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1. INTRODUCTION

From the present intoxication with the Web to the future promise of
electronic commerce, the Internet has captured the imagination of the
world. It is hardly a surprise to find that the number of Internet hosts
triples approximately every two years [Gray 1996]. Also, Internet traffic is
doubling every three months [Tammel 1997], partly because of increased
users, but also because of new multimedia applications. The higher-band-
width need requires faster communication links and faster network rout-
ers. Gigabit fiber links are commonplace,1 and yet the fundamental limits
of optical transmission have hardly been approached. Thus the key to
improved Internet performance is faster routers. This market opportunity
has led to a flurry of startups (e.g., Avici, Juniper, Torrent) that are
targeting the gigabit and terabit router market.

What are the fundamental impediments to improved router performance?
An Internet message (called a packet) arrives at an input link. A processor2

examines the destination address of the packet in a Forwarding Database
to determine the output link. In some cases, the processor may also perform
“firewall” transit checks that require a lookup in a database of firewall
rules. If the checks succeed, the processor instructs a switching system to
switch the packet to the corresponding output link. Many routers also do a
form of scheduling at the output link to ensure fairness among competing
packet streams, and to provide delay bounds for time-critical traffic such as
video.

Thus the three central bottlenecks in router forwarding are lookups,
switching, and output scheduling. Switching is well studied, and good
solutions like fast busses and crossbar switches (e.g., McKeown et al. [1997]
and Turner [1997]) have been developed. Similarly, most vendors feel that
full-scale fair queuing3 is not required for a few years until video usage
increases. In the interim, cheaper approximations such as weighted and
deficit round robin [Shreedhar and Varghese 1996] ensure fairness and can
easily be implemented. Thus a major remaining bottleneck is fast Internet
lookups, the subject of this article.

1.1 The Internet Lookup Problem

Internet address lookup would be simple if we could lookup a 32-bit IP
destination address in a table that lists the output link for each assigned
Internet address. In this case, lookup could be done by hashing, but a
router would have to keep millions of entries. To reduce database size and
routing update traffic, a router database consists of a smaller set of
prefixes. This reduces database size, but at the cost of requiring a more

1MCI and UUNET have upgraded their Internet backbone links to 622Mbits/sec.
2Some designs have a processor per input link; others use a processor per router. Some designs
use a general purpose processor; others use dedicated hardware.
3Fair queuing [Demers et al. 1989] is a form of output scheduling that guarantees bandwidth
fairness and tight delay bounds.
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complex lookup called longest matching prefix. It also requires a more
complex update procedure when prefixes are added and deleted.

A metaphor can explain the compression achieved by prefixes. Consider a
flight database in London. We could list the flights to a thousand U.S. cities
in our database. However, suppose most flights to the U.S. hub though
Boston, except flights to California that hub through LA. We can reduce the
flight database from a thousand entries to two prefix entries (USA* 22.
Boston; USA.CA.* 22. LA). We use an asterisk to denote a wildcard that
can match any number of characters. The flip side of this reduction is that
a destination city like USA.CA.Fresno will now match both the USA* and
USA.CA.* prefixes; we must return the longest match (USA.CA.*).

The Internet address lookup problem is similar except that that we use
bit strings instead of character strings. The currently deployed version of
the Internet (v4) uses 32-bit destination addresses; each Internet router
can have a potentially different set of prefixes, each of which we will denote
by a bit string (e.g., 01*) of up to 32 bits followed by a “*”. Thus if the
destination address began with 01000 and we had only two prefix entries
(01* 22. L1; 0100* 22. L2), the packet should be switched to link L2.

The Internet began with a simpler form of hierarchy in which 32-bit
addresses were divided into a network address and a host number, so that
routers could only store entries for networks. For flexible address alloca-
tion, the network addresses came in variable sizes: Class A (8 bits), Class B
(16 bits), and Class C (24 bits). Organizations that required more than 256
hosts were given class B addresses; these organizations further structured
their Class B addresses (“subnetting”) for internal routing. Finally, Class B
addresses began to run out. Thus larger organizations needed multiple
Class C addresses. To reduce backbone router table size, the CIDR scheme
[Rechter and Li 1993] now allocates larger organizations multiple contigu-
ous Class C addresses that can be aggregated by a common prefix. In
summary, the forces of subnetting and CIDR “supernetting” have led to the
use of prefixes for the Internet. While the currently deployed IPv4 protocol
uses 32-bit addresses, the next generation IPv6 protocol uses 128-bit
addresses and continues to use longest matching prefix.

Best matching prefix is also used in the OSI Routing scheme [Perlman
1992]. Best matching prefix appears to be a fundamental problem for
routers, and not just an artifact of the way the Internet has evolved.

1.2 Contributions

Our first contribution is a set of generic transformation techniques that can
be applied to speed up any prefix matching lookup algorithm whose
running time depends on the number of distinct prefix lengths in the
database. Our major transformation technique, controlled prefix expansion,
converts a set of prefixes with l distinct lengths to an equivalent set of
prefixes with k distinct lengths for any k , l. Naive expansion can
considerably increase storage. Thus, our second generic technique uses
dynamic programming to solve the problem of picking optimal expansion
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levels to minimize storage. Finally, our third generic technique, local
restructuring, consists of three techniques that reorganize data structures
to reduce storage and increase cache locality.

Our second contribution is to introduce two specific IP lookup algorithms,
based on the transformation techniques, that are twice as fast as previous
IP algorithms. Our first specific scheme, Expanded Tries, provides fast
lookup times as well as fast update times, which may be crucial for
backbone routers. The Expanded trie scheme can also be tuned to trade
increased memory for reduced search times. Our second specific scheme,
based on Binary Search on Levels, provides a scheme that scales well to
IPv6 and yet has competitive search times for IPv4. Our schemes have been
implemented by at least 3 companies and should be deployed in actual
products by the end of 1998.

1.3 Outline of the Article

We begin in Section 2 by describing a model for evaluating lookup perfor-
mance. We review previous work in Section 3 using our performance model.
We begin our contribution by describing the three generic transformation
techniques in Section 4. We describe how to apply our techniques to
improve the performance of trie lookup in Section 5 to yield what we call
expanded tries. We describe two versions of expanded tries, fixed stride and
variable stride tries, and describe how to calculate optimal expanded tries
that use the smallest possible storage for a given search speed. We also
compare expanded tries more specifically to other multibit trie solutions of
recent vintage. We then apply our techniques to improve the performance
of Binary Search on Levels [Waldvogel et al. 1997] in Section 6. We briefly
describe hardware implementation issues in Section 7. We conclude in
Section 8.

2. PERFORMANCE MODEL

The choice of a lookup algorithm depends crucially on assumptions about
the routing environment and the implementation environment. We also
need a performance model with precise metrics to compare algorithms.

2.1 Routing Databases

The Internet consists of local domains which are interconnected by a
backbone consisting of multiple Internet Service Providers (ISPs). Accord-
ingly, there are two interesting kinds of routers [Bradner 1997]: enterprise
Routers (used in a campus or organization) and backbone routers (used by
ISPs). The performance needs of these two types of routers are different.

