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ABSTRACT

Reducing acquisition time is a major challenge for single-

photon based imaging. This paper presents a new approach

for adaptive scene sampling allowing for faster acquisition

when compared to classical uniform sampling or random

sampling strategies. The approach is applied to the laser

detection and ranging (Lidar) three-dimensional (3D) imag-

ing where sampling is optimized regarding the depth image.

Based on data statistics, the approach starts by achieving

a robust estimation of the depth image. The latter is used

to generate a map of regions of interest that informs next

samples positions and their acquisition times. The process is

repeated until a stopping criterion is met. A particular interest

is given to fast processing to allow real-world application of

the proposed approach. Results on real data show the benefits

of this strategy that can reduce acquisition times by a factor

of 8 compared to uniform sampling in some scenarios.

Index Terms— Adaptive sampling, 3D imaging, Single-

photon Lidar, Poisson statistics, robust estimation.

1. INTRODUCTION

3D Lidar Imaging using time-correlated single-photon detec-

tors has generated significant interest in the scientific com-

munity in recent years. This is a direct consequence of its

ability to provide high-resolution depth and reflectivity pro-

files of the observed targets. The imaging system emits pi-

cosecond duration laser pulses and records the arrival times

of the reflected photons using a time-correlated single-photon

counting (TCSPC) module. This operation is repeated for dif-

ferent beam locations to build a cube of data containing the

3D information about the target. As a result to this repetitive

process, the imaging acquisition time is often high due to the

large number of scanned pixels and the necessary dwell time

per-pixel to collect enough photons.

Several strategies have been proposed in the literature to

deal with this challenge either by optimizing data acquisi-
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tion [1–3] or by proposing sophisticated post-processing al-

gorithms to restore the collected data in the photon sparse

regime [4–8]. The former strategy is considered in this pa-

per. This includes compressive sensing methods that sam-

ple random locations and restore data using a reconstruction

algorithm [2, 9], or scene-dependent sampling methods that

carefully select informative locations to scan [1, 10]. In this

case, the notion of informative data will mainly depend on

the task to achieve and the sampling of the same scene may

differ if the final task is, for example, about target detection,

reconstruction, classification, etc.

This paper proposes a new scene-dependent sampling

strategy that is optimized for target depth reconstruction but

can be easily generalized to other tasks. The online approach

operates in an adaptive manner by selecting the most infor-

mative locations to scan at each iteration, and optimizing

their acquisition/dwell time. It is based on three steps, (i)

robust estimation of the depth map using data statistics, (ii)

generation of a map of regions of interest (ROI), and (iii)

sampling the new scan positions and their acquisition times.

A particular interest is given to fast processing to allow real-

world application of the proposed approach. The proposed

algorithm is validated on real data by studying different

scenarios. A comparison with uniform sampling (US) and

random sampling (RS) strategies shows a clear improvement

in performance.

The paper is structured as follows. The considered prob-

lem is introduced in Section 2 including details about the Li-

dar observation model and parameters estimation. Section 3

presents the proposed adaptive sampling strategy. Results on

real data are presented in Section 4. Conclusions and future

work are finally discussed in Section 5.

2. PROBLEM FORMULATION

Imaging or sensing collects information to help improve our

understanding of a phenomenon and perform a given task.

In Lidar, we aim at acquiring information about the object

depth, reflectivity to perform image reconstruction or other

high level tasks such as object detection and/or recognition.

This paper proposes a new strategy for scene adaptive sam-

pling of Lidar data to improve depth estimation while reduc-



ing the acquisition time. The next subsections introduce the

data observation model and parameters estimation which are

necessary ingredients for our sampling approach.

