
2

Fast address lookup for
Internet routers

Stefan Nilsson

Helsinki University of Technology

P.O. Box 1100, FIN-02015 HUT, Finland, sni@cs. hut. fi

Gunnar Karlsson

Swedish Institute of Computer Science

P.O. Box 1263, SE-164 29 Kista, Sweden, gk@sics. se

Abstract

We consider the problem of organizing address tables for internet routers to enable

fast searching. Our proposal is to to build an efficient, compact and easily searchable

implementation of an IP routing table by using an LC-trie, a trie structure with com­

bined path and level compression. The depth of this structure increases very slowly

as function of the number of entries in the table. A node can be coded in only four

bytes and the size of the main search structure never exceeds 256 kB for the tables in

the US core routers. We present a software implementation that can sustain approxi­

mately half a million lookups per second on a 133 MHz Pentium personal computer,

and two million lookups per second on a more powerful SUN Spare Ultra IT work­

station.

Keywords

Address lookup, LC-trie, packet forwarding, internet protocol

1 INTRODUCTION

The high and steadily increasing demand for Internet service has lead to a new ver­

sion of the internet protocol to avoid the imminent starvation of the present address

space. The new version 6 being standardized will replace the current 32-bit addresses

with a virtually inexhaustible 128-bit address space. Another consequence of the

growth is the need for higher transmission and switching capacities. Links may read-

Broadband CommuDications P. KUhn & R. Ulrich (Eds.)

© 1998 IFIP. Published by Cbapman & Hall

12

a.

b.

Plenary Sessions: New Applications and Internet Technologies

Network

links

Network
links

en ine

Interconnection

network

(switch fabric)

I "'

Interconnection

network

(switch fabric)

I "'

Figure 1 Two router architectures: a. one or more centralized routing engines, b.

one routing engine per port.

ily be upgraded in speed and added in number to increase the network's transmission

capacity. Equipment for the synchronous digital hierarchy is now being deployed to

provide link rates of 155.5 Mb/s, 622 Mb/s and 2.5 Gb/s. Increases in switching ca­

pacity are not equally accessible and the bottlenecks in today's Internet are chiefly

the routers.

With the upgrade of the transmission infrastructure follows that routers have to in­

terconnect both more and faster links. But few if any of today's routers can provide

switching with aggregate throughput of 50 to 100 Gb/s, as needed for a few tens of

ports with bit rates of up to 2.5 Gb/s. Yet this can be accomplished by fast packet

switches, as proven by the availability of high-capacity ATM switches on the mar­

ket. It is important to note that there are no fundamental limits as to why the same

performance cannot be expected for IP routers. The problems are rather pertaining

to design choices and to practical implementation.

In this paper we consider address lookup as one of the basic functions of a router,

along with buffering, scheduling and switching of packets. All of these functions

have to be studied in order to increase throughput. The variable lengths of IP packets

complicate buffer management and scheduling compared to protocol-data units of

fixed length, but an average packet length far longer than a cell may compensate by

reducing the number of such operations per second for a given link rate. Switching

of packets could be made in parallel if routers incorporate space-division intercon­

nection fabrics rather than the customarily used data buses. The remaining function

that has been deemed critical for the viability of multi-Gb/s routers is the address

lookup [11].

Fast address look-up for internet routers 13

The address lookup has traditionally been performed centrally by a processor that

serves all input ports of the router (Figure la). An input module sends the header

of a packet to the processor (often called a forwarding or routing "engine"). The

processor uses the destination address to determine the output port for the packet and

its next-hop address (it also modifies the header). When the header has been returned

along with the routing information, the input module forwards the packet across the

interconnection network to the designated output port. The next-hop address is used

at the output port to determine the link address of the packet, in case the link is

shared by multiple parties (as an Ethernet, Token Ring or FDDI network), and it is

consequently not needed if the output connects to a point-to-point link.

When a single routing engine cannot keep up with the requests from the input

ports, the remedy has been to employ multiple engines in parallel. An advantage of

having engines serving as one pool is the ease of balancing loads from the ports when

they have different speeds and utilization levels. The disadvantage is the round-trip

transfer of packet headers across the interconnection network. This load is concen­

trated to a few outputs and can therefore be problematic for a space-division network.