Backbone routers today [Bradner 1997] can have databases of up to
45,000 prefixes (growing every day, several of them with multiple paths).
The prefixes contain almost all lengths from 8 to 32; however, because of
the evolution from Class B and Class C addresses, there is considerable
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concentration at 24- and 16-bit prefix lengths. Because backbone routers
typically run the Border Gateway Protocol [Rechter and Li 1995], and some
implementations exhibit considerable instability, route changes can occur
up to 100 times a second [Bradner 1997; Labovitz et al. 1997], requiring
algorithms for handling route updates that take 10 msec. or less. Backbone
routers may require frequent reprogramming as ISPs attempt to deal with
customer requirements such as virus attacks. The distribution of packet
sizes is bimodal, with peaks corresponding to either 64-byte control packets
or 576-byte data packets.

Enterprise routers have smaller databases (up to 1000 prefixes) because
of the heavy use of default routes for outside destinations. Routes are also
typically much more stable, requiring route updates at most once every few
seconds. The packet sizes are bimodal and are either 64 bytes or 1519
bytes.4 However, large multicampus enterprise routers may look more like
backbone routers.

Address space depletion has lead to the next generation of IP (IPv6) with
128-bit addresses. While there are plans for aggressive aggregation to
reduce table entries, the requirement for both provider based and geo-
graphical addresses, the need for connections to multiple ISPs, plans to
connect control devices on the Net, and the use of features like Anycast
[Deering and Hinden 1995], all make it unlikely that backbone prefix
tables will be smaller than in IPv4.

We use four publically available prefix databases for our comparisons.
These are made available by the IPMA project [Merit Network 1997] and
are daily snapshots of the routing tables used at some major Network
Access Points (NAPs). The largest of these, MaeEast (about 38,000 prefix-
es), is a reasonable model for a large backbone router; the smallest
database, PAIX (around 713 prefixes), can be considered a model for an
Enterprise router. We will compare lookup schemes using these four
databases with respect to three metrics: search time (most crucial), storage,
and update times.

2.2 Implementation Model

In this article, we will compare lookup algorithms using a software plat-
form. Software platforms are more flexible and have smaller initial design
costs. For example, BBN [Internet-II 1997] uses DEC Alpha CPUs in each
line card. However, hardware platforms are higher performance and
cheaper after volume manufacturing. For example, Torrent [Internet-II
1997] uses a hardware forwarding engine. We will briefly discuss hardware
platforms in Setion 7.

Thus for the majority of this article, we will consider software platforms
using modern processors such as the Pentium [Intel 1998] and the Alpha
[Sites and Witek 1995]. These CPUs execute simple instructions very fast

4576-byte data packets arise in ISPs because of the use of a default size of 576 bytes for wide
area traffic; 1519-byte size packets in the enterprise network probably arises from Ethernet
maximum size packets.
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(few clock cycles) but take much longer (thirty to fifty clock cycles) to make
a random access to main memory. The only exception is if the data is in
either the Primary (L1) or secondary Cache (L2), which allow access times
of a few clock cycles. The distinction arises because main memory uses slow
cheap Dynamic Memory (DRAM, 60-100 nsec. access time) while cache
memory is expensive but fast Static Memory (SRAM, 10-20 nsec.). When a
READ is done to memory of a single word, the entire cache line is fetched
into the cache. This is important because the remaining words in the cache
line can be accessed cheaply for the price of a single memory READ.

Thus an approximate measure of the speed of any lookup algorithm, is
the number of main memory (DRAM) accesses required, because these
accesses often dominate search times. To do so, we must have an estimate
of the total storage required by the algorithm to understand how much of
the data structures can be placed in cache. Finally, both cache accesses and
clock cycles for instructions are important for a more refined comparison.
To measure these, we must fix an implementation platform and have a
performance tool capable of doing dynamic instruction counts that incorpo-
rate pipeline and superscalar effects.

We chose a commodity 300MHz Pentium II running Windows NT that
has a 8KB L1 data cache, a 512KB L2 cache, and a cache line size of 32
bytes. Since prefix databases are fairly large and the L1 cache is quite
small, we (pessimistically) chose to ignore the effects of L1 caching. Thus
our model assumes that every access leads to a L1 cache miss. When there
is a L1 miss, the time to read in the first word in the cacheline from the L2
cache is 15 nsec. When there is a L2 miss, the total time to read in the word
from memory (including the effects of the L2 miss) is 75 nsec. While many
of our experiments use a 512KB L2 cache size, we also present a few
projected results assuming an L2 cache size of 1024KB.

We chose the Pentium platform because of the popularity of Wintel
platforms, and the availability of useful tools. We believe the results would
be similar if run on other comparable platforms such as the Alpha. We have
implemented several previously known schemes on this platform. Further,
we use a tool called Vtune [Intel 1997] that gives us access to dynamic
instruction counts, cache performance, and clock cycles for short program
segments. Thus for careful analytical worst-case comparisons, we use speed
measurements given to us by Vtune. In addition, we also do a test of
average speed using accesses to a million randomly chosen IP addresses.

The analytic worst-case measurements we use are much more conserva-
tive than what would be obtained by actually running the program on the
Pentium II PC. This is because we assume that the L1 cache always misses,
that branch prediction always fails, and that the worst possible branching
sequence in the code is taken. A second reason for using Vtune is the
difficulty of otherwise measuring the time taken for short code segments. A
standard technique is to run C lookups to the same address D, measure
(using the coarse-grained system clock) the time taken for these lookups,
and then to divide by C to estimate the time taken for a single lookup.
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Unfortunately, such measurements are optimistic because repeated look-
ups to the same address are likely to result in the few relevant parts of the
data structure (i.e., the parts used to lookup D) entering the L1 cache.

3. PREVIOUS WORK

We describe previous schemes for IP lookup and compare them using our
software performance model. We divide these schemes into four categories:
conventional algorithms, hardware and caching solutions, protocol based
solutions, and recent algorithms. For the rest of this article, we use BMP as
a shorthand for Best Matching Prefix and W for the length of an address
(32 for v4, and 128 for v6).

3.1 Classical Schemes

The most commonly available IP lookup implementation is found in the
BSD kernel, and is a radix trie implementation [Sklower 1991]. If W is the
length of an address, the worst-case time in the basic implementation can
be shown to be O~W!. Thus the implementation can require up to 32 or 128
worst-case costly memory accesses for IPv4 and IPv6 respectively. Even in
the best case, with binary branching and 40,000 prefixes, this trie imple-
mentation can take log2~40,000! 5 16 memory accesses. A modified bi-
nary search technique is described in Lampson et al. [1998]. However, this
method requires O~log22n! steps, with n being the number of routing table
entries. With 40,000 prefixes, the worst case would be 17 memory accesses.
Using our crudest model, and 75 nsec. DRAM, a trie or binary search
scheme will take at least 1.2 usec.

3.2 Hardware Solutions and Caching

Content-addressable memories (CAMs) that do exact matching can be used
to implement best matching prefix. A scheme in McAuley et al. [1995] uses
a separate CAM for each possible prefix length. This can require 32 CAMs
for IPv4 and 128 CAMs for IPv6, which is expensive. It is possible to obtain
CAMs that allow “don’t care” bits in CAM entries to be masked out. Such
designs only require a single CAM. However, the largest such CAMs today
only allow around 8000 prefixes. While such a CAM may be perfectly
adequate for an enterprise router, it is inadequate for a backbone router.
Finally, CAM designs have not historically kept pace with improvements in
RAM memory. Thus any CAM solution runs the risk of being made obsolete
in a few years by software running on faster processors and memory.

