smooth problems, these methods have O(Tol log N) error, where
Tol is some given tolerance and N is the number of points on the interface. The
error can be reduced to O(Tol) if the tolerance is halved with every level, i.e. if
the tolerance at level j is Tol/2j . The complexity is as low as the complexity of

the method described in [65], i.e. it is O(log N/Tol1/p + N). The O(log N/Tol1/p)
is the cost to propagate the interface with an adaptive ODE method of order p.
The O(N) part of the complexity is the cost to reconstruct the interface from the
wavelet vectors.
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Chapter 6

Time Upscaling of

Hamilton-Jacobi Equations

6.1 Hamilton-Jacobi Equations

Hamilton-Jacobi (HJ) equations arise in many applications such as geometrical
optics, mechanics, seismology and image processing. Hence, the development of
efficient numerical methods for HJ equations is very important. In this thesis, we
consider the HJ initial value problem of the form

φt + H(x, ∇φ) = 0, x ∈ R
n, t ∈ (0, T ] (6.1)

φ(0, x) = φ0(x), (6.2)

where φ0 is a known function. The function H(x, ∇φ) is called the Hamiltonian
function. We assume that it is convex in its second argument. Solutions of these
equations are usually not unique, and do not satisfy the equations in the classi-
cal sense. The class of unique solutions of the Hamilton-Jacobi equations, called
viscosity solutions, was established by Crandall and Lions [19].

The problem (6.1) can be reformulated as a front tracking problem by intro-
ducing the bicharacteristics x(t, s) and p(t, s) for the Hamiltonian H(x, p), which
results in the system of ODEs

∂x

∂t
= Hp(x, p), (6.3)

∂p

∂t
= −Hx(x, p).

with initial conditions

x(0, s) = s, p(0, s) = ∇φ0(s).

Moreover, we define the phase space solution ϕ(t, s) by

∂ϕ

∂t
= Hp(x, p)T p − H(x, p), ϕ(0, s) = φ0(s). (6.4)
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Then, φ(t, x(t, s)) = ϕ(t, s) as long as the solution φ(t, x) to (6.1) is smooth. For
non-smooth solutions φ(t, s) the equivalence between that solution and the phase
space solution is not valid, since the solution becomes multivalued; in general there
are several values sj such that x(t, s1) = x(t, s2). For convex Hamiltonians, the
correct value of φ is then obtained by taking the minimum value of the multivalued
phase solution ϕ [11], i.e.

φ(t, x) = min
x(t,s)=x

ϕ(t, s). (6.5)

6.2 Numerical methods

Numerical methods for these problems have already been introduced in the previous
chapters. For (6.1) they include schemes of ENO and WENO type [53, 54, 42,
81, 50]. For problems in which (6.1) is solved by the method of characteristics,
numerical methods include ray tracing methods [15, 43, 47, 72] and wave front
methods [77]. The method that we propose in this thesis is based on the fact
that the method of characteristics for HJ equations can be reformulated as the
front tracking problem. In fact, we can consider (x(t, s), p(t, s), ϕ(t, s)) as a front
parametrized by s ∈ R

n propagating in R
2n+1. That problem is then solved by fast

interface tracking methods proposed in [58, 59, 65]. This provides the multivalued
solution x(t, s), φ(t, s) in a fast way. The viscosity solution is then calculated in a
post-processing step by taking the minimum value of the multivalued solution, as
in (6.5). Hence, our method has the following steps:

1. First, reformulate (6.1) as a front tracking problem and compute the multi-
valued solution using fast interface tracking.

2. Second, reconstruct the viscosity solution from the multivalued solution with
an algorithm that has cost O(∆x−d) in d dimensions, where ∆x ∼ 1/N and
N is the number of discretization points in every spatial direction.