When the network links are upgraded to higher bit rates, the natural modification is

to place one routing engine on each input module (Figure lb) simply because there

will not be much idle time in the processing to share with other ports. This means

that each engine only needs to offer a rate of address resolutions appropriate for the

link, and that the interconnection network is not loaded unnecessarily by the transfer

of packet headers (which will become a multiple of 40 bytes long by the introduction

of IP version 6). To support a 2.5 Gb/s link means that 1.25 million lookups should

be sustained on the average for today's mean packet size of 250 bytes.

In this paper we present an efficient organization of IP routing tables that allows

fast address lookup in software. Our implementation can process approximately half

a million addresses per second on a standard 133 MHz Pentium personal computer.

The performance scales nicely to fully exploit faster memory and processor clock

rates, which is illustrated by the fact that a SUN Spare Ultra II workstation can

perform 2 million lookups per second. The advantage with a software solution, such

as ours, is that the processor can run separate lookup routines for multicast and flow­

based routing (based on source address and a 24-bit long flow label in IP version 6).

It can also process various routing options as specified by extension headers. The

processor's caching protocol automatically exploit temporal correlations in packet

destinations by keeping the most accessed parts of the data structure in the on-chip

cache. A low-cost implementation could consist of a field-programmable gate array,

instead of a microprocessor, and less than a megabyte of random-access memory.

2 ADDRESS LOOKUP FOR THE INTERNET PROTOCOL

An IP address has traditionally consisted of one to five bits specifying an address

class, a network identifier and a host identifier. The network identifier points to a

network within an internet, and the host identifier points to a specific computer on

that network. Routing is based on the network identifier solely. Each of the classes A

14 Plenary Sessions: New Applications and Internet Technologies

through C had a predetermined length of the network identifier which made the ad­

dress lookup in routers straightforward.

This class-based structure has been abandoned in favor of the classless inter­

domain routing (CIDR) [8]. An IP address can now be split into network and host

identifiers at almost any point. Address lookup is done by matching a given address

to bit strings of variable lengths (prefixes) that are stored in the routing table. If more

than one valid prefix matches an address in a routing table, the information associ­

ated with the longest prefix is used to forward the packet. For instance, the address

222.21.67.68 matches 222.21.64.0 with 18 bits and 222.16.0.0 with 12 bits. The first

of these two is longer and should consequently be used for forwarding the packet.

The matching prefix is not necessarily the same in all routers for one and the

same IP address. This allows the tables to be smaller in size since a large number

of destinations can be represented by a short network identifier. Most routers use a

default route which is given by a prefix of length zero. It matches all addresses and

is used if no other prefix match. The core routers in the Internet backbone are not

allowed to use default routes and their address tables tend to be larger than in other

routers. We have used tables from these routers in our evaluation to ensure that we

test with realistic worst cases.

The result of the lookup is the port number and next-hop address. A next-hop

address is not needed for a point-to-point link and the corresponding routing-table

entry would only need to contain the port number. Even when next-hop addresses

are needed, there are usually fewer distinct such addresses than there are entries in

the routing table. The table can therefore contain a pointer to an array which lists the

next-hop addresses in use.

The address structure for IP version 6 is not fully decided even for unicast ad­

dresses. It is, however, suggested to keep the variable-length network identifiers (or

subnetwork identifiers) [10]. Thus, a subnetwork can be identified by some n bits in

a router, while the remaining 128 - n bits form the interface identifier (replacing the

host identifier of version 4). Our data structure has been designed to handle version 6

addresses when needed.

There has been remarkably little interest in the organization of routing tables both

for hardware and software based searches during the last years. Hardware imple­

mentation, which we do not consider here, is discussed in [17]. We therefore place

our proposal in relation only to the three most recent works from the literature. Our

search structure and implementation is akin to and has been inspired by the work of

Brodnik et al. [4]. They use a different data structure from ours and are concerned

with the size of the trie to ensure that it fits in a processor's on-chip cache memory.

As a consequence, it is not immediately clear if the structure will scale to the longer

addresses of IP version 6. A main idea of their work is to quantify the prefix lengths

to levels of 16, 24 and 32 bits. This exploits the old class-based address structure

but may suffer from the ongoing redistribution of addresses that tends to smooth the

distribution of the prefix lengths. Rather than expanding the prefixes to a few levels,

we use level-compression to reduce the size of the trie. Thus, we obtain similar per-

Fast address look-up for internet routers 15

formance in our simulations with a more general structure and without making any

assumptions about the address structure.

Waldvogel et al. [15] use a different technique. Prefixes of fixed lengths are stored

in separate hash tables and the search ·operation is implemented using binary search

on the number of bits. Using 16 and 24 bits for the first two hash table lookups this

search strategy is very efficient for current routing tables. However, for a routing

table with longer prefixes and a smother distribution of prefix lengths this approach

may not be as attractive.