Caching has not worked well in the past in backbone routers because of
the need to cache full addresses (it is not clear how to cache prefixes). This
potentially dilutes the cache with hundreds of addresses that map to the
same prefix. Also, typical backbone routers may expect to have hundreds of
thousands of flows to different addresses. Some studies have shown cache
hit ratios of around 50–70 percent [Newman et al. 1997]. Caching can help
but does not avoid the need for fast lookups.
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3.3 Protocol-Based Solutions

The main idea in Protocol Based solutions (IP and Tag Switching) is to
replace best matching prefix by an exact match by having a previous hop
router pass an index into the next router’s forwarding table. This leads to a
much faster lookup scheme (one memory access), but the cost is additional
protocol and potential set up delays. IP switching [Newman et al. 1997;
Parulkar et al. 1995] relies on switching long lived flows. This solution may
be ineffective with short-lived flows such as web sessions. Tag switching
[Chandranmenon and Varghese 1996; Rekhter et al. 1996] does not work at
the boundaries of administrative domains. Both schemes require large
parts of the network to make the required protocol changes before perfor-
mance will improve. Both schemes also increase the vulnerability of an
already fragile set of Internet routing protocols (see Labovitz et al. [1997])
by adding a new protocol that interacts with every other routing protocol.
Also, neither completely avoids the BMP problem.

3.4 New Algorithms

Three new techniques [Degermark et al. 1997; Nilsson and Karlsson 1998;
Waldvogel et al. 1997] for best matching prefix were discovered in the last
year. The Lulea Scheme [Degermark et al. 1997] is based on implementing
multibit tries but compresses trie nodes to reduce storage to fit in cache.
While the worst case is still O~W! memory accesses where W is the address
length, these accesses are to fast cache memory. The LC trie scheme
[Nilsson and Karlsson 1998] is also based on implementing multibit tries
but compresses them using what the authors call level compression. We
defer a detailed comparison of our multibit trie scheme to the LC trie and
the Lulea scheme until Section 5.

The second Binary Search on Levels scheme [Waldvogel et al. 1997] is
based on binary search of the possible prefix lengths and thus takes a worst
case of log2W hashes, where each hash is an access to slower main memory
(DRAM). It is much harder to determine the new schemes currently being
designed or used by router vendors because they regard their schemes as
trade secrets. However, Rapid City [Internet-II 1997] and Torrent5 use
schemes based on hashing that claim good average performance but have
poor worst-case times (16 memory accesses for the Torrent ASIK scheme).

3.5 Performance Comparison

If we rule out pure caching and protocol based solutions, it is important to
compare the other schemes using a common implementation platform and a
common set of databases. We extracted the BSD lookup code using Patricia
tries into our Pentium platform; we also implemented six-way search
[Lampson et al. 1998] and binary search on hash tables [Waldvogel et al.
1997] using the largest (MaeEast) database. We project the worst-case
evaluation presented in Degermark et al. [1997] and the average case

5http://www.torrent.com.
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numbers in Nilsson and Karlsson [1998] to the 300MHz Pentium II
platform with 15 nsec. L2 cache (recall that 15 nsec. is the time taken for
the first word in the cacheline to be read when there is a L1 cache miss).
Projections were done using the numbers reported in the papers describing
the schemes, and by scaling the earlier results to account for the (faster)
clock cycle times in our platform. The results are shown in Table II.
Throughout the article, for performance measurements we use the data-
bases in Table I, which were obtained from Merit Network [1997].

3.6 Summary

The measurements in Table II indicate that the two conventional schemes
take around 1.5 usec.; the Lulea scheme takes around 400 nsec. in the
worst case and the Binary Search on Levels scheme takes around 650 nsec.
Thus using a software model and a commodity processor, the new algo-
rithms allow us to do 2 million lookups per second while the older
algorithms allow roughly 1/2 million lookups per second. Ordinary binary
search will perform somewhat better in an enterprise router with a smaller
number of prefixes; the worst-case times of other schemes are not sensitive
to the number of prefixes used. Given that the average packet size is
around 2000 bits [Bradner 1997], even the old schemes (that take up to 2
usec. and forward at 1/2 million packets per second) allow us to keep up
with line rates for a gigabit link.

Despite this, we claim that it is worth looking for faster schemes. First,
the forwarding rate is sensitive to average packet size assumptions. If

Table II. Lookup Times for Various Schemes on a 300MHz Pentium II. The times for binary
search on hash tables are projected assuming good hash functions can be found. The average

performance is determined by the time taken when the best matching prefix is a 24-bit
prefix as there are very few prefixes with length 25 and above. Note that for the Lulea

scheme, the numbers have been recalculated with 300MHz clock and 15 nsec. latency L2
cache. For binary search on levels, memory is estimated assuming minimal perfect hash

functions and log2 5 5 hashes.

Average Memory Required for
(24-Bit Prefix) Worst Case MaeEast Database

(nsec.) (nsec.) (KB)

Patricia trie 1500 2500 3262
Six-way search on prefixes 490 490 950
Binary Search on Levels 250 650 1600
Lulea scheme 349 409 160
LC trie scheme 1000 — 700

Table I. Prefix Databases as of September 12, 1997

Database Number of Prefixes Number of 24-Bit Prefixes

MaeEast 38816 22872
MaeWest 14065 7850

Pac 3811 2455
Paix 713 377
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traffic patterns change, and the average packet size goes down to say 64
bytes, we will need a factor of 3 speed up. Second, the Internet will surely
require terabit routers in a few years which will require a considerable
improvement in lookup times to around 2 nsec. Finally, it is worth looking
for other improvements besides raw lookup speed: for instance, schemes
with faster update times, and schemes with smaller storage requirements.
While these numbers are not available, it seems clear that the faster
schemes in Degermark et al. [1997] and Waldvogel et al. 1997] will have
slow insert/delete times because they do not allow incremental solutions:
the addition or deletion of a single prefix potentially requires complete
database reconstruction.

4. NEW TECHNIQUES

We first describe the three generic techniques on which our specific lookup
algorithms are based. We start with a simple technique called controlled
expansion that converts a set of prefixes with M distinct lengths to a set of
prefixes with a smaller number of distinct lengths. We then present our
second technique which uses dynamic programming to solve the problem of
picking optimal expansion levels to reduce storage. Finally, we present our
third technique, local restructuring. We will apply these three techniques
to tries in Section 5 and to Binary Search on Levels in Section 6.

4.1 Controlled Prefix Expansion

It is not hard to show that if the number of distinct prefix lengths is l and
l , W, then we can refine the worst-case bounds for tries and binary
search on levels to O~l! and O~log2l! respectively. The fact that restricted
prefix lengths leads to faster search is well known. For example, OSI
Routing uses prefixes just as in IP, but the prefix lengths are multiples of
4. Thus it was well known that trie search of OSI addresses could proceed
in strides of length 4 [Perlman 1992].

Thus if we could restrict IP prefix lengths we could get faster search. But
the backbone routers we examined [Merit Network 1997] had all prefix
lengths from 8 to 32. Thus prefix lengths are almost arbitrary. Our first
idea is to reduce a set of arbitrary length prefixes to a predefined set of
lengths using a technique that we call controlled prefix expansion.