If we use the time step doubling technique proposed in [62] for the fast interface
tracking, the computational cost of the first step in the algorithm is O((∆t)−d))
or O((∆t)−d| log ∆t|) in d dimensions, where ∆t is the reference time step (see
Section 5.3 in the previous chapter). Thus, the total computational cost of the
algorithm is O(∆t−d) or O(∆t−d| log(∆t)|) if ∆t ∼ ∆x, where ∆t and ∆x are as
above. That is a significant improvement compared to the O(∆t−(d+1)) cost of
standard finite-difference methods. One way to see this is that standard explicit
methods are constrained by the CFL condition, so that ∆t ∼ ∆x. We want to point
out here that it is in general possible to bypass the CFL condition, and thus decrease
the computational cost significantly compared to standard numerical methods that
are inhibited by that requirement. Numerical methods that have the possibility to
go around the CFL condition without reducing accuracy are called time upscaling
methods. They will be described in the following section.
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6.3 Time Upscaling Methods

Time upscaling methods have been proposed to reduce the computational complex-
ity of direct simulation of time dependent PDEs. The aim is to reduce the extra
cost incurred by the time–stepping.

Let us consider a d–dimensional problem, and assume N discretization points in
every spatial direction and M discretization points in time. For explicit methods,
due to the stability (CFL) and accuracy requirements, it is necessary to have M ∼
Nr where r = 1 for hyperbolic problems and r = 2 for parabolic problems. Then,
the computational cost for a time interval of O(1) is O(Nd+r). With time upscaling,
the computational cost can be reduced to O(Nd log N) or even to O(Nd) while
maintaining the same accuracy.

For the advection and parabolic equations with spatially varying coefficients,
time upscaling methods are proposed in [26]. The authors suggest using the fast
wavelet transform together with truncation. Consider the following evolution equa-
tion

∂tu + L(x, ∂x)u = 0, x ∈ Ω ⊂ R
d, t > 0,

u(x, 0) = u0(x),

where L is a differential operator. After discretization, and collecting the unknowns

in a vector u ∈ R
Nd

, the equation becomes

un+1 = Aun, (6.6)

u0 = u0,

where A is a Nd×Nd matrix approximating the operator ∂t+L. The computational
complexity of computing un is of order O(Nd+r). Clearly, (6.6) is equivalent to

un = Anu0. (6.7)

Then, repeated squaring of A can be used to compute the solution of (6.7) in log2 M
steps for M = 2m, where m is an integer, i.e. one can compute A, A2, A4, . . . , A2m

in m = log2M steps. Since the matrix A is sparse, the cost of squaring is O(Nd).
However, the later squarings involve almost dense matrices, and the computational
cost is then O(N3d). The total cost becomes O(N3d log M), which is more expensive
than to solve (6.6) directly. Instead, Engquist, Osher and Zhong in [26] suggest a
wavelet representation of A which can decrease the computational complexity of the
repeated squaring algorithm. More precisely, the solution of (6.7) can be computed
in m = log2 M steps in the following way

B := SAS−1,

B := TRUNC(B2, ǫ) (iterate m steps) (6.8)

un := S−1BSu0.
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The matrix S corresponds to a fast wavelet transform, and the truncation operator
TRUNC sets all elements of A that are less than ǫ to 0. It is obvious that the
algorithm (6.8) is equivalent to (6.7) for ǫ = 0, and it was shown in [26] that there
exists a small enough ǫ such that the result of the algorithm (6.8) is close to (6.7).
Through truncation, the algebraic problem with dense matrices is transformed to
a problem with sparse matrices. The authors also showed that the cost to compute
the 1D hyperbolic equation can be reduced from O(N2) to O(N (log N)3) for a fixed
accuracy. Furthermore, for d–dimensional parabolic problems the computational
complexity can be reduced from O(Nd+2) to O(Nd(log N)3).

A similar technique is proposed in [23] by Demanet and Ying. They consider
the 2D wave equation

utt − c2(x)∆u = 0, x ∈ [0, 1]2

u(x, 0) = u0, ut(x, 0) = u1,

with periodic boundary conditions. They assume c(x) ∈ C∞ to be positive and
bounded away from zero and propose to transform the wave equation into a first
order system of equations,

vt = Av, v(t = 0) = v0,

where v = (ut, ux) and A is a 2-by-2 matrix of operators. The system is then solved
up to time t = T using wave atoms, which provide a sparse representation of the
matrix, combined with repeated squaring and truncation, as above. They proved
rigorously that the computational cost of upscaled timestepping on a N by N grid
is between O(N2.25 log N) and O(N3 log N), depending on the initial data and the
structure of c(x), which is lower than O(N3 log N) computational cost of pseudo-
spectral methods. The key of the proof is to show that the solution operator eAt

