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Abstract In the paper, a family of switching filters

designed for the impulsive noise removal in color images is

analyzed. The framework of the proposed denoising tech-

niques is based on the concept of cumulated distances

between the processed pixel and its neighbors. To increase

the filtering efficiency, a robust scheme, in which the sum

of distances to only the most similar pixels of the neigh-

borhood serves as a measure of impulsiveness, was elab-

orated. As this trimmed measure is dependent on the image

local structure, an adaptive mechanism was also incorpo-

rated. Additionally, a very fast design, which enables

image denoising in practical applications, is proposed and

the choice of the filter output, which is used to replace the

noisy pixels, is discussed. The described family of filters

was evaluated on a large set of natural test images and

compared with the state-of-the-art restoration methods. The

analysis of the achieved results shows that the novel filters

outperform the existing techniques in terms of both

denoising accuracy and computational complexity. In this

way, the proposed techniques can be recommended for the

application in various image and video enhancement tasks.

Keywords Impulsive noise reduction � Color image

enhancement and restoration � Image quality � Adaptive
algorithm � Switching filter

1 Introduction

Noise reduction belongs to the most important image

processing operations. The image restoration and

enhancement methods are mainly relevant due to the

miniaturization of high-resolution, low-cost image sensors,

which frequently operate in poor lighting conditions.

Quite often, color images are corrupted by various types

of noise, introduced by imperfections in sensors which

influence the image formation process, signal instabilities,

aging of the storage material, flawed memory locations,

transmission errors in noisy channels and electromagnetic

interferences. The quality of color images is severely

decreased by impulsive noise distortions, and their removal

is one of the most frequently performed low-level pro-

cessing tasks [1–5].

The reduction in the disturbances introduced by the

impulsive noise is crucial for the image preprocessing, as

the corruption may have a significant negative impact on

the success of the whole processing pipeline. Therefore,

plentiful filtering techniques for impulsive noise suppres-

sion were developed during the many years of intensive

research.

Numerous filters, which were designed to deal with

impulsive noise in color images, are based on order

statistics [6–11]. The majority of these algorithms relies on

the ordering of a set of color pixels, treated as vectors,
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belonging to the processed pixel’s neighborhood, repre-

sented by sliding operational window W. For each pixel

from W, the sum of distances to other samples belonging to

the same window is assigned and then the cumulated dis-

tances are sorted. As a result, an ordered sequence of color

pixels is obtained, which is the basis for various filtering

methods.

One of the most popular methods based on reduced

ordering, used in many filtering designs, is the Vector

Median Filter (VMF) [6, 12]. The VMF output is the pixel

from W for which the sum of cumulated distances to other

samples is minimized. It is always one of the pixels of the

filtering window, which is profitable as the filter does not

introduce any new colors to the processed image. However,

when all pixels of W are affected, for example by addi-

tional Gaussian noise, the output is also noisy. Numerous

solutions devoted to the elimination of this undesired

behavior were introduced, resulting in significantly better

filtering performance [12–15]. To increase the VMF effi-

ciency, weights are assigned to the distances between

pixels, which privilege the central pixel of the filtering

window, thus diminishing the number of unnecessarily

altered pixels [16, 17].

The efficiency of the techniques utilizing various vector

ordering schemes is limited due to a common feature—

every pixel of the image is processed, regardless whether it

is contaminated or not. This results in the inevitable dis-

tortion of uncorrupted pixels and degradation of image

quality. Therefore, a natural improvement has been made

introducing more efficient switching filters [18–23], which

aim at the restoration of only the polluted pixels, leaving

the uncorrupted ones unaltered. In the majority of the

switching techniques, there is a need to determine the

dissimilarity between the color pixels. The most intuitive

and popular approach is to compute the Euclidean distance

in the RGB color space; however, there are many other

measures of vector dissimilarity applied in various filtering

frameworks [24–26].

Further improvement resulting in better robustness to

the occurrence of outliers was achieved by calculation of

only a few smallest distances between a pixel and other

samples belonging to the same processing window [27–

29]. Such modification, in which the trimmed cumulative

distance is utilized as a measure of pixel corruption, also

facilitates the preservation of the original image edges and

tiny details.

The decision-making step, differentiating between the

distorted and uncorrupted pixels, seems to be more

important than the choice of the algorithm used for the

replacement of pixels classified as noise. The reason is

simple—more precise impulse detection process results in

less unwanted original pixels alteration.

There are numerous noisy pixel detection schemes

proposed in the literature, and among switching filters,

several groups of filtering designs can be enumerated. The

Sigma Vector Median Filter (SVMF) [30, 31] and Adaptive

Vector Median Filter (AVMF) [18] can be regarded as

popular representatives of techniques based on reduced

ordering statistics.

An efficient family of filters based on the peer group

framework was proposed in [32]. The idea of this switching

strategy can be found in various works [33–35]. Also sig-

nificant improvement has been made introducing the Fast

Peer Group Filter (FPGF) [34]. It was also an inspiration of

the recently proposed Fast Averaging Peer Group Filter

(FAPGF) [36], which delivers a very good performance for

highly contaminated images.

Another group of switching filters dedicated to the

suppression of the impulsive noise in color images is

based on the elements of the quaternion theory [37, 20,

38]. The color pixels, which are generally represented

by three channels in the RGB color space, are expressed

as quaternions without the real component. In this way,

the similarity between pixels is defined in the quaternion

form and is used as an alternative for the Euclidean

distance, commonly used in the popular filtering

designs.

The methods based on fuzzy set theory were also elab-

orated for the impulsive noise removal [39–45]. These

algorithms proved to be very flexible and offer a powerful

performance not only for single image applications, but

also for the enhancement of video sequences.

The filters proposed in this paper belong to the family of

switching techniques. The impulse detection step is based

on the reduced ordering and computation of trimmed

cumulative Euclidean distances. Both Arithmetic Mean

Filter (AMF) and VMF will be considered as the filter

providing the estimate of the corrupted pixels, to enable a

comparison of these two competitive solutions.

2 Adaptive switching filtering design

Most of the filtering techniques determine their output for

the pixel located at position (u, v) using n samples

belonging to a sliding, operating window W with xu;v at its

center. In order to simplify further analysis, the pixels

belonging to W will be denoted as x1. . .; xn, and x1 will be

the central pixel of W as shown in Fig. 1.

The reduced ordering scheme operates on the sum of

dissimilarity measures (distances) denoted as d, between a

given pixel and the samples from the filtering window W.

In this way, the cumulated dissimilarity measure D

assigned to pixel xi, (i ¼ 1; . . .; n) from W, is
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Di ¼
X

n

j¼1

dðxi; xjÞ: ð1Þ

The distances dij ¼ dðxi; xjÞ between xi and all other pixels

xj belonging to W, ði; j ¼ 1. . .n; i 6¼ jÞ can be sorted in

ascending order:

di1; . . .; dim �! dið1Þ; . . .; diðmÞ; ð2Þ

where m ¼ n� 1, and instead of the aggregated distances in

(1) a trimmed sum of distances D̂ can be used [28]

D̂i ¼
X

m

r¼1

diðrÞ; ð3Þ

where m denotes the number of nearest pixels taken for the

calculation of the trimmed sum of distances and diðrÞ is the

r-the smallest dissimilarity measure. The trimmed sum D̂i

is significantly less susceptible to outliers among pixels of

W than the standard sum of distances Di [46, 47].