Suppose we have the IP database shown in the left of 1 that we will use
as a running example. Notice that this database has prefixes that range
from length 1 (e.g., P4) all the way to length 7 (e.g., P8). Thus we have 7
distinct lengths. Suppose we want to reduce the database to an equivalent
database with prefixes of lengths 2, 5, and 7 (3 distinct lengths).

Clearly a prefix like P4 5 1* that is of length 1 cannot remain unchanged
because the closest admissible length is 2. The solution is to expand P1 into
two prefixes of length 2 that are equivalent. This is easy if we see that 1*
represents all addresses that start with 1. Clearly of these addresses, some
will start with 10 and the rest will start with 11. Thus, the prefix 1* (of
length 1) is equivalent to the union of the two prefixes 10* and 11* (both of
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length 2). In particular, both the expanded prefixes will inherit the output
link of the original prefix (i.e., P4) that was expanded. In the same way, we
can easily expand any prefix of any length m into multiple prefixes of
length r . m. For example, we can expand P2 (111*) into four prefixes of
length 5 (11100*, 11101*, 11110*, 11111*).

We also need an accompanying concept called prefix capture. In 1, we
have two prefixes P1 5 10* and P4 5 1*. When we expand P4 into the two
prefixes 10* and 11*, we find we already have the prefix P1 5 10*. Since we
do not want multiple copies of the same prefix, we must pick one of them.
But when P1 and P4 overlap, P1 is the longer matching prefix. In general,
when a lower length prefix is expanded in length and one of its expansions
“collides” with an existing prefix, then we say that the existing prefix
captures the expansion prefix. When that happens, we simply get rid of the
expansion prefix. For example in this terminology, we get rid of the
expansion 10* corresponding to 1*, because it is captured by the existing
prefix P1 510*.

Thus our first technique, controlled prefix expansion combines prefix
expansion and prefix capture to reduce any set of arbitrary length prefixes
into an expanded set of prefixes of any prespecified sequence of lengths
L1, L2, . . . , Lk. The complete expanded database is shown on the right of
1 together with the original prefix that each expanded prefix descends
from. For example, 11101* descends from P2 5 111*.

Expansion can be performed in time proportional to the number of
expanded prefixes. The algorithm uses an array A and maintains an
invariant that A@i# contains a pointer to the set of current prefixes of
Length i. Initially, we load the original prefixes into A to preserve the
invariant. We also take as input the sequence of expansion levels L1,
. . . Lk. The main loop scans the lengths in A in increasing order of length.
If we are currently at length i and length i is in the target sequence of
levels, we skip this length. Otherwise, we expand each prefix in set A@i# to
length i 1 1 while respecting prefix capture.

Fig. 1. Controlled Expansion of the Original Database shown on the Left (which has 7 prefix
lengths from 1. . . 7) to an Expanded Database (which has only 3 prefix lengths 2, 5 and 7).
Notice that the Expanded Database has more prefixes but fewer distinct lengths.
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4.2 Picking Optimal Expansion Levels

Expansion by itself is a simple idea. Some papers (e.g., Waldvogel et al.
[1997]) have proposed using an initial Y bit (Y 5 16 or 24) array lookup as
a front-end lookup before using other schemes to determine a longer
matching prefix. This amounts to a limited form of expansion where all
prefixes of length less than Y are expanded to prefixes of length Y. What
distinguishes our idea is its generality (expansion to any target set of
levels), its orthogonality (expansion can used to improve most lookup
schemes), and the accompanying notion of optimality (picking optimal
expansion levels). We now briefly introduce the optimality problem.

In controlled expansion, we did not specify how we pick target prefix
lengths (i.e., L1, . . . Lk). Clearly, we wish to make k as small as possible.
For example, if we were doing a trie lookup and we wanted to guarantee a
worst-case trie path of 4 nodes, we would choose k 5 4. But which 4 target
lengths do we choose? In what follows, we will sometimes use the word
“levels” in place of “target lengths.”

The optimization criterion is to to pick the levels that minimize total
storage. To introduce the problem, assume for now that storage is mea-
sured by the total number of expanded prefixes. A naive algorithm would
be to search through all possible k target expansion lengths. But assuming
IPv4 and k 5 6, there are 32!/~~26!!~6!!! possible choices. The situation
degenerates further when we go to 128-bit addresses. A second naive
technique that works reasonably (but not optimally) is to use heuristics like
picking the highest density lengths. However, when we experimented with
real databases we often found (see results in Section 5.4 and Section 6.4)
greatly reduced storage when the optimization programs picked “odd”
lengths such as 18. Lengths like 18 appear to not slow down search
appreciably despite alignment issues; in hardware, they do not matter at
all, as long as the hardware has a barrel shifter.

Thus instead we pick optimal levels using dynamic programming [Cor-
men et al. 1990]. Figure 2 shows an example for IPv4, assuming we wish to
minimize the total number of expanded prefixes using only k levels. In the
first step, we use the input prefix database to compute a histogram of
prefix lengths. The length of the black horizontal lines are proportional to
the number of prefixes at a given length; note the density at 16 and 24.
Now we know that the last level Lk must be at 32. In the second step, we
reduce the problem to to placing level Lk21 (at say length x) and then
covering the remaining lengths from 1 to x 2 1 using k 2 1 lengths. If we
compute the storage required for each value of x, in the third step we can
choose the minimal value of x and obtain the final levels.

Simple recursive solutions can lead to repeated subproblems and high
running times. Instead, we use dynamic programming to build up problem
instances and store the solutions in a table. It is not hard to see in the
above example that we only have roughly Wk subproblems and roughly
W2 z k steps. This yields a fast algorithm.
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As a first example above, we minimized the number of expanded prefixes.
In what follows the real criterion is to minimize the required data structure
memory. For example, with tries (Section 5), some prefixes can cause the
addition of a large trie node while others can share trie nodes; when we use
binary search on levels (Section 6), some prefixes can add auxiliary entries
called markers. Because the minimization criterion will differ depending on
the application, the specific dynamic programming technique will also vary,
though with roughly the same structure.

4.3 Local Restructuring

Local restructuring refers to a collection of heuristics that can be used to
reduce storage and improve data structure locality. We describe two
heuristics: leaf-pushing and cache alignment.

4.3.1 Leaf-Pushing. Consider a tree of nodes (see left side of Figure 3)
each of which carry information and a pointer. Suppose that we navigate
the data structure from the root to some leaf node and the final answer is
some function of the information in the nodes on the path. Thus on the left
side of Figure 3, if we follow the path to the leftmost leaf we encounter I1

and I2. The final answer is some function of I1 and I2. For concreteness,
suppose (as in tries) it is the last information seen—i.e., I2.

In leaf-pushing, we precompute the answer associated with each leaf.
Thus on the right side of Figure 3 we have pushed all answers to the
leaves, assuming that the answer is the last information seen in the path.
Originally, we had a pointer plus an information field at each node except
at the leaves which have information but only a null pointer. After
leaf-pushing, every node has either information or a nonnull pointer, but
not both. Thus we have reduced storage and improved locality. However,
there is a cost for incremental rebuilding: information changes at a node
close to the root can potentially change a large number of leaves.

Fig. 2. Picking optimal levels using Dynamic Programming. Essentially, we have to cover all
lengths from 1 to 32 using k target levels. This can be reduced to the problem of placing length
Lk21 at length x and covering the remaining lengths 1. . . x 2 1 with k 2 1 levels. We then
minimize across all x to pick the optimal value.
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4.3.2 Cache Line Alignment. Recall that a READ to an address A in the
Pentium will prefetch an entire cache line (32 bytes) into cache. We use two
simple applications of this idea.