The work on prefix matching by Doeringer, Karjoth, and Nassehi [6] uses a trie

structure. One of their concerns is to allow fully dynamic updates. This results in

a large space overhead and less than optimum performance. The nodes of the trie

structure contains five pointers and one index. More general but slightly dated works

on Gb/s routers that could be of interest to the reader are presented in [3, 14, 16].

3 LEVEL-COMPRESSED TRIES

The trie [7] is a general purpose data structure for storing strings. The idea is very

simple: each string is represented by a leaf in a tree structure and the value of the

string corresponds to the path from the root of the tree to the leaf. Consider a small

example. The binary strings in Figure 2 correspond to the trie in Figure 3a. In par­

ticular, the string 010 corresponds to the path starting at the root and ending in leaf

number 3: first a left-tum (0), then a right-tum (1), and finally a turn to the left (0).

For simplicity, we will assume that the set of strings to be stored in a trie is prefix­

free, no string may be a proper prefix of another string. We postpone the discussion

of how to represent prefixes to the next section.

This simple structure is not very efficient. The number of nodes may be large

and the average depth (the average length of a path from the root to a leaf) may be

long. The traditional technique to overcome this problem is to use path compression,

each internal node with only one child is removed. Of course, we have to somehow

record which nodes are missing. A simple technique is to store a number, the skip

value, in each node that indicates how many bits that have been skipped on the path.

A path-compressed binary trie is sometimes referred to as a Patricia tree [9]. The

path-compressed version of the trie in Figure 3a is shown in Figure 3b. The total

number of nodes in a path-compressed binary trie is exactly 2n - 1, where n is the

number of leaves in the trie. The statistical properties of this trie structure are very

well understood [5, 12]. For a large class of distributions path compression does not

give an asymptotic reduction of the average depth. Even so, path compression is very

important in practice, since it often gives a significant overall size reduction.

One might think of path compression as a way to compress the parts of the trie

that are sparsely populated. Level compression [1] is a recently introduced technique

for compressing· parts of the trie that are densely populated. The idea is to replace

the i highest complete levels of the binary trie with a single node of degree 2i; this

replacement is performed recursively on each subtrie. The level-compressed version,

the LC-trie, of the trie in Figure 3b is shown in Figure 3c.

16 Plenary Sessions: New Applications and Internet Technologies

nbr string

0 0000

0001

2 00101

3 010

4 OliO

5 0111

6 100

7 101000

8 101001

9 10101

10 10110

II lOIII

12 110

13 11101000

14 11101001

Figure 2 Binary strings to be stored in a trie structure.

a.

0

7 8

13 14

b.

Skip""'

0 13 14

7 8

c.

0

7 8

Figure 3 a. Binary trie, b. Path-compressed trie, c. LC-trie.

Fast address look-up for internet routers 17

branch skip pointer

0 3 0 I

0 9

2 0 2 2

3 0 0 3

4 I 0 11

5 0 0 6

6 2 0 13

7 0 0 12

8 1 4 17

9 0 0 0

10 0 0 1

11 0 0 4

12 0 0 5

13 1 0 19

14 0 0 9

15 0 0 10

16 0 0 11

17 0 0 13

18 0 0 14

19 0 0 7

20 0 0 8

Figure 4 Array representation of the LC-trie in Figure 3c.

For an independent random sample with a density function that is bounded from

above and below the expected average depth of an LC-trie is 8(log* n), where log* n

is the iterated logarithm function, log* n = 1 +log* (log n), if n > 1, and log* n = 0

otherwise. For data from a Bernoulli-type process with character probabilities not all

equal, the expected average depth is 8(log log n) [2]. Uncompressed tries and path­

compressed tries both have expected average depth 8(logn) for these distributions.

If we want to achieve the efficiency promised by these theoretical bounds, it is of

course important to represent the trie efficiently. The standard implementation of a

trie, where a set of children pointers are stored at each internal node is not a good

solution, since it has a large space overhead. This may be one explanation why trie

structures have traditionally been considered to require much memory.

A space efficient alternative is to store the children of a node in consecutive mem­

ory locations. In this way, only a pointer to the leftmost child is needed. In fact, the

nodes may be stored in an array and each node can be represented by a single word.