The value of D̂1, which is assigned to the central pixel

x1 can be treated as a measure of the pixel corruption. This

value is low when there exist at least m similar pixels in the

neighborhood, otherwise the central pixel x1 may be con-

sidered as corrupted. If D̂1 divided by m is greater than a

predefined threshold value T

D̂1

m
[ T ;

ð4Þ

then the central pixel of W will be considered noisy and

will be replaced by the output of a suitable robust filter,

otherwise this pixel will be designated as uncorrupted

and remains unaltered. The division by m in (4) makes

the T value independent on the number of close pixels

xu,v

x1

x2 x3 x4

x5 x6

x7 x8 x9

Fig. 1 Notation of the pixels in the filtering window

· · ·

x2 · · · · · ·

· · · · · ·

· · · · · · · · ·
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· · · · · · · · ·

· · · · · ·
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· · ·
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· · · · · ·

· · · · · · · · ·

D̂4
D̂1
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(a) AST scheme
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· · · · · · · · · · · · · · ·

D̂1

D̂4D̂2
· · ·

· · · · · ·

· · · · · · · · ·

(b) FAST scheme

Fig. 2 Construction of the AST and FAST denoising schemes. The

AST design (a) requires the calculation of a trimmed sum of distances

for every pixel of W to determine their minimum value, which is

assigned to the central pixel. The FAST scheme (b) needs only the

distance values directly designated to image pixels and the minimum

value is calculated in the local neighborhood of the processed sample Fig. 3 Image database used for the analysis of parameter selection

J Real-Time Image Proc (2019) 16:1077–1098 1079

123



taken for the calculation of D̂. The described above

decision-making scheme will be denoted as Switching

Trimmed (ST).

Additionally, for every processed pixel the map of noise

array M is updated

Mu;v ¼
0 : if recognised as corrupted;

1 : otherwise:

�

ð5Þ

This map will be later used for the noisy pixels

replacement.

Now, in order to address the effect of high values of the

trimmed sum of distances D̂ in textured regions, a kind of

adaptiveness can be introduced to the ST scheme by sub-

tracting the minimum value D̂ð1Þ calculated for the pixels of

W [27]. In this way, the modified condition (4) for the noisy

pixel detection is

D̂1 � D̂ð1Þ
m

[ T ; D̂ð1Þ ¼ minfDi : i ¼ 1; . . .; mg:
ð6Þ

This decision-making step becomes more robust and

accurate in dealing with local image textural features and

tiny details. The proposed scheme will be denoted as

Adaptive Switching Trimmed (AST).

In the AST scheme, the trimmed sums have to be

computed for every pixel in W in order to determine the

minimum one. Despite the computational efficiency of this

solution, which will be shown later, it requires a relatively

large number of distance computations for every pixel in

the processing window and additionally the minimum

value has to be determined. Therefore, a simplified and

faster approach has also been taken under consideration.

The fast AST (FAST) scheme can be performed in two

steps. In the first step, for every image pixel, the compu-

tation of the trimmed sum of distances to its neighbors is

performed: D̂1 ¼
Pm

r¼1 dð1; ðrÞÞ [48].
In the second step, the minimum trimmed sum D̂ð1Þ is

computed from all the values of D̂ assigned to the pixels

belonging to W and the decision concerning the central

pixel corruption is performed according to (6).

The AST and FAST schemes are summarized in Fig. 2.

In the AST scheme (a), the trimmed sum of distances have

to be computed for each pixel of the filtering window W

and then the minimum value is calculated. The FAST

scheme (b) requires only the calculation of the trimmed

cumulative distances for each central pixel of W (each

image pixel), and the minimum value of D̂ is taken from

the values previously assigned to the pixels of W. There-

fore, the FAST scheme is n times faster than AST, as only

one trimmed distance measure has to be calculated for each

pixel, instead of n values required in the AST scheme.

Finally, pixels labeled as corrupted (Mu;v ¼ 0) are pro-

cessed by one of the two algorithms, which are used to

determine the estimate of the noisy pixel:

– VMF output replaces the central pixel ofW with a pixel

corresponding to D̂ð1Þ,

– AMF output replaces the central pixel of W with the

average of the pixels from W classified as not corrupted

(Mu;v ¼ 1). However, in rare situations, all pixels of the

W can be detected as corrupted and in such situations

the VMF output is used.

The resulting filters will be denoted as follows:

– STVMF—Switching Trimmed with VMF output,

– ASTVMF—Adaptive Switching Trimmed with VMF

output,

– FASTVMF—Fast Adaptive Switching Trimmed with

VMF output,

– STAMF—Switching Trimmed with AMF output,

– ASTAMF—Adaptive Switching Trimmed with AMF

output,

Fig. 4 Images used for the analysis of parameter selection.

a MOTOCROSS. b RAFTING
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Fig. 5 Dependence of PSNR

quality measure on the

parameters m and T obtained

when applying the analyzed

techniques to the test image

RAFTING contaminated with

impulsive noise of intensity

p ¼ 0:2. a STVMF. b STAMF.

c ASTVMF. d ASTAMF.

e FASTVMF. f FASTAMF
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Fig. 6 Dependence of PSNR

quality measure on the

parameters m and T obtained

when applying the analyzed

techniques to the test image

MOTOCROSS contaminated

with impulsive noise of

intensity p ¼ 0:2. a STVMF.

b STAMF. c ASTVMF.

d ASTAMF. e FASTVMF.

f FASTAMF
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– FASTAMF—Fast Adaptive Switching Trimmed with

AMF output.

There are many approaches to impulsive noise modeling

[49, 50]. One of the most popular contamination models is

the so called color salt & pepper noise [51–53], which

assumes that a fraction of the image pixels denoted as p is

corrupted in such a way that the RGB channels are

assigned either the minimum or maximum value of the

Table 1 Comparison of the

efficiency of the pixel

replacement techniques based

on the VMF and AMF using the

PSNR quality measure

p STAMF ASTAMF FASTAMF STVMF ASTVMF FASTVMF

MOTOCROSS

0.1 31.33 31.72 31.64 31.06 31.33 31.26

0.2 28.21 28.64 28.55 27.56 27.80 27.75

0.3 25.94 26.13 26.33 24.58 24.72 24.71

RAFTING

0.1 33.19 33.56 33.47 33.15 33.45 33.37

0.2 30.43 30.74 30.74 29.83 30.03 30.00

0.3 28.40 28.44 28.80 26.81 26.94 26.95

Bold values represent the results obtained for our algorithms
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Fig. 7 Dependence of PSNR on

the parameter T obtained for test

images MOTOCROSS and

RAFTING contaminated with

noise intensity p ¼ 0:1; 0:2; 0:3.

a MOTOCROSS, p ¼ 0:1 b

RAFTING, p ¼ 0:1 c

MOTOCROSS, p ¼ 0:2 d

RAFTING, p ¼ 0:2 e

MOTOCROSS, p ¼ 0:3 f

RAFTING, p ¼ 0:3
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allowable dynamic range, (0 or 255 assuming 8 bit channel

representation). The pixel modified by the impulsive noise

can be totally corrupted, so that all three channels are

replaced by the extreme values, but also one or two com-

ponents of a corrupted pixel can remain unchanged. The

noise distortion can be fully correlated (three channels are

always affected), or it can be modeled according to a

predefined correlation of channel contamination.

The removal of the salt & pepper noise is facilitated by

the fact that only the extreme values of the corrupted pixels

should be restored. Therefore, a more challenging and

realistic noise model assumes that all channels of an

affected pixel are replaced by a random variable drawn

from the uniform distribution. For the experiments reported

in this paper, we assume that the affected pixels have the

RGB channels changed independently by values from the

range h0; 255i [36, 49, 54]. This corruption scheme will be

called uniform noise model—UNM).

3 Parameter selection

In order to determine the recommended values of the

parameters m and T of the described filtering techniques, a

large number of simulations were performed on the image

database consisting of 100 true color test images of size

640�480 depicted in Fig. 3. This set of images is made

available as Electronic Supplementary Material and is

accompanied by a file which provides for each image its

entropy measure and the number of unique colors.

The test images were contaminated with UNM impulsive

noise of 3 different intensity levels: p ¼ 0:1; 0:2; 0:3f g. For
the evaluation of the image restoration performance, fol-

lowing quality metrics were used:

– Peak Signal-to-Noise Ratio (PSNR)

MSE ¼ 1

3N

X

N

j¼1

X

3

q¼1

ðxj;q � x̂j;qÞ2; RMSE ¼
ffiffiffiffiffiffiffiffiffiffi

MSE
p

;

PSNR ¼10 log10
2552

MSE

� �

¼ 20 log10
255

RMSE
;

ð7Þ

where xj;q, q ¼ 1; 2; 3, are the channels of the original

image pixels indexed by j, N is the number of image pixels

and x̂j;q are the restored components.