First, if we have a large sparse array with a small amount of actual data
that can fit into a cache line, we can replace the array with the actual data
placed contiguously. While this saves storage, it can potentially increase
time because if we have to access an array element we have to search
through the compressed list of data using say binary search. This can still
improve time because the entire compressed array now fits into a cache line
and the search (linear or binary) is done with processor registers [Deger-
mark et al. 1997]. We refer to such compressed arrays as packed arrays.

A second application is for perfect hashing [Cormen et al. 1990]. Perfect
hashing refers to the selection of a collision-free hash function for a given
set of hash entries. Good perfect hash functions are hard to find. In Section
6, where we use hashing, we settle for what we call semiperfect hashing.
The idea is to settle for hash functions that have no more than 6 collisions
per entry. Since 6 entries can fit into a cache line on the Pentium, we can
ensure that each hash takes 1 true memory access in the worst case
although there may be up to 6 collisions. The collision resolution process
will take up to 5 more cache accesses.

5. TRIES WITH EXPANSION

In this section we apply the techniques of Section 4 to tries. In Section 5.1,
we first review the standard solution for one-bit tries, describe how
expansion can be used to construct multibit tries, and finally show how to
use leaf-pushing and packed nodes to reduce trie storage. In Sections 5.2
and 5.3 we show how to use dynamic programming to pick the number of
bits to sample at each level of the trie in order to minimize storage. The
difference between the two sections is that Section 5.2 makes the simpler
assumption that all the trie nodes at the same level use the same number
of bits (i.e., are fixed stride), while Section 5.3 considers variable stride
tries that do not make this assumption.

Fig. 3. Leaf-pushing pushes the final information associated with every path from a root to a
leaf to the corresponding leaf. This saves storage because each nonleaf node need only have a
pointer, while leaf nodes (that used to have nil pointers) can carry information.
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Next, Section 5.4 describes measurements based on Vtune that quantify
the trade-off between fixed and variable stride tries, as well as the trade-off
between fast search times, fast update times, and small storage. Section 5.5
uses the results of Section 5.4 to pick an Expanded Trie structure that
meets the desired criteria. Finally, Section 5.6 compares Expanded Tries in
more detail with two other popular multibit trie schemes, Lulea tries
[Degermark et al. 1997] and LC tries [Nilsson and Karlsson 1998].

5.1 Expanded Tries

A one-bit trie [Knuth 1973] is a tree in which each node has a 0-pointer and
a 1-pointer. If the path of bits followed from the root of the tree to a node N
is P, then the subtree rooted at N stores all prefixes that begin with P.
Further, the 0-pointer at node N points to a subtree containing (if any
exist) all prefixes that begin with the string P0; similarly, the 1-pointer at
node N points to a subtree containing (if any exist) all prefixes that begin
with the string P0.

Using our crude performance model, one-bit tries perform badly because
they can require as many as 32 READs to memory. We would like to
navigate the trie in strides that are larger than one bit. The central
difficulty is that if we navigate in say strides of eight bits, we must ensure
that we do not miss prefixes that have lengths that are not multiples of 8.

We have already seen the solution in Section 4. For example, suppose we
want to traverse the trie two bits at a time in the first stride, three bits in
the second stride, and two bits in the third stride. If we consider the
database shown on the left of Figure 1, we have already expanded it to
prefixes of lengths 2, 5, and 7 on the right. Since all prefixes have now been
expanded to be on stride boundaries, we need not be concerned about
missing prefixes.

Figure 4 shows how the expanded database of Figure 1 is placed in a
multibit trie. Since we have expanded to lengths 2, 5, and 7 the first level of
the trie uses two bits, the second uses three bits (5–2), and the third uses
two bits (7–5). If a trie level uses m bits, then each trie node at that level is
an array of 2m locations. Each array element contains a pointer Q (possibly
null) and an expanded Prefix P. Prefix P is stored along with pointer Q if
the path from the root to Q (including Q itself) is equal to P.

Thus in comparing Figures 1 and 4 notice that the the root trie node
contains all the expanded prefixes of length 2 (first four expanded prefixes
in Figure 1). Now consider the first expanded prefix of length 5 in Figure 1,
which is 11100* (P2). This is stored in a second level trie node pointed to by
the pointer corresponding to the 11 entry in the first trie level, and stored
at location 100.

5.1.1 Search. To search for destination address, we break the destina-
tion address into chunks corresponding to the strides at each level of the
trie (e.g., 2, 3, 2 in the above example) and use these chunks to follow a
path through the trie until we reach a nil pointer. As we follow the path, we
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keep track of the last prefix that was alongside a pointer we followed. This
last prefix encountered is the best matching prefix when we terminate.

We assume that each trie node N is an array where N@bmp, i# contains
any stored prefix associated with entry i and N@ptr, i# contains any pointer
associated with entry i. Absence of a valid prefix or pointer is signaled by
the special character nil. We assume also that each node The search code is
shown in Figure 5. It is easy to see that the search time is O~k!, where k is
the maximum path through the expanded trie, which is also the maximum
number of expanded lengths. We also have at most two memory references
per trie node. However, we can use cache line alignment to layout the
prefix and pointer fields associated with entry i in adjacent locations. In
fact, in our implementation, both fields were packed within a single 32-bit
word. This reduces search time to one memory reference per trie node.

5.1.2 Insertion and Deletion. Simple insertion and deletion algorithms
exist for multibit tries. Consider Figure 4 and consider the addition of a
prefix P9 5 1100*. We first simulate search on the string of bits in the new
prefix up to and including the last complete chunk in the prefix. We will
either terminate by ending with the last (possibly incomplete) chunk or by
reaching a nil pointer. Thus for adding 1100* we follow the 11 pointer
corresponding to chunk 11 and we terminate at the rightmost trie node at
Level 2, say node N.

Fig. 4. Expanded trie corresponding to the database of 1. Note that the expanded trie only
has a maximum path length of 3 compared to the one-bit trie that has a maximum path length
of 7.
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For the purposes of insertion and deletion, for each node N in the
multibit trie, we maintain a corresponding one-bit trie with the prefixes
that are stored in N. (This auxiliary structure need not be in L2 cache but
can be placed in in main memory; this may, however, be hard to control.)
Also, for each node array element, we store the length of its present best
match. Now we expand the new prefix to be added and scan the array
elements in the node that it affects. If we find that the present best match
of an array element is from a prefix of smaller length, then we update it
with the new prefix and new prefix length.

When we add 1100* and we end with the last incomplete chunk 00, we
have to insert the possible expansions of this chunk into the trie node N.
We then atomically link in the recomputed node into the fast trie memory.

If we end before reaching the last chunk, we have to insert new trie
nodes. For example, if we add the prefix P10 5 110011*, we will find that
we fail at node N when we find a nil pointer at the 001 entry. We then have
to create a new pointer at this location which points to a new trie node that
contains P10. We then expand P10 in this new trie node.