remains almost sparse for all t in the wave atom basis.
Another fast time upscaling method for the one-dimensional wave equation is

proposed by Stolk [68]. The idea here is first to rewrite the wave equation as a
system of one–way wave equations, then transform them into wavelet bases and
solve these using multiscale stepping, which means that the fine spatial scales are
solved with longer time steps, and the coarse spatial scales are solved with the
shorter time steps. The computational cost is only O(N) for fixed accuracy.

Fast interface tracking methods that we propose in this thesis are similar in style
to the method proposed by Stolk [68]. Hence, our methods can be considered as time
upscaling for interface tracking. Moreover, the method proposed in this chapter for
HJ equations can be regarded as a time upscaling method for HJ equations.

Remark 3. There is an interesting connection between time upscaling methods
and methods with weakly frequency dependent cost introduced in Chapter 3. When
the one-dimensional wave equation is solved with the time upscaling methods with
repeated squaring, the solution is given on a grid that is coarse in time and dense
in spatial direction, see Figure 6.1. One can also solve the wave equation by solving
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Helmholtz equations for each frequency component. This is like taking a Fourier
transform in time. A spatial discretization with N points then corresponds to N
Helmholtz equations for N frequency components. If the Helmholtz equation is
solved with a frequency independent method, then the total cost is O(N), but the
solution is obtained only in O(1) spatial points. After an inverse FFT for each
point at a cost of O(N log N), the solution of the wave equation is obtained on a
dense grid in time but coarse in space at a total cost O(N log N). Hence, by using
methods with frequency-independent cost, one can obtain the solution on a coarse
grid in space, but fine in time, with the same cost as in time upscaling, see Figure
6.1.

a b a
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T
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t

a b a

0

x

t

Figure 6.1: In time upscaling methods, the solution is given on a coarse grid in
time but dense in space (left). Using frequency-independent numerical methods,
the solution could be obtained on a grid that is coarse in space, but dense in time
(right).

6.4 Post-Processing in Time Upscaling of HJ Equations

Let us now describe the post-processing step of our fast method for HJ equations.
For simplicity, we consider the one-dimensional case. Assume thus that we have
a multivalued solution x(T, s), ϕ(T, s) at a fixed time T . We want to compute
the viscosity solution φ(T, ξ). Before we describe the method, let us introduce the
notation. The numerical approximation is denoted by

sj = j∆s, xj(t) ≈ x(t, sj), ϕj(t) ≈ ϕ(t, sj)

and
ξi = i∆ξ, φi(t) = φ(t, ξi).
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Then, our method of computing the single-valued solution φ(T, x) from the multi-
valued solution ϕ(T, s) is as follows. Assume that we have xj and ϕj for sj = j∆s,
j = 0, . . . J , and that we want to get the solution φi on a regular grid ξi = i∆ξ,
i = 0, . . . I. To do this we can loop through the sj indices and record the value of ϕj

for φi, where ξi is the point closest to xj , but only if the value of ϕj is smaller than
the value already assigned to φi. Note that since ξi = i∆ξ is a regular grid, finding
the point ξi closest to xj can be done quickly by i := round(x(t, sj)/∆ξ), ξi = i∆ξ.
Hence, the cost for this step is O((∆x)−1). The post-processing algorithm for 1D
is described by Algorithm 1.

Algorithm 1 Post Processing Algorithm for Examples in 1D

Choose I and calculate ∆ξ = xJ −x0

I
Define ξi = x0 + i∆ξ, i = 0, . . . , I
Define φi, i = 0, . . . , I so that φi > maxj(ϕj), ∀i
for j = 1 to J do

i = round(xj/∆ξ)
if ϕj < φi then

φi = ϕj

end if

end for

return {φi}

The solution obtained by Algorithm 1 is first order accurate. The order of
approximation can be improved by first interpolating the multivalued solution at
the desired points, and then taking the minimum. Details of that algorithm are
given in the last paper of this thesis. Description of the algorithm in two dimension
is also given in the last paper of the thesis.