– Mean Average Error (MAE):

MAE ¼ 1

3N

X

N

j¼1

X

3

q¼1

jxj;q � x̂j;qj; ð8Þ

– Normalized Color Distance (NCD) [1]:

NCD ¼

P

N

j¼1

kxLab � x̂Labk

P

N

j¼1

kxLabk
; ð9Þ

where xLab and x̂Lab are the components of the original and

restored image pixels in the CIE Lab color space and k � k
denotes the Euclidean norm.

Due to a large number of the results obtained using

different quality metrics and their very similar qualitative

characteristics, only the PSNR measure will be used in the

analysis presented in this Section.

The images corrupted according to the UNM with 3

different intensity levels were processed with all 6 descri-

bed above filtering techniques. Each image was contami-

nated 10 times with different seeds of the random number

generator and the obtained quality measures were then

averaged. The denoising process was performed for each

pair of parameters m; Tf g, where m 2 1; 8h i and

T 2 1; 100h i.
The first (more detailed) step of the filters’ analysis

focuses on 2 exemplary, natural test images: RAFTING

and MOTOCROSS of size 640� 480 shown in Fig. 4. For

these images, the diagrams showing filtering performance

for each tested pair of parameters and contamination

intensity p ¼ 0:2 are presented in Fig. 5 (RAFTING) and in

Fig. 6 (MOTOCROSS).

The visual analysis implies following remarks:

– The filters with AMF output have better peak perfor-

mance for an optimal pair of parameters. Another

argument in favor of such a statement is presented in

Table 1, where optimal values of PSNR obtained for

both images, and all algorithms and all contamination

levels are presented.

– The filters using VMF output possess better tolerance

for the selection of parameters (choosing other than

1 2 3 4
10

0

10
1

10
2

10
3

10
4

N
o
. 
o
f 

o
b
se

rv
at

io
n
s

0 5362 38 0

Fig. 8 Histogram of the optimal m parameter values obtained for all

5400 (3 measures 9 3 contamination levels 9 6 algorithms 9 100

images) tested cases
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optimal values result in lower loss of filtering

efficiency).

– The value of the m parameter, optimizing the PSNR

measure, in each case was equal to 2.

As filters with AMF output achieve better peak per-

formance, the more detailed analysis of the impact of

T parameter on their efficiency for STAMF, ASTAMF

and FASTAMF techniques is exhibited in Fig. 7. The

presented plots enable to draw the following

conclusions:

– The PSNR as a function of T is smooth and slowly

varying. Therefore, a deviation from optimal T param-

eter setting does not result in significant loss of filtering

performance.

Table 2 Medians with

interquartile ranges of optimal

T values maximizing the PSNR

index

p STAMF ASTAMF FASTAMF STVMF ASTVMF FASTVMF

0.1 39.0 (11.0) 44.0 (12.0) 35.0 (11.0) 48.0 (12.0) 53.0 (14.0) 44.5 (11.5)

0.2 34.0 (7.5) 40.0 (9.0) 28.0 (9.0) 40.0 (9.0) 44.0 (10.0) 35.0 (9.0)

0.3 31.0 (6.0) 37.0 (9.0) 19.0 (8.0) 33.0 (8.0) 37.0 (9.5) 26.0 (7.0)

STAMF ASTAMF FASTAMF STVMF ASTVMF FASTVMF

20
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T
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Algorithm
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Fig. 9 Box-plots of the optimal

T values determined using

PSNR quality measure for all

100 test images, a p ¼ 0:1, b

p ¼ 0:2, c p ¼ 0:3
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– The optimal T values for various algorithms are clearly

different. The ASTAMF and FASTAMF schemes

require a lower value of threshold T than STAMF,

which is caused by subtraction of the minimal trimmed

accumulated distance measure in (6).

– It is difficult to determine which filter achieves best

efficiency, as their relative performance is different

for various contamination levels. The AST

scheme yields better results for low noise intensity,

while FAST scheme takes a lead for stronger image

corruption.

– Although the ST scheme may achieve best overall

performance for very low and high T values (deviating

much from those recommended), there is no evidence

that its peek performance may outperform the AST and

FAST techniques for low noise intensities (p\0:3).

The second (more global) step of our analysis considers all

of the tested images. The optimal values of parameters

m; Tf g, maximizing the PSNR measure, were determined

for each of the analyzed filters and noise contamination

level.

The histogram of optimal values of m is presented in

Fig. 8. It is clear that m ¼ 2 is a value to be recommended

for all filters and all contamination intensities. The statis-

tically insignificant occurrence of m ¼ 3 implies that more

detailed analysis of this parameter has no relevance.

On the other hand, the proper recommendation of the

T values is not so unequivocal. Figure 9 depicts the box-

plots presenting medians and quartiles for all optimal

T obtained with regard to different contamination levels

and algorithms. The numeric values of medians and

interquartile ranges (IQR) are gathered in Table 2. We

observed that bigger values of the threshold T are usually

needed for highly textured images. This indicates that the

local image entropy could be incorporated into the algo-

rithm for adaptive, structure dependent tuning of the

thresholding parameter.

The medians of T are slightly declining with the increase

in noise intensity. Therefore, the medians achieved for

p ¼ 0:2, which can be considered as a medium corruption,

should be considered as recommended values of the T pa-

rameter. In this way, the suggested values of T are: 34 for

STAMF, 40 for STAMF and 28 for FASTAMF.

4 Comparison with the state-of-the-art denoising

methods

An indispensable final step in the development of any new

filtering technique is the comparison with other competi-

tive solutions available in the rich literature. Among filters

proposed in this paper, only those with AMF output have

been taken for comparison due to their higher efficiency.

The described filtering designs were compared with the

following methods, which are known to deliver very sat-

isfying denoising performance:

– Adaptive Central-Weighed VMF (ACWVMF) [55],

– Fast Averaging Peer Group Filter (FAPGF) [36],

– Fast Fuzzy Noise Reduction Filter (FFNRF) [56],

– Fuzzy Ordered Vector Median Filter (FOVMF) [57],

– Fast Peer Group Filter (FPGF) [34],

(a)

(b)

(c)

(d)

Fig. 10 Color test images used for comparison with the state-of-the-

art filters. a GIRL. b HAND. c GOLDHILL. d FLOWER
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– Ranked Sigma Vector Median Filter (SVMFr) [30].

In addition to quality measures presented in the previous

Section, the Feature Similarity index (FSIMc) [58, 59] was

also used to compare the efficiency of the evaluated filters.

The structural similarity measures, like FSIMc, are highly

correlated with the human visual system, which make them

very useful for the analysis of noise suppression efficiency

[60, 61].

The efficiency tests were performed using four selected

images corrupted 10 times with UNM noise of intensities

p ¼ 0:1; 0:2; . . .; 0:5, (Fig. 10). Every contaminated image

was denoised, and the outcome of each method was eval-

uated using averaged PSNR, NCD, MAE and FSIMc dis-

similarity measures. The results obtained for each image

are summarized in Tables 3, 4, 5 and 6.

The visual comparison of the performance of the ana-

lyzed filters is presented for image GIRL (Fig. 11) and

HAND (Fig. 12). The comparison of the efficiency of the

denoising methods is presented in terms of PSNR measure

for all four test images in Fig. 13.

Finally, the obtained results can be summarized as

follows:

– For low contamination levels (p\0:3), ASTAMF

algorithm clearly excels other techniques. However,

the fast version of this algorithm (FASTAMF) is not far

behind.

– For medium noise intensity (p ¼ 0:3), the FASTAMF

algorithm takes a lead for all tested images and this

observation is valid for all computed dissimilarity

measures.