In our implementation, the first 5 bits represent the branching factor, the number of

descendants of the node. This number is always a power of 2 and hence, using 5 bits,

the maximum branching factor that can be represented is 231 . The next 7 bits repre­

sent the skip value. In this way, we can represent values in the range from 0 to 127,

which is sufficient for IP version 6 addresses. This leaves 20 bits for the pointer to

18 Plenary Sessions: New Applications and Internet Technologies

the leftmost child and hence, using this very compact 32 bit representation, we can

store at least 219 strings. Figure 4 shows the array representation of the LC-trie in

Figure 3c, each entry represents a node. The nodes are numbered in breadth-first or­

der starting at the root. The number in the branch column indicates the number of bits

used for branching at each node. A value k 2: 1 indicates that the node has 2k chil­

dren. The value k = 0 indicates that the node is a leaf. The next column contains

the skip value, the number of bits that can be skipped during a search operation. The

value in the pointer column has two different interpretations. For an internal node, it

is used as a pointer to the leftmost child; for a leaf it is used as a pointer to a base

vector containing the compleat strings.

The search algorithm can be implemented very efficiently. Let s be the string

searched for and let EXTRACT (p, b, s) be a function that returns the number given

by the b bits starting at position pin the strings. We denote the array representing

the tree by T. The root is stored in T [0].

node= T[O];

pos = node.skip;

branch = node.branch;

adr = node.adr;

while (branch != 0) {

}

node= T[adr + EXTRACT(pos, branch, s)];

pos = pos +branch+ node.skip;

branch = node.branch;

adr = node.adr;

return adr;

Note that the address returned only indicates a possible hit; the bits that have been

skipped during the search may not match. Therefore we need to store the values of

the strings separately and perform one additional comparison to check whether the

search actually was successful.

As an example we search for the string 10110111. We start at the root, node

number 0. We see that the branching value is 3 and skip value is 0 and therefore we

extract the first three bits from the search string. These 3 bits have the value 5 which

is added to the pointer, leading to position 6 in the array. At this node the branching

value is 2 and the skip value is 0 and therefore we extract the next two bits. They

have the value 2. Adding 2 to the pointer we arrive at position 15. At this node the

branching value is 0, which implies that it is a leaf. The pointer value 5 gives the

position of the string in the base vector. Observe that it is necessary to check whether

this constitutes a true hit. We need to compare the first 5 bits of the search string

with the first 5 bits of a value stored in the base vector in the position indicated

by the pointer (10) in the leaf. In fact, our table (Figure 2) contains a prefix 10110

matching the string and the search was successful.

Fast address look-up for internet routers 19

4 REPRESENTATION OF A ROUTING TABLE

The routing table consists of four parts. At the heart of the data structure we have

an LC-trie implemented as discussed in the previous section. The leaves of this trie

contain pointers into a base vector, where the complete strings are stored. Further­

more we have a next-hop table, an array containing all possible next-hops addresses,

and a special prefix vector, which contains information about strings that are proper

prefixes of other strings. This is needed because internal nodes of the LC-trie do not

contain pointers to the base vector.

The base vector is typically the largest of these structures. Each entry contains a

string. In the current implementation it occupies 32 bits, but it can of course easily

be extended to the 128 bits required in IP version 6. Notice that it is not necessary

to store the length of the string, since the length will be known to the search routine

after the traversal of the LC-trie. Each entry also contains two pointers: one pointer

into the next-hop table and one pointer into the prefix table. The search routine follow

the next-hop pointer if the search was successful. If not, the search routine tries to

match a prefix of the string with the entries in the prefix table. The prefix pointer has

the special value -1 if no prefix of the string is present.

The prefix table is also very simple. Each entry contains a number that indicates

the length of the prefix. The actual value need not be explicitly stored, since it is

always a proper prefix of the corresponding value in the base vector. As in the base

vector each entry also contains two pointers: one pointer into the next-hop table and

one pointer into the prefix table. The prefix pointer is needed, since it might happen

that a path in the trie contains more than one prefix.

The main part of the search is spent within the trie. In our experiments the average

depth of the trie is typically close to 6 and one memory lookup is performed for each

node traversed. The second step is to access the base vector. This accounts for one

additional memory lookup. If the string is found at this point, one final lookup in the

next-hop table is made. This memory access will be fast since the next-hop table is

typically very small, in our experiments less than 60 entries, and can be expected to

reside in cache memory.