2.1. Observation model

The TCSPC system provides time-tagged photons that can be

gathered into a histogram yn,t, denoting the number of de-

tected photons at pixel location n ∈ {1, · · · , N}, and time-

of-flight bin t ∈ {1, · · · , T}. Each photon counts can be

assumed to be drawn from the Poisson distribution P (.) as

follows [4, 11]:

yn,t ∼ P (sn,t) , with sn,t = rnf (t− dn) + bn (1)

where dn ≥ 0 denotes the distance of the object from the

sensor (related to its depth), rn ≥ 0 is the reflectivity of the

object surface, bn ≥ 0 is the background and dark counts of

the detector, and f represents the system impulse response

assumed to be known from a calibration step. Note that (1)

assumes the presence of one peak in each pixel location.

The joint likelihood can be expressed, after assuming in-

dependence between the observed pixels, as follows:

P (Y |d, r, b) =
∏

n

T∏

t=1

s
yn,t

n,t

yn,t!
e−sn,t (2)

where d, r, b are N × 1 vectors gathering the elements dn,

rn, bn, ∀n (in lexicographic order), with N the number of

pixels, and T is the total number of bins. Note finally that

time-tagged data can be also used to simulate a reduction in

acquisition time which will be useful during our simulations.

2.2. Depth and reflectivity estimation

The maximum likelihood estimates of the depth and reflec-

tivity of the target (d, r) can be obtained by minimizing the

negative log-likelihood given by (after removing unnecessary

constants)

L = − log [P (Y |d, r, b)]

=
∑

n

T∑

t=1

[sn,t − yn,t log (sn,t)] + cst (3)

To obtain fast estimates, it is common to assume the ab-

sence of the background level, i.e., bn = 0 (see [11, 12])

and that the observation window is larger than the target’s

depth and the width of the impulse response, in which case

c1 =
∑T

t=1 f (t− dn) is a constant for all realistic depths dn.

Under these assumptions, the depth of each pixel can be esti-

mated using a log-matched filter of the measured histograms,

and the reflectivity is given by rML
n = 1

c1

(∑T

t=1 yn,t

)
.

3. DEPTH BASED ADAPTIVE SAMPLING

The proposed strategy is summarized in Alg. 1. Given a high-

resolution (HR) grid of N pixel positions, the algorithm per-

forms a first scan of a reduced number of pixels Ns (whose

indices are denoted by νNs
) with a low acquisition time-per-

pixel tacq
n = t0 for n ∈ νNs

, which will provide a first es-

timate of the scene. The measured time-tagged photons are

then loaded to the processing unit to build fast and robust es-

timates of the depth and reflectivity images. These are then

used to build a map of regions of interest that controls the po-

sition and acquisition times of the new sampled points. The

process is iteratively repeated until convergence. The next

subsections describe in more details each of these steps.

Algorithm 1 Scene based adaptive sampling

1: Initialization

2: Initialize: Ns, N , K, c, t0, conv=0

3: while conv= 0 do

4: Scan Ns points with acquisition times tacq
νNs

5: Update t0 depending on pixels with detected photons

6: Robust estimation of depth and reflectivity

7: Computation of a probability map of ROI

8: Generation of new positions (using a MH algorithm)

and new acquisition times tacq
νNs

9: conv= 1, if the stopping criteria is satisfied.

10: end while

3.1. Fast and robust parameter estimation

Our strategy requires a fast update of the scanning points,

thus, fast parameter estimation. Although the approach

in Section 2.2 is relatively fast, it relies on building his-

tograms and solving a maximization problem which spends

a large computational cost preventing real time processing.

Therefore, our strategy further assumes a Gaussian approx-

imation for the instrument impulse response f (t− tn) =

c1 exp
−

(t−tn)2

2σ2 as in [12, 13] which leads to the following

analytical maximum likelihood estimates for the reflectivity

rML
n = 1

c1

(∑T

t=1 yn,t

)
and the depth tML

n =
(
∑

T
t=1 tyn,t)
c1rML

n
as

reported in [12]. Note that these estimates can be computed

using time-tagged photons and simple operations which al-

low fast processing. Obviously, these estimates are of poor

quality especially in the interesting limit of: (i) very low pho-

ton counts (i.e., fast or long-range imaging [14]) or (ii) when

few pixels are scanned. However, with some modifications,

the estimates will provide enough information allowing the

generation of the sampling ROI map. To deal with these limi-

tations, we rely on spatial correlation between pixels [4–7] to

improve the estimates and retrieve missing information. More

precisely, each pixel is associated with a graph of neighbours,

i.e., a window of 3K×3K pixels from the HR grid. The empty

pixels (i.e., non-scanned pixels or pixels with no-detection)