– In case of images corrupted by stronger noises

(p[ 0:3), the FASTAMF competes with STAMF

algorithm, which becomes surprisingly more efficient

than others. This observation suggests that the adapta-

tion mechanism becomes less important or even

undesirable for more extreme noise occurrence.

– If only PSNR measure is considered, the FAPGF

algorithm shows a competitive performance for med-

ium noise levels.

– For very high noise corruption (p ¼ 0:5), the adaptive

designs of ASTAMF and FASTAMF loose their power

and the STAMF yields better results.

– Generally, the thresholding parameter is only slightly

dependent on the structure of natural images. Higher

Table 3 Comparison of the efficiency of the analyzed algorithms with the state-of-the-art techniques for the GIRL color test image

Measure p New algorithms State-of-the-art algorithms

STAMF ASTAMF FASTAMF ACWVMF FAPGF FFNRF FOVMF FPGF SVMFr

PSNR 0.1 37.43 37.78 37.68 35.62 36.77 35.85 32.18 35.54 33.89

0.2 34.81 34.97 35.13 29.51 34.34 32.56 30.65 31.75 27.28

0.3 32.25 31.44 32.66 23.48 32.06 27.65 26.76 26.31 21.31

0.4 29.56 26.36 29.49 19.17 29.57 22.60 22.22 21.39 17.18

0.5 25.36 21.28 24.45 15.81 25.94 18.32 18.24 17.41 14.06

NCD (E-04) 0.1 44.80 42.47 43.32 54.53 49.12 52.57 283.83 56.12 83.53

0.2 89.50 86.01 86.40 149.62 100.39 112.65 318.72 122.62 199.97

0.3 142.88 150.44 137.63 380.84 168.82 229.84 423.16 265.83 533.75

0.4 215.56 311.38 218.46 824.93 271.63 491.39 690.49 590.24 1163.36

0.5 363.56 706.32 436.26 1596.82 466.78 1028.93 1248.50 1234.76 2170.63

MAE 0.1 0.54 0.52 0.52 0.64 0.59 0.64 3.20 0.73 1.02

0.2 1.03 1.00 0.99 1.60 1.13 1.20 3.61 1.48 2.07

0.3 1.61 1.66 1.54 3.99 1.79 2.30 4.79 3.11 5.33

0.4 2.38 3.17 2.36 8.70 2.74 4.85 7.77 6.75 11.63

0.5 4.00 7.03 4.48 16.91 4.55 10.27 14.13 14.04 21.83

FSIMc 0.1 0.9956 0.9959 0.9959 0.9763 0.9950 0.9775 0.9689 0.9768 0.9729

0.2 0.9911 0.9913 0.9919 0.9519 0.9902 0.9703 0.9593 0.9644 0.9366

0.3 0.9825 0.9772 0.9841 0.8734 0.9799 0.9421 0.9168 0.9140 0.8336

0.4 0.9667 0.9243 0.9651 0.7554 0.9583 0.8610 0.8185 0.8055 0.7018

0.5 0.9181 0.8077 0.8970 0.6296 0.9050 0.7307 0.6859 0.6668 0.5796

Bold values represent the best results obtained (in a corresponding row)
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values of T may yield better results for images with

high frequency texture or containing tiny details.

5 Computational complexity

Although the noise suppression efficiency, expressed by

quality measures, seems to be the most obvious criterion for

algorithm selection, the computational complexity is very

often equally important. Therefore, in this Section, a

straightforward analysis of computational complexity of the

Fast Adaptive Switching Trimmed filter with AMF output—

FASTAMF is presented. This filter was chosen as it belongs

to the fastest available filtering designs and because of its

very satisfying denoising efficiency. Itwill be comparedwith

the state-of-the-art fast techniques: FPGF [34], Fast Aver-

aging Peer Group Filter (FAPGF) [36], Fast Fuzzy Noise

Reduction Filter (FFNRF) [56], FastModifiedVMF [62] and

Vector Median Filter (VMF) [6] which can serve as a ref-

erence filter. The analysis of the computational burden will

be performed for impulse detection (decision-making step)

and output computation step separately.

We assume that color image is encoded with L channels,

and the operating window W used by the filter consists of

n pixels. The elementarymathematical operations used by an

algorithm will be labeled as follows: Addition—ADD,

Multiplication—MULT, Division—DIV, Exponentiation—

EXP, Extractions of root—SQRT, Comparison—COMP. A

detailed analysis of the computational loadwith commentary

is performed for FASTAMF algorithm only. The complexity

of the competitive algorithms is summarized in Table 7.

The impulse detection step of the FASTAMF requires:

– Computation of ðn� 1Þ Euclidean distances. Each

distance requires: L�MULTþ 2L� ADDþ 1

�SQRT.

– Calculation of the m smallest distances:

m
X

m

i¼1

ðn� iÞ � COMP; ð10Þ

– Sum of the m smallest distances: m� ADD,

– One subtraction (1� ADDS), division (1� DIV and

comparison (1� COMP).

As during the noisy pixel replacement, the algorithm

requires the map of noise array M, consisting of values: 1

for uncorrupted pixels, when condition (6) is satisfied and 0

for pixels found to be corrupted, the output computation

step of the AMF requires n� L�MULT, n� L� ADDS

to acquire a sum of uncorrupted pixels channel values and

n� ADD, 1� DIV to obtain the final color pixel estimate.

Table 4 Comparison of the efficiency of the analyzed algorithms with the state-of-the-art techniques for the HAND color test image

Measure p New algorithms State-of-the-art algorithms

STAMF ASTAMF FASTAMF ACWVMF FAPGF FFNRF FOVMF FPGF SVMFr

PSNR 0.1 31.17 33.07 32.64 32.19 30.94 31.57 29.33 30.88 31.74

0.2 29.61 31.05 30.77 28.08 29.59 29.42 28.13 28.71 26.61

0.3 28.11 28.77 29.24 23.45 28.39 26.21 25.77 25.42 21.48

0.4 26.31 25.18 26.82 19.51 26.63 22.25 22.30 21.47 17.58

0.5 23.96 21.34 23.67 16.40 24.46 18.62 18.90 18.01 14.61

NCD (E-04) 0.1 93.98 76.17 79.79 88.97 102.45 90.45 423.48 118.92 111.50

0.2 164.64 143.55 147.17 211.53 178.81 177.22 474.88 215.58 256.01

0.3 244.62 233.37 221.62 457.77 270.25 321.33 588.94 382.86 605.07

0.4 354.89 426.63 342.24 935.63 413.87 614.34 868.06 737.65 1260.56

0.5 530.60 829.24 576.06 1689.18 632.33 1151.32 1399.39 1369.14 2242.48

MAE 0.1 1.01 0.78 0.83 0.89 1.11 0.91 3.69 1.26 1.08

0.2 1.63 1.36 1.42 1.93 1.75 1.60 4.19 2.12 2.25

0.3 2.33 2.13 2.07 4.16 2.49 2.80 5.26 3.66 5.32

0.4 3.29 3.74 3.08 8.49 3.61 5.31 7.85 6.97 11.17

0.5 4.84 7.13 5.06 15.56 5.34 10.08 12.99 13.02 20.22

FSIMc 0.1 0.9932 0.9952 0.9948 0.9855 0.9926 0.9856 0.9776 0.9845 0.9836

0.2 0.9885 0.9911 0.9909 0.9696 0.9882 0.9800 0.9705 0.9758 0.9606

0.3 0.9821 0.9809 0.9849 0.9200 0.9809 0.9613 0.9454 0.9447 0.8913

0.4 0.9672 0.9422 0.9674 0.8318 0.9625 0.9052 0.8801 0.8703 0.7858

0.5 0.9376 0.8614 0.9221 0.7281 0.9290 0.8091 0.7824 0.7645 0.6763

Bold values represent the best results obtained (in a corresponding row)
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As can be derived from Table 7, the proposed FAS-

TAMF algorithm belongs to the group of the fast switching

filters and its computational complexity is comparable only

to FPGF [34] and newly proposed FAPGF technique [36].