The insertion code Figure 6 uses the function FINDSTRIDE to determine
the stride of a new node to be added. Any function can be used for this.
Using a function that is dependent only on the trie level produces a fixed
stride trie, while one that depends on the position in the trie produces a
variable stride trie. The prefixes that end in a node N are stored as a set
N.prefixSet, and this set of prefixes is organized as a one-bit trie. ADDTO-
NODESET, REMOVEFROMSET, and FINDLONGESTMATCH operate on this one-bit
trie. Once the node N in which the prefix P falls is determined, it has to be
expanded to the stride of that node. Pseudocode for this is presented in
Figure 7. For the purposes of expansion, there is an extra field N@length,
i# which contains the length of the prefix (if any) stored with entry i. This
allows the expansion code to easily tell if a newly inserted prefix should
capture (and hence overwrite) the stored prefix value corresponding to
entry i. Note that N@length, i# can be stored in auxiliary storage that is
used only by the update code. The algorithm for deletion is similar. Once

Fig. 5. Code for Multibit Trie Search for best matching prefix of a destination address.
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the trie node N in which the prefix P being deleted falls in is found, P has
to be removed from that node and its expansions have to be changed to
point to the next best match. So the best match P9 of P in node N (after P
is removed) is found, and the expansions of P that presently have P as the
best matching prefix are updated to P9. Code for deletion is not presented
for brevity. Deletion also deallocates memory once it finds that a trie node
is not being used by any more prefixes.

The complexity of insertion and deletion is the time to perform a search
(O~W!) plus the time to completely reconstruct a trie node (O~Smax! where
Smax is the maximum size of a trie node.) For example, if we use eight-bit
trie nodes, the latter cost will require scanning roughly 28 5 256 trie node
entries. On the other hand, if we use 17-bit nodes, this will require
potentially scanning 217 trie nodes entries. On a Pentium with a Write Back
cache, while the first word in a cache line would cost 100 nsec. for the read,
the writes would be only to cache and the entire cache line will take at most
200 nsec. to update. A single cache line holds 10 entries, so at 20
nsec./entry we require 2.5 msec. to write 217 entries.

The average times will be much better, as most of the prefixes are 24-bit
prefixes. Addition or deletion of such prefixes involves a search through the
auxiliary one-bit trie (searching through the one-bit trie has a worst case of
O~W! memory accesses) and affects exactly one array element. (This is
because all our databases contain a majority of 24-bit prefixes, and the
dynamic programs in our experiments always choose a level at 24 bits.)
Thus doing these W memory accesses and modifying one location takes

Fig. 6. Code for insertion of a prefix P into a multibit trie. W is the length of a full address.
Note that the code allows the stride of a node to be assigned using any function. For fixed
stride tries, it will be a function of the trie level alone.
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approximately 3 usecs. Though the average update time is only 3 usecs., we
still need to bound the worst-case update time. To get a worst-case update
time of 2.5 msec., we saw in the previous paragraph that we have to limit
the maximum stride to 17. Thus in our dynamic programs in 5 and 5, we
constrain the nodes to be of maximum stride 17, so that the worst-case
criterion for insertion/deletion times is met.

5.1.3 Route Change. Route change involves searching for the prefix and
then updating the corresponding entry in the intermediate table. This
takes at most 3 usecs.

As a baseline measurement, we present the time taken for insertion and
for leaf-pushing for the various databases for a four-level (i.e., eight bits at
a time) trie in Table III. Note that the average insertion time for MaeEast
is 170 msec./38816 5 4 usec.

5.1.4 Applying Local Restructuring. Leaf-pushing (Section 4) can also
be useful to reduce storage by a factor of two. If we leaf-push the multibit
trie of Figure 4 we will push the bmp value (i.e., P1) in the 10 entry of the
root node down to all the unfilled entries of the leftmost node at Level 2,
say Y. Leaf-pushing can easily be accomplished by a recursive algorithm
that pushes down bmp values along pointers, starting from the root
downward. Unfortunately, it makes incremental insertion slower. We will
discuss this trade-off in Section 5.4.

5.2 Optimal Expanded Trie with Fixed Strides

So far we have not described how to use dynamic programming to optimize
trie levels. The obvious degree of freedom is to pick the expansion lengths

Fig. 7. Code for inserting a prefix P into trie node N. P is added to the list of prefixes that fall
in N, and then expanded in N to overwrite those entries that currently map to a shorter
prefix. The notation P / ~m1..m2! is used to denote the binary number formed by the bits m1
through m2 of P. The notation X , , Y is used to denote the number obtained by left shifting
X by Y places.
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L1. . . Lk which determine the strides through the trie. This assumes that
all trie nodes at Level j have the same stride size. We will restrict ourselves
to fixed stride tries in this subsection. Fixed stride tries may be desirable
because of their simplicity, fast optimization times, and slightly faster
search times. Assume a prefix database with l different prefix lengths. We
wish to find the optimal set of k expansion levels that yields the smallest
memory requirement for building a fixed stride trie. We use the following
dynamic program.

Define the Cost of a given set of k levels as the number of computer words
needed by the trie that is built after expanding the database to these levels.
For example, for the trie in Figure 4 with 4 nodes, two of stride two bits and
the other two of strides three bits each, the total number of array elements
is 22 1 22 1 23 1 23 5 24. We assume that each array element uses 1
word (4 bytes) of memory (this is true after leaf-pushing). Hence the cost of
this trie is 24.

For finding the cost of a given set of levels, just using a histogram as in
Figure 2 is insufficient. This is because one prefix can be an extension of a
second prefix. For example, if P1 5 00* is a prefix and P2 5 000* is a
second prefix that is an extension of P2, expanding both prefixes to length 5
would incur a cost of 8. This is only the cost of expanding 00*. This is
because when we expand 00* to length 5 we already create entries for all
the expansions of 000* to length 5. Thus if we added the cost of expanding
P2 in isolation from length 3 to length 5 (cost equal to 22 5 4) we would be
double counting. On the other hand, if we had P1 5 00* and P3 5 111*, the
true cost of expanding both to length 5 is indeed 8 1 4 5 12.

Thus we build a auxiliary one-bit trie. This can help us determine prefix
extensions and hence the correct costs. After building the one-bit trie, the
problem of finding the optimal levels for the trie can be found using the
number of nodes in each level of the one-bit trie. From now on we will
distinguish the input levels (trie levels) from the output levels (expansion
levels). Note that if all the one-bit nodes at trie level i 1 1 are replaced by
j . i bit nodes, then all the one-bit nodes in trie levels i 1 1 to i 1 j can
be ignored.

Table III. The Memory, Random-Search Times, and Insert Times for a Four-Level (i.e., a
fixed stride length of eight bits) Trie Built on the Four Sample Databases. The random-

search times were measured assuming all IP addresses are equally likely.

Database
Number of

Nodes

Memory
(KB)

(Nonleaf-
Pushed)

Time (msec.)
Memory

after Leaf-
Push

Time for
Random
SearchBuild

Leaf-
Pushing

MaeEast 2671 4006 170 55 2003 110 nsec.
MaeWest 1832 2748 52 40 1374 100 nsec.
Pac 803 1204 19 20 602 100 nsec.
Paix 391 586 5 7 293 100 nsec.
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Thus if i is chosen as a level, placing the next expansion level at i 1 j
has a cost nodes~i 1 1!*2 j, where nodes~i! is the number of nodes at trie
level i. Notice that we use i 1 1 instead of i. This is because all nodes at
trie level i will be assigned to the expansion level; only nodes at Level
i 1 1 need to be expanded. Finally, nodes at trie levels i 1 2 to j get a
“free ride” from the expansion of trie level i 1 1.