are then filled using the counts from the closest observed

neighbours. A high sampling probability is assigned to pixels

when all neighbours are empty. Using the reconstructed data,

a full depth and reflectivity maps can be generated. Note

that the neighbours grid can be pre-computed to allow fast



processing. Note also that we considered a uniform HR grid

in this paper, however, the algorithm can also be used with

a non-uniform grid without changes. Note finally that other

robust estimation strategies can also be considered provided

that the estimation is fast and robust [15].

3.2. Regions of interest

This section generates a probability map m ∈ [0, 1]N×1 con-

taining informative regions in the HR grid. Obviously, this

map is related to the targeted task, for example, for a classi-

fication (respectively tracking) task it delivers high probabil-

ities around class boundaries (resp. the object of interest). In

this paper, we are interested in improving depth estimates and

we build the map for this specific task. Several features can

be defined to capture the important information from the pre-

viously estimated depth image [10]. The latter can include the

spatial gradients of the depth to catch surface variations, lo-

cal variances to catch the object structure, etc. We considered

horizontal and vertical gradients in our implementation which

showed satisfactory performance for the considered simula-

tions (see Section 4). The resulting map will be normalized

by the sum of its values to represent a probability density

function on the HR grid. Note that empty pixels/regions will

receive the highest probability value to ensure they will be

sampled at the next step, while pixels that reached maximum

acquisition times will be assigned a zero probability to avoid

sampling their locations.

3.3. Generation of new locations and acquisition times

Given the probability map m, one can sample the Ns new lo-

cations by selecting those with highest probabilities (or those

providing maximum error reduction as in [10]). We found

that this strategy tends to concentrate the samples in small re-

gions while reducing the exploration of the full scene which

might prevent the detection of small objects or dynamic ef-

fects. Therefore, we propose to randomly sample the new lo-

cations using the probability map m. This is achieved using a

Metropolis-Hastings algorithm [16] with a uniform proposal

distribution on the HR grid. Other sophisticated strategies can

instead be used to improve sampling in presence of a small or

multiple regions of interest such as Hamiltonian Monte Carlo

[17]. Each generated location will then be assigned an ac-

quisition time proportional to it’s probability value. For this,

we sorted the Ns probability values into c decreasing levels

and assigned decreasing acquisition time ranging from ct0 to

t0, where t0 is a user defined acquisition time step. The lat-

ter is updated during iterations to ensure that the proportion

of scanned points with detections is between [0.7, 0.9]. This

will avoid working with small time steps (low detections) or

very high steps (high detections).

3.4. Stopping criteria

Several stopping criteria are considered for the iterative algo-

rithm 1. The first criterion compares the two last parameter

Fig. 1. (Top) The considered mannequin face scene, (middle-

left) Reference depth image (3 ms acquisition time per-pixel),

(middle-right) Reference of a simulated depth image of a

small target, (bottom-left) Number of scanned samples us-

ing the proposed algorithm for a large target, (bottom-right)

Number of scanned samples using the proposed algorithm for

a small target.

estimates (depth and reflectivity) and stops the algorithm if

the average relative difference is smaller than a given thresh-

old ξ, i.e., |x(t+1) − x(t)| ≤ ξ|x(t)|, where |.| denotes the

absolute value and x denotes d or r. A maximum acquisition

time-per-pixel can also be provided to stop the algorithm once

reached for all pixels. The algorithm can also be stopped by

specifying a maximum number of scanned points or equiva-

lently a maximum number of iterations.

4. RESULTS ON REAL DATA

The performance of the proposed algorithm is evaluated on

a real single-photon data of a life-sized mannequin head ac-

quired at a distance of 40m in November 2014 on the Edin-

burgh Campus of Heriot-Watt University. The data contains

N = 142 × 142 pixels representing the HR grid, and we

consider a maximum acquisition time of 3ms using a time-

of-flight scanning sensor, based on TCSPC (see Fig. 1 (top)).