For the assessment of the practical usability of the

proposed filtering framework in real-time applications, we

took measurements of the processing time using a large

MOSAIC test image of size 3200� 2400 pixels depicted in

Fig. 14. To make the results independent on the structural

content of the processed data and also to present the

acceleration achieved using the CUDA parallel program-

ming platform, this benchmark image is composed of 25

pictures taken from the database shown in Fig. 3.

The first group of tests was performed on a machine

equipped with Intel i7-3632QM processor unit (2.2 GHz)

and 4 GB memory. The 64-bit Debian 8.3 was installed as

the operating system. For the purpose of the speed tests, all

examined filtering techniques were implemented in ANSI

C (gcc 4.9.2) programming language. To assure the fair-

ness of the results and to avoid inefficient algorithm

implementations, all of them with the exception of FAS-

TAMF and FAPGF, which we prepared ourselves, were

taken from the ‘‘Fourier 0.8’’ library provided by M.E.

Celebi [63]. The speed measurements were also taken

using a routine form this well-known library.

All comparative tests of the analyzed filters were per-

formed using single-thread processing. The filtering win-

dow was consistently 3� 3, and the parameters of the

evaluated techniques were adjusted according to the rec-

ommendations of their authors. Each filter was run 200

times on the MOSAIC test image, contaminated with

impulsive noise of intensity p ¼ 0; 0:1; . . .; 0:5, to assure

the statistical significance of the comparisons. The medians

of the independent execution times of all tested filters are

presented in Table 8 and Fig. 15. The FOVMF algorithm

was omitted in the presentation of results due to its very

poor performance.

As can be observed, the proposed FASTAMF method is

about 3 times faster than the standard VMF. The execution

time of the FASTAMF measured on the MOSAIC image

with medium noise level was about 800 ms. The time

needed to process a 640� 480 image was on average 34

ms, which confirms that the computational complexity

grows linearly with the number of image pixels. The pro-

cessing time of FASTAMF is only slightly dependent on

the noise intensity, and this behavior is also exhibited by

other filtering approaches, with the exception of FPGF,

which is the fastest filter for very low contamination ratios

(p\0:1), but is slowing down substantially with increasing

noise corruption.

Table 5 Comparison of the efficiency of the analyzed algorithms with the state-of-the-art techniques for the GOLDHILL color test image

Measure p New algorithms State-of-the-art algorithms

STAMF ASTAMF FASTAMF ACWVMF FAPGF FFNRF FOVMF FPGF SVMFr

PSNR 0.1 37.43 37.76 37.71 35.67 36.80 35.47 30.53 34.89 34.00

0.2 34.13 34.29 34.35 30.69 33.72 32.25 29.65 31.82 29.08

0.3 32.00 31.28 32.11 26.15 31.66 28.53 27.88 28.34 23.93

0.4 29.63 27.32 29.36 22.20 29.46 24.59 25.09 24.58 19.96

0.5 26.60 23.04 25.51 18.90 26.64 20.72 21.77 20.93 16.78

NCD (E-04) 0.1 55.92 54.19 55.04 66.96 59.51 67.29 393.33 71.96 96.19

0.2 115.01 112.58 113.34 159.99 122.13 142.38 420.19 146.05 191.84

0.3 178.36 187.82 177.84 312.77 195.13 254.94 473.14 250.51 415.14

0.4 259.01 326.21 269.56 580.28 291.17 450.57 589.60 428.73 825.61

0.5 386.77 630.09 460.10 1027.57 456.95 819.96 840.39 758.13 1497.38

MAE 0.1 0.70 0.68 0.68 0.82 0.75 0.84 4.81 0.97 1.26

0.2 1.43 1.40 1.40 1.87 1.51 1.64 5.25 1.91 2.21

0.3 2.21 2.26 2.17 3.58 2.37 2.84 6.00 3.27 4.48

0.4 3.21 3.71 3.22 6.54 3.48 4.84 7.46 5.51 8.62

0.5 4.76 6.71 5.19 11.43 5.24 8.64 10.49 9.51 15.43

FSIMc 0.1 0.9966 0.9968 0.9968 0.9788 0.9961 0.9787 0.9671 0.9777 0.9762

0.2 0.9916 0.9920 0.9921 0.9677 0.9909 0.9734 0.9611 0.9702 0.9621

0.3 0.9853 0.9825 0.9860 0.9422 0.9841 0.9603 0.9476 0.9532 0.9243

0.4 0.9738 0.9576 0.9731 0.8903 0.9711 0.9278 0.9139 0.9126 0.8578

0.5 0.9506 0.9015 0.9381 0.8187 0.9449 0.8659 0.8556 0.8465 0.7750

Bold values represent the best results obtained (in a corresponding row)
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In Fig. 16, we present the relation between the efficiency

of the evaluated algorithms expressed in terms of PSNR

and the processing time obtained for the MOSAIC test

image contaminated by impulsive noise of p ¼ 0:1 and

p ¼ 0:3. Analyzing the results presented in the plots and

also in Table 8 and Fig. 15, it can be stated that the pro-

posed FASTAMF is one of the most efficient algorithms

among those taken for comparisons in the whole range of

contamination ratios and its overall efficiency is compa-

rable with the FAPGF and also with FPGF when the noise

intensity is quite low.

Although for low contamination level the proposed

FASTAMF is slower than FPGF, its efficiency expressed in

terms of PSNR and other quality measures is significantly

better. The FASTAMF technique is generally slightly slower

than the FAPGF, but for low and medium noise corruption it

is generally superior in terms of the denoising efficiency.

The new technique can be further accelerated by omit-

ting the computation of already determined distances

between pixels. Such a scheme was successfully applied in

the construction of fast VMF implementations [64, 65].

Further substantial decrease in the computational time can

be achieved using the hardware/software implementations,

which are being developed very rapidly especially for

image processing applications [66–68].

In our algorithm, the image is processed in 3 steps which

must by performed sequentially: computing of trimmed

sum of distances (3), noise detection (6) and noisy pixel

replacement. However, every pixel of the image can be

processed independently during particular step. Therefore,

each of those steps can be implemented as parallel pro-

cessing which substantially decreases their execution

times.

We implemented the VMF and FASTAMF using the

CUDA technology on GeForce GTX 970 GPU equipped

with 1664 CUDA cores (1250 MHz) and 4 GB 256-bit

GDDR5 memory. The FASTAMF algorithm was written in

C?? and compiled under NVIDIA CUDA compiler.

The grid configurations were chosen dynamically

depending on the image size. We have chosen a block size

of 128 threads in a configuration 1� 128� 1 threads. The

crucial part is the right selection of the grid and block

configuration, depending of the size of the image and the

GPU parameters, so that the GPU computation ability is

maximized.

The second essential part is the optimization of memory

reads and writes. In the first step, we copy the image from

host into the GPU memory. In that way, we minimize the

use of the slow throughput between host and device.