Let us now show one numerical example. Let the Hamiltonian H(x, ∇φ) and
the initial function φ0(x) be given by

H(x, φx) =
φ2

x

2
, φ0(x) = − cos(3πx), (6.9)

for x ∈ [−1, 1]. The solutions of (6.1) at T = 0.1, obtained by the Lax-Friedrichs
method and our method are shown in Figure 6.2 (top). The multivalued solution
(x(T, s), ϕ(T, s)) at T = 0.1 and the reconstructed viscosity solution φ(ξ) are plotted
in Figure 6.2 (bottom). It can be observed that the viscosity solution obtained by
our method and the viscosity solution obtained by the Lax-Friedrichs scheme agree,
i.e. the viscosity solution is well approximated by our method.

Remark 4. A straightforward way to obtain the approximation of the viscosity
solution φ(T, ξi) would be to loop through ξi, find intervals [xj , xj+1] such that
ξi ∈ [xj , xj+1], interpolate ϕ(T, xj) at points ξi and assign the minimum of the
interpolated values for fixed i to φ(T, ξi). The cost of such a method would, however,
be of order O(∆x−2), which would increase the total cost of our method.
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Figure 6.2: Top: The viscosity solution φ(x) at T = 0.1 obtained by the Lax-
Friedrichs method (blue) and the viscosity solution φ(ξ) obtained by our method
(red). Bottom: The multivalued solution (x(T, s), ϕ(T, s)) (blue) and the recon-
structed viscosity solution φ(ξ) (red). The solution of our method agrees with the
solution obtained by the Lax-Friedrichs method. The Hamiltonian H(x, φx) and
φ0(x) are given by (6.9).





Chapter 7

Summary of Papers

7.1 Paper I: Analysis of a Fast Method for Solving the

High Frequency Helmholtz Equation in One Dimension

In this paper we consider the one dimensional high frequency Helmholtz equation
with a variable wave speed function. We propose and analyze a fast numerical
method for this problem. The method is based on wave splitting. More precisely,
the Helmholtz equation is split into two one-way wave equations with source func-
tions that are then solved iteratively for a given tolerance. We show rigorously in
one dimension that the algorithm is convergent and that for fixed accuracy, the
computational cost depends weakly on the frequency.

This paper is published in BIT Numerical Mathematics.

7.2 Adaptive Fast Interface Tracking Methods, Part I:

Time Adaptivity

In this paper, we derive a time adaptive method for interface tracking that is based
on a multiresolution description of the interface. The method is an extension of
the method presented in [65], where the time step doubling technique is used for
time evolution of the interface. The method that we suggest in this paper can be
used for larger class of problems than the method proposed in [65] and is thus more
robust. Time adaptivity allows for individual choice of time steps for each point
on the interface, so that larger time steps can be used without loss of accuracy.
Moreover, the computational cost is low. A disadvantage of the method is that it
cannot handle problems where the length of the interface changes rapidly in time.
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7.3 Adaptive Fast Interface Tracking Methods, Part II:

Spatial Adaptivity

In this paper, we propose a space-time adaptive method for interface tracking that is
based on a multiresolution description of the interface. The method is an extension
of the time adaptive interface tracking method introduced in the previous paper so
that it can also handle problems with expanding interfaces. The method has low
computational cost and is suitable for a large class of problems.

7.4 Time Upscaling for Hamilton-Jacobi Equations

In this paper, we propose fast and accurate numerical methods for time dependent
Hamilton-Jacobi equations with convex Hamiltonians. The method uses the fact
that the problem can be solved by the method of characteristics, which can be
reformulated as a front tracking problem. We first solve the front tracking problem
using the fast methods for interface tracking proposed in [65] and in the second and
the third papers of this thesis. In that way a multivalued solution is obtained. Next,
we reconstruct the viscosity solution from the multi-valued solution in a fast way.
The computational cost is O(∆t−d| log ∆t|) or O(∆t−d) in d dimensions, where ∆t
is the time step. This is a significant improvement compared to the O(∆t−(d+1))
computational cost of standard numerical methods for such problems.
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