With this prelude, consider the general problem of determining the
optimal cost T@j, r# of covering levels from 0 to say j using expansion levels
1 to r. Expansion level r is constrained to be at trie level j. Recursively, as
in 2 we can reduce the problem to that of first placing expansion level
r 2 1 at some trie level m in the range @r 2 1, j 2 1#. We are then left
with the recursive problem of finding the optimal way to cover trie lengths
from 1 to m using expansion levels 1 to r 2 1. This is illustrated in Figure
8.

Using Figure 8 as a guide, we get the following equations that define a
solution:

T@j, r# 5 minm[$r21..j21%T@m, r 2 1# 1 nodes~m 1 1!*2 j2m

T@j, 1# 5 2 j11

The initial problem is T@W 2 1, k# because when the strings are of
maximum length W, the trie levels range from 0 to W 2 1. Recall that k is
the target number of worst-case memory accesses required to search the
trie after expansion. We can turn the equations above into a simple
dynamic programming solution. Since we have two variables, one of which
ranges from 0 to W 2 1, and the second of which ranges from 0 to k, we
have W*k subproblems. Because of the minimization, each subproblem
takes O~W! to compute; thus the complexity of our optimal fixed stride
determination algorithm is O~k*W2!. The results of using this optimization
on real databases are reported in Section 5.4.

Fig. 8. Covering trie lengths from 0 to j using expansion levels 1 to r can be solved recursively
by first placing Level r at length j and choosing Level r 2 1 to be at some optimal length m.
Finally, we recursively solving the covering problem for the upper portion of the tree using
r 2 1 levels.
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5.3 Optimal Expanded Trie Using Varying Strides

In the last section, we considered the expansion lengths to be a degree of
freedom that could be optimized to minimize storage. However, there is a
further degree of freedom. We can make the stride size variable for each
trie node. The root node must, of course, have a fixed starting stride size.
But each child of the root node can now have a different stride size that is
encoded along with the pointer that leads to child. In this section, we
describe how to construct storage-optimal tries that use varying strides.

Assume as before that we have built an auxiliary one-bit trie, and we
wish to convert this into a variable stride trie that takes at most say k
memory accesses. Generally k is determined by the software designer based
on the required lookup speed. For example, if we are using 100 nsec.
DRAM, and we wish a lookup speed of around 300 nsec., we would set k
5 3. Note that it is easy to take all the dynamic programming problems we
have and use them in a different way: given a fixed amount of memory, find
the fastest trie (i.e., smallest value of k) that will fit into memory.

We are given the maximum number of memory accesses k. Let R be the
root of the one-bit trie T built on the original prefix entries. We can walk
through the trie in k accesses if we have a first stride s (for the new root
node) and can walk through all the subtries rooted at trie level s 1 1 in
k 2 1 accesses. This is illustrated in Figure 9. But each such subtrie can be
recursively covered using the same algorithm.

Once again, we pick the value of s by taking the minimum over all values
of s. Define height~N! as the length of the longest path from N to any of its
descendants. Thus height~N! 5 0 if N is a leaf node. Let us denote the
descendants of a node N in the one-bit trie at a height s below N by Ds~N!.

If we denote by Opt~N, r!, the optimal solution for a node N using r
expansion Levels we get the following recursion:

Opt~N, r! 5 mins[$1. . . 11height~R!%$2s 1 O
M[Ds11~R!

Opt~M, r 2 1!%

Opt~N, 1! 5 2~11height~N!!

Fig. 9. Covering a variable stride trie using k expansion levels. We first pick a stride s for the
new root node and then recursively solve the covering problem for the subtrees rooted at Trie
Level s 1 1 using k 2 1 levels.
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To decipher the above equation, notice from Figure 9 that the cost of the
first level is 2s. The remaining cost is the cost of covering the subtrees T1

through Ty in Figure 9 using r 2 1 levels. Finally, the roots of the subtrees
T1 though Ty are the members of the set Ds11.

Once again, we can use the above equation to generate a dynamic
programming solution. We will construct Opt~N, l! for all the nodes in the
original trie in increasing values of l and store the results in a table. The
original problem we must solve is the problem Opt~R, k!. It only remains
to describe how we efficiently compute Dh~N! the set of descendants of a
node at height h.

To do so we first preprocess the trie to assign Depth First Search (DFS)
numbers. This is a standard algorithmic technique [Cormen et al. 1990]
where we walk the trie in DFS order, keeping a counter that increments for
each visit. The advantage of DFS numbering is that it allows us to easily
enumerate the descendants of a node.

The final complexity of the algorithm is O~n*W2*k! where n is the
number of original prefixes in the original database, W is the width of the
destination address, and k is the number of expansion levels desired. This
can be explained as follows. We do one pass for each value of the number of
levels from 1 to k. In a single pass, we fix one level, while the other levels
have to be varied among W levels. Thus there are O~W2! such pairs. When
two levels are fixed, the list of nodes in both levels has to be traversed once.
The number of nodes in each level is at most O~n!. So the overall
complexity (considerably overestimated) is O~n*W2*k!. Notice that the
complexity has grown considerably over the fixed stride dynamic program.

5.4 Measured Performance of Expanded Tries

We now present results obtained by using the various dynamic programs.
We use the prefix databases shown in Table I for all our experiments.

5.4.1 Performance of Fixed Stride Dynamic Program. Table IV shows
the variation in memory for the four databases as we use the fixed stride
dynamic program and vary the maximum number of levels in the final
multibit trie. The time taken for the dynamic program to run itself is very

Table IV. Memory Requirement (in kilobytes) for Different Number of Levels in a Leaf-
Pushed Trie Using the Fixed Stride Dynamic Programming Solution. The time taken for the

dynamic program is 1 msec. for any database.

Levels 2 3 4 5 6 7 8 9 10 11 12

MaeEast 49168 1848 738 581 470 450 435 430 429 429 429
MaeWest 30324 1313 486 329 249 231 222 219 218 217 217
Pac 15378 732 237 132 99 87 79 76 75 75 75
Paix 7620 448 116 54 40 33 29 27 26 26 26
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modest: in all cases it takes 1 msec. to run.6 As we would expect, the
memory decreases as we increase the number of levels (of course, the
search time will also increase).

The most interesting thing to note is that even the simplest dynamic
program pays off very well. When compared to the straightforward solution
of using equal lengths at every level, picking an optimal stride length saves
us roughly a factor of 3 in storage. For example with four levels without
using the dynamic program, we see from Table III that the memory
required for the leaf-pushed trie is 2003KB; using optimal fixed stride
lengths calculated by the dynamic program, we see in Table IV that the
memory for four levels has decreased to 738KB. Given that an extra 1 msec.
is easily affordable for insertion and deletion, this is a good trade-off.

5.4.2 Performance of Variable Stride Dynamic Program. Next, Table V
shows the variation in memory for the four databases as we use the
variable stride dynamic program and vary the maximum number of levels
in the final multibit trie. The time taken for the dynamic program to run
itself is included in the main table this time because the time increases
roughly linearly with the size of the database: notice for instance that the
computation time for MaeEast and two levels is roughly 2.2 times the time
required for MaeWest, while the size of MaeEast is 2.75 times that of
MaeWest. Recall that the complexity of the variable stride algorithm is
O~n*W2*k!. (The small discrepancy is probably because there is a portion
of the computation time that does not depend on n, the number of prefixes.)