Another optimization is the correct way of reading global

Table 6 Comparison of the efficiency of the analyzed algorithms with the state-of-the-art techniques for the FLOWER color test image

Measure p New algorithms State-of-the-art algorithms

STAMF ASTAMF FASTAMF ACWVMF FAPGF FFNRF FOVMF FPGF SVMFr

PSNR 0.1 38.57 38.92 38.85 36.81 37.71 37.10 33.30 36.04 36.03

0.2 35.71 36.03 36.01 31.90 35.06 33.26 31.58 32.80 30.20

0.3 33.06 32.42 33.28 27.21 32.59 29.22 29.23 29.32 25.01

0.4 30.54 28.26 30.59 23.35 30.30 25.29 26.32 25.73 21.00

0.5 27.36 23.87 26.50 20.13 27.19 21.57 23.15 22.29 17.79

NCD (E-04) 0.1 30.53 28.85 29.42 38.09 34.08 35.47 172.10 42.08 45.83

0.2 62.45 59.22 59.43 97.16 70.27 82.74 206.74 87.92 117.66

0.3 102.41 108.78 98.45 211.51 120.56 163.68 261.49 160.42 286.79

0.4 155.46 212.72 156.04 410.70 192.40 314.86 360.95 286.26 610.58

0.5 248.66 460.79 295.13 748.21 326.95 604.49 555.01 517.64 1149.86

MAE 0.1 0.46 0.45 0.45 0.53 0.51 0.49 2.50 0.66 0.67

0.2 0.92 0.88 0.89 1.28 1.02 1.07 3.09 1.34 1.47

0.3 1.50 1.51 1.44 2.64 1.68 2.02 3.91 2.40 3.30

0.4 2.24 2.68 2.19 4.93 2.56 3.70 5.17 4.07 6.72

0.5 3.47 5.26 3.77 8.72 4.10 6.81 7.44 6.94 12.42

FSIMc 0.1 0.9975 0.9977 0.9976 0.9799 0.9967 0.9803 0.9723 0.9785 0.9791

0.2 0.9941 0.9947 0.9945 0.9721 0.9932 0.9758 0.9657 0.9723 0.9686

0.3 0.9891 0.9877 0.9899 0.9510 0.9867 0.9639 0.9535 0.9580 0.9387

0.4 0.9788 0.9656 0.9796 0.9121 0.9747 0.9376 0.9304 0.9306 0.8836

0.5 0.9605 0.9169 0.9522 0.8530 0.9512 0.8870 0.8886 0.8824 0.8071

Bold values represent the best results obtained (in a corresponding row)
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Fig. 11 Comparison of the performance of the filtering algorithms for image GIRL contaminated with impulsive noise of intensity p ¼ 0:3.

a Original image. b Noisy image. c ASTAMF. d FASTAMF. e STAMF. f ACWVMF. g FAPGF. h FFNRF. i FOVMF. j FPGF. k SVMFr
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Fig. 12 Comparison of the performance of the filtering algorithms for image HAND contaminated with impulsive noise of intensity p ¼ 0:3.

a Original image. b Noisy image. c ASTAMF. d FASTAMF. e STAMF. f ACWVMF. g FAPGF. h FFNRF. i FOVMF. j FPGF. k SVMFr
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memory, which is the slowest one on the device, but is

accessible by each thread. We use optimal access patterns

based on the GPU computational capability and utilize data

types that meet the size and alignment which is optimal for

the given device.

Three kernels, which were run successively on each

image pixel, were implemented, and the number of reads

and writes from the global memory was reduced to

minimum.

The speed tests of CUDA FASTAMF implementation

were performed on the MOSAIC image, and the results

are presented in Fig. 17. It can be observed that using

parallel computing, impressive speed gains can be

achieved, which allows to use the FASTAMF in real-

time image processing. As only a few milliseconds are

needed to process the relatively large MOSAIC image

(3200� 2400), the algorithm can be applied for video

denoising with frame rates exceeding 100 fps or much

more for smaller resolutions.

6 Conclusions

The evaluation of the performance of the described filter

family provided in the previous Sections confirmed its high

efficiency. The proposed filters are competitive against

known fast filtering techniques intended for impulsive

noise removal. Especially useful is the Fast Adaptive

Switching Trimmed filter with AMF output—FASTAMF,

which restores efficiently the corrupted pixels even for

strong noise contamination. Its performance is comparable

with the recently proposed Fast Averaging Peer Group

Filter (FAPGF) [36]. The beneficial feature of the FAS-

TAMF is its low computational complexity, which makes

the filter interesting for the real-time color image

denoising.

The proposed concept of trimmed sum of ordered

distances is a very efficient way of determining whether

a pixel is corrupted or not. Also the AMF output com-

puted using only pixels recognized as uncorrupted,

proved to be a very efficient and computationally inex-

pensive solution.

Additionally, the adaptation mechanism implemented in

the AST and FAST decision-making schemes substantially

improves the performance of the filters when the image is

contaminated by noise of low and medium intensity

(p\0:3). For higher noise intensity levels, this mechanism

fails to detect the outliers, due to a small number of the

uncorrupted samples in the filtering window.

The performed experiments confirmed the low compu-

tational complexity of the proposed filtering technique and

its attractiveness for real-time image processing

ASTAMF FASTAMF STAMF

ACWVMF FAPGF FFNRF

FOVMF FPGF SVMFr
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Fig. 13 Comparison of the proposed designs with state-of-the-art

denoising algorithms using four test images contaminated with noise

of intensity p ¼ 0:1; . . .0:5. a GIRL. b HAND. c GOLDHILL.

d FLOWER
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Table 7 Comparison of

computational complexity
Algorithm ADDS MULTS DIVS EXPS SQRTS COMPS TOTAL

Impulse detection for L = 3, n = 3

FASTAMF (m = 2) 26 24 1 0 8 26 85

FAPGF 32 24 0 0 8 8 72

FPGF 32 24 0 0 8 8 72

VMF 0 0 0 0 0 0 0

FFNRF 0 0 0 0 0 0 0

FMVMF 186 63 0 0 21 8 278

Output computation for L = 3, n = 3

FASTAMF (m = 2) 24 0 3 0 0 10 38

FAPGF 27 27 3 9 0 1 68

FPGF 186 63 0 0 21 8 278

VMF 186 63 0 0 21 8 278

FFNRF 48 24 24 24 0 55 175

FMVMF 0 0 0 0 0 1 1

Impulse detection for L = 3, n = 5

FASTAMF (m = 2) 74 72 1 0 24 74 245

FAPGF 96 72 0 0 24 24 216

FPGF 96 72 0 0 24 24 216

VMF 0 0 0 0 0 0 0

FFNRF 0 0 0 0 0 0 0

FMVMF 855 330 0 0 110 24 1319

Output computation for L = 3, n = 5

FASTAMF (m = 2) 72 0 3 0 0 26 101

FAPGF 75 75 3 25 0 1 179

FPGF 855 330 0 0 110 24 1319

VMF 855 330 0 0 110 24 1319

FFNRF 144 72 72 72 0 167 527

FMVMF 0 0 0 0 0 1 1

Table 8 Processing times of

the filters taken for comparisons

when restoring the MOSAIC

test image depicted in Fig. 14

contaminated with impulsive

noise of increasing intensity p

p VMF FASTAMF ACWVMF FAPGF FFNRF FPGF SVMFr FOVMF

0.0 2.460 0.748 2.986 0.649 1.328 0.344 2.481 7.167

0.1 2.460 0.797 3.034 0.698 1.387 0.632 2.504 7.278

0.2 2.460 0.847 3.068 0.752 1.431 0.923 2.522 7.260

0.3 2.460 0.905 3.094 0.816 1.476 1.229 2.541 7.241

0.4 2.460 0.971 3.117 0.887 1.525 1.558 2.557 7.209

0.5 2.460 1.024 3.133 0.957 1.565 1.905 2.569 7.220
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Fig. 14 Test image MOSAIC of size 3200� 2400 pixels composed of 25 pictures from the dataset depicted in Fig. 3
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Fig. 15 Processing times of the evaluated filters using the MOSAIC

test image depicted in Fig. 14 contaminated with impulsive noise of

intensity p

Fig. 16 Relation between PSNR measure and the processing time of

the evaluated filters obtained using the MOSAIC test image

contaminated with impulsive noise of intensity p ¼ 0:1 and p ¼ 0:3
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applications. Additional speed gain was obtained using a

parallel implementation on the CUDA platform, which

allows to apply the proposed algorithm for video denoising.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Plataniotis, K., Venetsanopoulos, A.: Color Image Processing and

Applications. Springer, Berlin (2000)

2. Boncelet, C.G.: Image noise models. In: Bovik, A.C. (ed.)

Handbook of Image and Video Processing, Communications,

Networking and Multimedia, pp. 397–410. Academic Press,

London (2005)

3. Lukac, R., Smolka, B., Martin, K., Plataniotis, K., Venet-

sanopoulos, A.: Vector filtering for color imaging. IEEE Signal

Process. Mag. 22(1), 74–86 (2005)

4. Zheng, J., Valavanis, K.P., Gauch, J.M.: Noise removal from

color images. J. Intell. Robot. Syst. 7(1), 257–285 (1993)

5. Morillas, S., Gregori, V., Sapena, A., Camarena, J., Roig, B.:

Impulsive noise filters for colour images. In: Celebi, M.E., Lecca,

M., Smolka, B. (eds.) Color Image and Video Enhancement.