Finally, if the string searched for does not match the string in the base vector, an

addition lookup in the prefix vector will have to be made. Also this vector is typi­

cally very small, in our experiments it contains less than 2000 entries, and it is rarely

accessed more than once per lookup. In all the routing tables that we have examined

we have found only a few multiple prefixes. Conceptually a prefix corresponds to an

exception in the address space. Each entry in the routing table defines a set of ad­

dresses that share the same routing table entry. In such an address set, a longer match

corresponds to a subset of addresses that should be routed differently. Overlapping

prefixes could also be avoided by expanding the shorter prefixes. For instance, in­

stead of having the overlapping prefixes 101 and 10111 in a table, 101 could be

expanded to 10100, 10101 and 10110 which all would point to the same routing in­

formation. The expansion increases the trie size and we have therefore chosen to use

a separate prefix vector. Furthermore, we expect this special case to disappear with

20 Plenary Sessions: New Applications and Internet Technologies

Site Routing Next- Number of Entries Aver. Lookups

Entries Hops Trie Base Prefix Depth Spare PC

Mae East 39819 56 62991 38380 1439 5.92 1.5 0.42

Mae West 14618 55 24143 14291 327 6.08 2.1 0.48

AADS 20299 19 33159 19846 453 6.28 1.6 0.45

Pac Bell 206ll 3 33 591 20171 440 6.32 1.9 0.45

FUNET 41578 20 63623 39765 1813 8.31 2.3 0.58

Table 1 Experimental data. The speed is measured in million lookups per second.

the introduction of IP version 6 since the new address space will be so large as to

make it possible to allocate addresses in a strictly hierarchical fashion.

5 RESULTS

The measurements were performed on two different machines: a SUN Ultra Spare II

with two 296-MHz processors and 512MB of RAM, and a personal computer with

a 133-MHz Pentium processor and 32MB of RAM. The programs are written in

the C programming language and have been compiled with the gee compiler us­

ing optimization level -04. We used routing tables provided by the Internet Perfor­

mance Measurement and Analysis project (URL http: I /www .merit. edu/ipma).

We have used the routing tables for Mae East, Mae West, AADS, and Pac Bell from

the 24th of August, 1997. We did not have access to the actual traffic being routed ac­

cording to these tables and therefore the traffic is simulated: we simply use a random

permutations of all entries in a routing table. The entries were extended to 32 bits

numbers by adding zeroes (this should not affect the measurements, since these bits

are never inspected by the search routine). We have, however, been able to test our

algorithm on a routing table with recorded traces of the actual packet destinations.

The router is part of the Finnish University and Research Network (FUNET). Real

traffic gives better results than runs of randomly generated destinations and owes to

dependencies in the destination addresses. The time measurements have been per­

formed on sequences of lookup operations, where each lookup includes fetching the

address from an array, performing the routing table lookup, accessing the nexthop

table and assigning the result to a volatile variable.

Some of the entries in the routing tables contain multiple next-hops. In this case,

the first one listed was selected as the next-hop address for the routing table, since

we only considered one next-hop address per entry in the routing table. There were

also a few entries in the routing tables that did not contain a corresponding next-hop

address. These entries were routed to a special next-hop address different from the

ones found in the routing table.

Table 1 gives a summary of the results. It shows the number of unique entries in

the routing table, the number of next-hop addresses, the size of our data structure,

Fast address look-up for internet routers 21

the average of the trie, and the number of lookups measured in million lookups per

second. In our current implementation an entry in the trie occupies 4 bytes, while

the entries in the base vector and the prefix vector occupy 12 bytes each. The largest

table, FUNET, still occupies less than 0.8 MB of memory, of which the trie-part is

less than 256 kB.

The average throughput corresponding to the number of lookups per second is

found by multiplying it with the average packet size, which currently is around 250

bytes. The routing system could be modeled as a G/G/1 queue in order to find the

number of pending lookups as a function of the routing system's load. The arrival

process would be given by the trimodal packet-length distribution (peaks around

40, 550 and 1500 bytes) divided by the link rate and the service distribution by the

lookup times.

6 FINAL REMARKS AND CONCLUSIONS

The Internet has in practice become the long-sought broadband integrated services

digital network, in the meaning of a global communication infrastructure for mul­

timedia services [13]. The intention was, however, that the B-ISDN should have

been based on the asynchronous transfer mode rather than on IP. Now when that

raison d'etre for ATM is disappearing there is naturally great interest in salvaging

the enormous investment that has been made by finding a role for ATM as carrier

of IP packets. Thus, we find IP routing combined with ATM switching. The idea is

to establish a virtual circuit for a flow of packets in order to amortize the cost of

IP address lookup over several packets [11]. We believe that pure IP routing is a

competitive alternative and have shown that software-based address lookup can be

performed sufficiently fast for multi-Gb/s systems.