The transceiver system and data acquisition hardware used

for this work are described in [11, 18]. As previously de-

scribed, the TCSPC delivers time-tagged photons where each

detected photon is associated with its arrival time. Thus, one

can select the detected photons associated with a given ac-

quisition times, which allows the simulation of the proposed



Fig. 2. Depth RMSEs of the full FOV target for different sam-

pling strategies w.r.t. (top) dwell time, (bottom) total time.

adaptive sampling (AS) strategy. The proposed approach is

compared with the uniform sampling (US) strategy, and the

random sampling (RS) strategy that only scan a ratio of the

N pixels. Empty pixels of all methods are restored using the

strategy described in Section 3.1. To evaluate the performance

of the different sampling strategies, depth maps are estimated

using the maximum likelihood estimator of Section 2.2 and

the results are quantitatively evaluated using the mean square

error defined by RMSE =
√

1
N
||dref − d̂||2, where dref is ob-

tained from the US data at 3ms (see Fig. 1 (middle-left)). The

proposed AS method considers Ns = 322 pixels, t0 = 75µs,

c = 3, K = 2, 100 maximum iterations, and RS is studied

for 30% and 60% of pixels. Fig. 2 (top) shows the RMSE

curves of the different sampling strategies w.r.t. the acquisi-

tion or dwell time (top figure), while Fig. 2 (bottom) shows

the RMSE w.r.t. the total time that includes acquisition/dwell

time, the time to move the scanning mirrors and the compu-

tational cost of Alg. 1 (bottom figure). This figure highlights

the interest of the proposed strategy that presents an improve-

ment in acquisition time by a factor of ≈ 5 compared with

US and > 5 w.r.t. RS for large acquisition times. The im-

provement factor is obviously reduced when considering the

total time due to the processing time of Alg. 1, but the results

are still better than US and RS. In Fig. 1 (middle-left) the

target mannequin face is ideally positioned while occupying

most of the field-of-view. This is an ideal scenario that is not

generally obtained in real-world scenarios where the target of

interest might only occupy a small proportion of the field-of-

view. To simulate such scenario, we down-sampled the man-

nequin face and create a simulated scene containing a large

Fig. 3. Depth RMSEs of the small target for different sam-

pling strategies w.r.t. (top) dwell time, (bottom) total time.

backboard with a small target as shown in Fig. 1 (middle-

right), where the target occupies 64 × 64 pixels of the HR

grid. Fig. 3 shows the clear benefit of the AS strategy in this

scenario reaching an improvement factor of 8 w.r.t. US. Note

that the scanned samples are concentrated on the mannequin

face features (i.e., face edges, ears) to improve its depth esti-

mate, as shown in Fig. 1 (bottom row). Note finally that one

iteration of AS costs 50ms in average (with a Matlab imple-

mentation) and that we approximate the time of one mirror

move by 150µs in Figs. 2 and 3.

5. CONCLUSIONS

This paper has presented a new depth adaptive sampling strat-

egy for single-photon 3D Lidar data. The approach is based

on a fast estimation of the depth map and the use of its fea-

tures to build a probability map of the regions of interest. A

Metropolis-Hastings algorithm is used to generate the new

scan positions and the probabilities are used to control their

acquisition times. The algorithm was validated on real Li-

dar data showing a clear improvement in performance when

compared to other sampling strategies. Despite good per-

formance, several points can still be improved including the

generalization to other tasks such as object tracking or clas-

sification, and the use of other features to generate robust

probability maps. Considering sophisticated sampling strate-

gies such as Metropolis-adjusted Langevin algorithm, Hamil-

tonian Monte Carlo or algorithm [19] is important and will

help with scenes showing small or multiple targets. Finally,

developing faster implementations to further reduce the com-

putational time of the approach is important in order to facil-

itate real time processing.
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