Springer, Berlin (2015)

6. Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proc.

IEEE 78(4), 678–689 (1990)

7. Nikolaidis, N., Pitas, I.: Multivariate ordering in color image

processing. Signal Process. 38(3), 299–316 (1994)

8. Tang, K., Astola, J., Neuvo, Y.: Nonlinear multivariate image

filtering techniques. IEEE Trans. Image Process. 4(6), 788–798

(1995)

9. Pitas, I., Tsakalides, P.: Multivariate ordering in color image

processing. IEEE Trans. Circuits Syst. Video Technol. 1(3),

247–256 (1991)

10. Smolka, B., Plataniotis, K., Venetsanopoulos, A.: Nonlinear

techniques for color image processing. In: Barner, K.E., Arce,

G.R. (eds.) Nonlinear Signal and Image Processing: Theory,

Methods, and Applications. CRC Press, Boca Raton (2004)

11. Smolka, B., Venetsanopoulos, A.: Noise reduction and edge

detection in color images. In: Lukac, R., Plataniotis, K.N. (eds.)

Color Image Processing: Methods and Applications, pp. 75–100.

CRC Press, Boca Raton (2006)

12. Viero, T., Oistamo, K., Neuvo, Y.: Three-dimensional median-

related filters for color image sequence filtering. IEEE Trans.

Circuits Syst. Video Technol. 4(2), 129–142 (1994)

13. Ponomaryov, V., Gallegos-Funes, F., Rosales-Silva, A.: Real-

time color image processing using order statistics filters. J. Math.

Imaging Vis. 23(3), 315–319 (2005)

14. Smolka, B., Malik, K., Malik, D.: Adaptive rank weighted

switching filter for impulsive noise removal in color images.

J. Real-Time Image Process. 10(2), 289–311 (2015). doi:10.1007/

s11554-012-0307-0

15. Morillas, S., Gregori, V.: Robustifying vector median filter.

Sensors 11(8), 8115 (2011)

16. Nair, M.S., Ameera Mol, P.M.: Direction based adaptive

weighted switching median filter for removing high density

impulse noise. Comput. Electr. Eng. 39(2), 663–689 (2013)

17. Lukac, R., Smolka, B., Plataniotis, K.N., Venetsanopoulos, A.N.:

Selection weighted vector directional filters. Comput. Vis. Image

Underst. 94(1–3), 140–167 (2004)

18. Lukac, R.: Adaptive vector median filtering. Pattern Recognit.

Lett. 24(12), 1889–1899 (2003)

19. Smolka, B.: Peer group switching filter for impulse noise reduction

in color images. Pattern Recognit. Lett. 31(6), 484 (2010)

20. Geng, X., Hu, X., Xiao, J.: Quaternion switching filter for

impulse noise reduction in color image. Signal Process. 92(1),

150–162 (2012)

21. Jin, L., Li, D.: An efficient color impulse detector and its appli-

cation to color images. IEEE Signal Process. Lett. 14(6), 397–400

(2007)

22. Morillas, S., Gregori, V., Peris-Fajarnés, G.: Isolating impulsive

noise pixels in color images by peer group techniques. Comput.

Vis. Image Underst. 110(1), 102–116 (2008)

23. Smolka, B., Lukac, R., Chydzinski, A., Plataniotis, K.N., Woj-

ciechowski, W.: Fast adaptive similarity based impulsive noise

reduction filter. Real-Time Imaging 9(4), 261–276 (2003)

24. Karakos, D.G., Trahanias, P.E.: Generalized multichannel image-

filtering structures. IEEE Trans. Image Process. 6(7), 1038–1045

(1997)

25. Celebi, M., Kingravi, H., Aslandogan, Y.: Nonlinear vector fil-

tering for impulsive noise removal from color images. J. Electron.

Imaging 16(3), 033008-1–033008-21 (2007)

26. Celebi, M.E.: Real-time implementation of order-statistics based

directional filters. IET Image Process. 3(1), 1–9 (2009)

27. Smolka, B., Malik, K.: Reduced ordering technique of impulsive

noise removal in color images. In: Tominaga, S., Schettini,

R.,Trémeau, A. (eds.) Computational Color Imaging. Lecture

Notes in Computer Science, vol. 7786, pp. 296–310. Springer,

Berlin (2013)

28. Lukac, R., Smolka, B., Plataniotis, K.N.: Sharpening vector

median filters. Signal Process. 87, 2085–2099 (2007)

29. Garnett, R., Huegerich, T., Chui, C., He, W.: A universal noise

removal algorithm with an impulse detector. IEEE Trans. Image

Process. 14(11), 1747–1754 (2005)

30. Lukac, R., Smolka, B., Plataniotis, K.N., Venetsanopoulos, A.N.:

Vector sigma filters for noise detection and removal in color

images. J. Vis. Commun. Image Represent. 17(1), 1–26 (2006)

31. Lukac, R., Plataniotis, K.N., Venetsanopoulos, A.N., Smolka, B.:

A statistically-switched adaptive vector median filter. J. Intell.

Robot. Syst. 42(4), 361–391 (2005)

32. Deng, Y., Kenney, C., Manjunath, B.S.: Peer group image

enhancement. IEEE Trans. Image Process. 10(2), 326–334 (2001)

Fig. 17 Comparison of the FASTAMF and VMF execution time

performed on the noisy MOSAIC test image using the CUDA

implementations

1096 J Real-Time Image Proc (2019) 16:1077–1098

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/s11554-012-0307-0
http://dx.doi.org/10.1007/s11554-012-0307-0


33. Smolka, B., Plataniotis, K.N., Chydzinski, A., Szczepanski, M.,

Venetsanopoulos, A.N., Wojciechowski, K.: Self-adaptive algo-

rithm of impulsive noise reduction in color images. Pattern

Recognit. 35(8), 1771–1784 (2002)

34. Smolka, B., Chydzinski, A.: Fast detection and impulsive noise

removal in color images. Real-Time Imaging 11(5–6), 389–402

(2005)

35. Morillas, S., Gregori, V., Hervas, A.: Fuzzy peer groups for

reducing mixed Gaussian-impulse noise from color images. IEEE

Trans. Image Process. 18(7), 1452–1466 (2009)

36. Malinski, L., Smolka, B.: Fast averaging peer group filter for the

impulsive noise removal in color images. J. Real-Time Image

Process. (2015). doi:10.1007/s11554-015-0500-z

37. Jin, L., Li, D.: An efficient color impulse detector and its appli-

cation to color images. IEEE Signal Process. Lett. 14(6), 397–400

(2007)

38. Wang, G., Liu, Y., Zhao, T.: A quaternion-based switching filter

for colour image denoising. Signal Process. 102, 216–225 (2014)

39. Schulte, S., De Witte, V., Nachtegael, M., Van der Weken, D.,

Kerre, E.E.: Fuzzy random impulse noise reduction method.