We have demonstrated how IP routing tables can be succinctly represented and ef­

ficiently searched by structuring them as level-compressed tries. Our data structure is

fully general and does not rely on the old class-based structure of the address format

for its efficiency. Even though the data structure does not make explicit assumptions

about the distribution of the address, it does adapt gracefully: path compression com­

pacts the sparse parts of the trie and level compression packs the dense parts. The

average depth of the trie grows very slowly. This is in accordance with theoretical

results. Recall that the average depth of an LC-trie is 8(log log n) for a large class of

distributions. Actually, our experiments show that in some cases the average depth is

smaller for a larger table. This can be explained by the fact that a larger table might

be more densely populated and hence the level compression will be more efficient.

The inner loop of the search algorithm is very tight; it contains only one addressing

operation and a few very basic operations, such as shift and addition. Furthermore,

the trie can be stored very compactly, using only one 32-bit machine word per node.

In fact, the largest trie in our experiments consumed less than 256 kB of memory.

The base vector is larger, but is only accessed once per lookup.

The results show that the routinely made statements about possible processing

speeds for IP addresses, such as those put forward in [11], are not valid. In many

22 Plenary Sessions: New Applications and Internet Technologies

cases, for instance in [4], the trie implementations cited do not reflect the state of

the art. Thus, we argue that our new data structure is superior to earlier presented

software methods for the organization of IP routing tables.

We thank Erja Kinnunen and Pekka KytOlaakso of the Center for Scientific Com­

puting at Helsinki University of Technology for providing the FUNET routing table

and associated packet traces. This research was done when G. Karlsson was visit­

ing professor at the Telecommunication Software and Multimedia Laboratory at the

Helsinki University of Technology. This support is gratefully acknowledged.

REFERENCES

[1] A. Andersson and S. Nilsson. Improved behaviour of tries by adaptive branching. In­

formation Processing Letters, 46(6):295-300, 1993.

[2] A. Andersson and S. Nilsson. Faster searching in tries and quadtrees - an analysis of

level compression. In Proceedings of the Second Annual European Symposium on

Algorithms, pages 82-93, 1994. LNCS 855.

[3] A. Asthana, C. Delph, H. V. Jagadish, and P. Krzyzanowski. Towards a gigabit IP router.

Journal of High Speed Networks, I (4):281-288, 1992.

[4] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small forwarding tables for fast

routing lookups. ACM Computer Communication Review, 27(4):3-14, October 1997.

[5] L. Devroye. A note on the average depth of tries. Computing, 28(4):367-371, 1982.

[6] W. Doeringer, G. Karjoth, and M. Nassehi. Routing on longest-matching prefixes.

IEEF/ACM Transanctions on Networking, 4(1):86-97, February 1996.

[7] E. Fredkin. Trie memory. Communications of the ACM, 3:490-500, 1960.

[8] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless inter-domain routing (CIDR): an ad­

dress assignment and aggregation stragegy. Request for Comments: 1519, September

1993.

[9] G. H. Gonnet and R. A. Baeza-Yates. Handbook of Algorithms and Data Structures.

Addison-Wesley, second edition, 1991.

[1 0] R. Hinden and S. Deering. IP version 6 addressing architecture. Request for Comments:

1884, December 1995.

[11] P. Newman, G. Minshall, T. Lyon, and L. Huston. IP switching and gigabit routers.

IEEE Communications Magazine, 35(1):64-69, January 1997.

[12] B. Rais, P. Jacquet, and W. Szpankowsk.i. Limiting distribution for the depth in Patricia

tries. SIAM Journal on Discrete Mathematics, 6(2):197-213, 1993.

[13] W. D. Sincosk.ie. Viewpoint: Broadband ISDN is happening- except it's spelled IP.

IEEE Spectrum, 34(1):32-33, 1997.

[14] A. Tantawy, 0. Koufopavlou, and M. Zittertbart. On the design of a multigigabit IP

router. Journal of High Speed Networks, 3(3), 1994.

[15] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high speed IP routing

lookups. ACM Computer Communication Review, 27(4):25-36, October 1997.

[16] R. J. Walsh and C. M. Ozveren. The gigaswitch control processor. IEEE Network,

9(1):36-43, January/February 1995.

[17] C. A. Zukowski and T. Pei. Putting routing tables into silicon. IEEE Network, pages

42-50, January 1992.