Fuzzy Sets Syst. 158, 270–283 (2007)

40. Varghese, J., Ghouse, M., Subash, S., Siddappa, M., Khan, M.S.,

Hussain, O.B.: Efficient adaptive fuzzy-based switching weighted

average filter for the restoration of impulse corrupted digital

images. IET Image Process. 8(4), 199–206 (2014)

41. Kang, C., Wang, W.: Fuzzy reasoning-based directional median

filter design. Signal Process. 89(3), 344–351 (2009)

42. Melange, T., Nachtegael, M., Kerre, E.: Fuzzy random impulse

noise removal from color image sequences. IEEE Trans. Image

Process. 20(4), 959–970 (2011)

43. Ponomaryov, V., Montengro, H., Rosales, A., Duchen, G.: Fuzzy

3D filter for color video sequences contaminated by impulsive

noise. J. Real Time Image Process. 10, 313–328 (2012)

44. Morillas, S., Gregori, V., Peris-Fajarnés, G., Latorre, P.: A fast

impulsive noise color image filter using fuzzy metrics. Real-Time

Imaging 11(5–6), 417–428 (2005)

45. Hore, E.S., Qiu, Bin, Wu, H.R.: Improved vector filtering for

color images using fuzzy noise detection. Opt. Eng. 42(6),

1656–1664 (2003)

46. Smolka, B.: Robustified vector median filter. In: 9th International

Conference on Computer Science Education (ICCSE), 2014,

pp. 362–367, Aug 2014

47. Smolka, B., Andrzejczak, A., Nabialkowski, P., Nelip, A.:

Thresholded median filter for the impulsive noise removal in

digital images. In: The 5th International Conference on Infor-

mation, Intelligence, Systems and Applications (IISA’2014),

pp. 355–360, July 2014

48. Smolka, B.: Fast impulsive noise removal in color images. In:

IEEE International Conference on Image Processing (ICIP’2013)

Melbourne, Australia, pp. 1212–1216 (2013)

49. Phu, M.Q., Tischer, P.E., Wu, H.R.: Statistical analysis of

impulse noise model for color image restoration. In: 6th IEEE/

ACIS International Conference on Computer and Information

Science (ICIS’2007) 2007

50. Hamza, A.B., Krim, H.: Image denoising: a nonlinear robust

statistical approach. IEEE Trans. Signal Process. 49(12),

3045–3054 (2001)

51. Pilevar, A.H., Saien, S., Khandel, M., Mansoori, B.: A new filter

to remove salt and pepper noise in color images. SIViP 9(4),

779—786 (2015). ISSN: 1863-1703

52. Wang, G., Li, D., Pan, W., Zang, Z.: Modified switching median

filter for impulse noise removal. Signal Process. 90(12),

3213–3218 (2010)

53. Esakkirajan, S., Veerakumar, T., Subramanyam, A.N., Pre-

mChand, C.H.: Removal of high density salt and pepper noise

through modified decision based unsymmetric trimmed median

filter. IEEE Signal Process. Lett. 18(5), 287–290 (2011)

54. Venkatesan, P., Nagarajan, G.: Removal of Gaussian and impulse

noise in the colour image progression with fuzzy filters. Int.

J. Electron. Signals Syst. 3(1), 1–6 (2013)

55. Lukac, R.: Adaptive color image filtering based on center-

weighted vector directional filters. Multidimens. Syst. Signal

Process. 15(2), 169–196 (2004)

56. Morillas, S., Gregori, V., Peris-Fajarnés, G., Latorre, P.: A new

vector median filter based on fuzzy metrics. In: Kamel, M.,

Campilho, A. (eds.) Image Analysis and Recognition. Lecture

Notes in Computer Science, vol. 3656, pp. 81–90. Springer,

Berlin (2005)

57. Plataniotis, K.N., Androutsos, D., Venetsanopoulos, A.N.:

Adaptive fuzzy systems for multichannel signal processing. Proc.

IEEE 87(9), 1601–1622 (1999)

58. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature

similarity index for image quality assessment. IEEE Trans. Image

Process. 20(8), 2378–2385 (2011)

59. Mou X., Zhang, L., Zhang, L., Zhang, D.: FSIM: a feature sim-

ilarity index for image quality assessment, (2013). http://sse.

tongji.edu.cn/linzhang/IQA/FSIM/FSIM.htm

60. Wang, Z., Bovik, A., Sheikh, A., Simoncelli, E.: Image quality

assessment: from error visibility to structural similarity. IEEE

Trans. Image Process. 13(4), 600–612 (2004)

61. Lee, D., Plataniotis, K.N.: Towards a full-reference quality

assessment for color images using directional statistics. IEEE

Trans. Image Process. 24(11), 3950–3965 (2015)

62. Smolka, B., Szczepanski, M., Plataniotis, K.N., Venetsanopoulos,

A.N.: Fast modified vector median filter. In: Skarbek, W. (ed.)

Computer Analysis of Images and Patterns. Lecture Notes in

Computer Science, vol. 2124, pp. 570–580. Springer, Berlin

(2001)

63. Celebi, M.E.: Fourier 0.8, (2008). http://sourceforge.net/projects/

fourier-ipal

64. Stolinski, S., Grabowski, S., Bieniecki, W.: On efficient imple-

mentation of median filters in theory and in practice. Automatyka

13(3), 1021–1032 (2009)

65. Kim, J., Wills, D.S.: Fast vector median filter implementation

using the color pack instruction set. In: Proceedings of 2002 IEEE

10th Digital Signal Processing Workshop, 2002 and the 2nd

Signal Processing Education Workshop, pp. 339–343, Oct 2002

66. Boudabous, A., Ben Atitallah, A., Kadionik, P., Khriji, L.,

Masmoudi, N.: HW/SW FPGA implementation of vector median

filter. In: Research in Microelectronics and Electronics Confer-

ence, 2007. (PRIME’2007). Ph.D., pp. 101–104, July 2007

67. Sánchez, M.G., Vidal, V., Bataller, J., Arnal, J.: A parallel

method for impulsive image noise removal on hybrid CPU/GPU

systems. In: 2013 International Conference on Computational

Science. Procedia Computer Science, vol. 18, pp. 2504–2507,

2013

68. Sánchez, M.G., Vidal, V., Arnal, J., Vidal, A.: Image noise

removal on heterogeneous cpu-gpu configurations. In: 2014

International Conference on Computational Science. Procedia

Computer Science, vol. 29, pp. 2219–2229, 2014

Lukasz B. Malinski is an Assistant Professor at the Division of

Industrial Informatics. He graduated from Silesian University of

Technology and received M.Sc. degree in Automatic Control And

Robotics in June 2009. After that he started the Ph.D. studies and

performed research in field of identification of bilinear time-series

models. He received his Ph.D. in April 2014. His current main

scientific interest is focused on stochastic optimisation for nonlinear

problems, but also he explores fields of system identification and

image processing. He is the author of over 17 articles.

J Real-Time Image Proc (2019) 16:1077–1098 1097

123

http://dx.doi.org/10.1007/s11554-015-0500-z
http://sse.tongji.edu.cn/linzhang/IQA/FSIM/FSIM.htm
http://sse.tongji.edu.cn/linzhang/IQA/FSIM/FSIM.htm
http://sourceforge.net/projects/fourier-ipal
http://sourceforge.net/projects/fourier-ipal


Bogdan Smolka received the Diploma in Physics degree from the

Silesian University, Katowice, Poland, in 1986 and the Ph.D. degree

in computer science from the Department of Automatic Control,

Silesian University of Technology, Gliwice, Poland, in 1998. From

1986 to 1989, he was a Teaching Assistant at the Department of

Biophysics, Silesian Medical University, Katowice, Poland. From

1992 to 1994, he was a Teaching Assistant at the Technical

University of Esslingen, Germany. Since 1994, he has been with

the Silesian University of Technology. In 1998, he was appointed as

an Associate Professor in the Department of Automatic Control. He

has also been an Associate Researcher with the Multimedia Labora-

tory, University of Toronto, Canada since 1999. In 2007, Dr. Smolka

was promoted to Professor at the Silesian University of Technology.

He has published over 200 papers on digital signal and image

processing in refereed journals and conference proceedings. His

current research interests include low-level color image processing,

human-computer interaction, and visual aspects of image quality.

1098 J Real-Time Image Proc (2019) 16:1077–1098

123


	Fast adaptive switching technique of impulsive noise removal in color images
	Abstract
	Introduction
	Adaptive switching filtering design
	Parameter selection
	Comparison with the state-of-the-art denoising methods
	Computational complexity
	Conclusions
	Open Access
	References