As we expect from the complexity estimates, the computation time grows
with the number of levels. The computation time for MaeEast and two
levels is fairly small (130 msec.) and yields a reasonable amount of memory
(1559KB for the leaf-pushed trie). The computation time for MaeEast and
four levels is much larger (almost 1.6 seconds). On the other hand, when
compared to the fixed stride dynamic program, the variable stride program
saves roughly a factor of two in storage. For example, the four-level
leaf-pushed trie version of MaeEast now takes 423KB compared to 737KB
(fixed stride program) and 2003KB (unoptimized version).

6This is because the complexity of the dynamic programming solution only depends on the
number of target levels and the address width, and not on the size of the database.

Table V. Memory Requirement (in kilobytes) Using the Variable Stride Dynamic
Programming Solution for Leaf-Pushed Tries, and the Time Taken for the Dynamic Program
to Run in Milliseconds. A non-leaf-pushed trie will have twice the memory requirements as

the entries in this table.

2 Levels 3 Levels 4 Levels 5 Levels 6 Levels 7 Levels

Mem Time Mem Time Mem Time Mem Time Mem Time Mem Time

MaeEast 1559 130 575 871 423 1565 387 2363 377 2982 375 3811
MaeWest 1067 61 346 384 231 699 205 1009 196 1310 194 1618
Pac 612 16 163 124 93 125 77 311 71 384 69 494
Paix 362 2 83 10 40 29 30 60 27 70 26 91
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Are variable stride tries worth the much larger table rebuilding times?
First, they should work well for enterprise routers because route changes
happen rarely and the storage reduction makes it more likely that the
route table will fit in cache. Second, we have said that BGP instabilities
may require prefix addition or deletion in the order of 10 msec. Does that
mean that taking 1.6 seconds to calculate optimal variable stride tries
makes variable stride tries infeasible in backbone routers?

However, note that many of the BGP insertions and deletions are
because of pathologies (the same prefix being inserted and deleted by a
router that is temporarily swamped [Labovitz et al. 1997]), and others are
because of route changes [Labovitz et al. 1997]. On the other hand, the rate
at which new prefixes get added (or deleted) by managers seems more
likely to be in the order of days.

Suppose these assumptions are true and the dynamic program is run
every day using the set S of all the prefixes that were present in the
database during any period during the day (as opposed to using the
prefixes in a snapshot of the database at some instant). Then the dynamic
program will calculate the storage-optimal trie to store set S. Now during
the next day, first suppose that managers do not add or delete new prefixes.
Thus routing pathologies could cause prefixes to be added or deleted to
result (at any instant) in some new set S9 # S. But the storage required to
store S9 can only be less than that of S because S9 can be obtained from S
by deletions, and deletions can only decrease the storage required by a trie.

Next, if managers add a small set of prefixes R during the next day, this
can result in a new set S9 # S ø R at any instant. But if R is small, the
resulting storage taken by S9 can only be slightly more than the storage
calculated for S. Thus despite the fact that the optimal strides have been
calculated for S and not for S9, the resulting loss of accuracy should be
small. Thus running a dynamic program that takes several seconds to run
every day (the programs can be run by an external agent, and the strides
given to the table building process) appears to be feasible without affecting
worst-case insertion and deletion times.

5.4.3 Performance of Variable Stride Dynamic Program with Packed
Nodes. Table VI shows the effect of using packed nodes in addition to the
variable stride program. Recall from Section 4.3 that a packed node is a trie
node that is very sparsely populated. We chose to define a trie node with
only 3 valid pointers as being sparse. In many of our multibit trie

Table VI. Memory Requirement (in kilobytes) Using the Variable Stride Dynamic Program,
Leaf-Pushed and Allowing Packed Array Nodes

2 levels 3 levels 4 levels 5 levels 6 levels 7 levels

MaeEast 983 460 370 347 340 338
MaeWest 539 230 179 165 160 158
Pac 261 81 57 51 48 47
Paix 89 22 14 12 11 11

Fast Address Lookups Using Controlled Prefix Expansion • 25

ACM Transactions on Computer Systems, Vol. 17, No. 1, February 1999.



implementations, we have observed that the leaf trie nodes (and there are a
large number of such leaf nodes) are very sparse. Thus replacing the sparse
array with a packed array of 3 pointers (and using linear or binary search
[Lampson et al. 1998] to locate the appropriate location) can save storage.
Clearly this can slow down search. We chose a size of 3 so that the packed
node could fit into a cache line on the Pentium; thus accesses to all the
pointers within the packed node are cache accesses once the packed node
has been initially referenced.

Notice from Table VI that we have some gain (roughly a factor of 2) over
the variable stride trie (Table V) for two levels (983 versus 1559KB for
MaeWest), but there are diminishing returns at higher levels (370 versus
423KB for four levels). This is because a variable stride trie can choose
smaller strides for leaf nodes. The gains for using packed nodes with a fixed
stride program (not shown) are more substantial.

5.4.4 Variable Stride without Leaf-Pushing. We have seen that leaf-
pushing can reduce storage by roughly a factor of two but can increase
insertion times. Thus Table VII describes the memory requirement if we
limit ourselves to not using leaf-pushing, but using variable strides and
packed nodes. This time we see that packed nodes provide more benefit.
For example, from Table V we know that if we do not use leaf-pushing for
MaeEast and four levels we should take twice the storage shown (i.e., two
times 423 which is 846). However, with packed nodes the storage is 580,
roughly a factor of 1.5 reduction.

5.4.5 Variation of Search Times with Trie Level and Trie Type. So far,
all our results have only described the storage requirements (and time for
the dynamic programs to run) for various types of tries. Intuitively, the
smaller the number of levels the faster the search time. However, each type
of trie will require different computation time per level; for example,
variable stride tries require slightly more computation time because of the
need to extract a stride as well as a next pointer.

We measured the worst-case paths of each of our trie programs using a
tool called VTune [Intel 1997], which does both static and dynamic analysis
of the code for Pentium Processors. It takes into account pairing of
instructions in the parallel pipeline, and stall cycles introduced due to
dependencies between registers used in consecutive instructions. We show
the Vtune results in Table VIII.

Table VII. Memory Requirement (in kilobytes) Using the Variable Stride Dynamic Program,
Non-Leaf-Pushed, and Allowing Packed Array Nodes

2 levels 3 levels 4 levels 5 levels 6 levels 7 levels

MaeEast 1744 728 580 543 534 531
MaeWest 925 345 257 234 227 225
Pac 447 123 79 69 65 64
Paix 157 32 18 15 14 14
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As an example, we find that for one level of the leaf-pushed trie, the time
taken is One Memory Access Time 1 6 clock cycles. The instructions at the
beginning and end of the code take another 4 cycles. So for a k level trie,
the worst-case time is ~6k 1 4!*clk 1 k*MD, where clk is the clock cycle
time (3.33 nsec. for the 300MHz Pentium), and MD is the memory access
delay. Similarly worst-case times were computed for each of the trie
schemes.

Notice that leaf-pushed trie nodes take a smaller amount of time to
process (because each location has either a pointer or information but not
both) than non-leaf-pushed nodes, fixed stride nodes take a smaller amount
of time to process than variable stride nodes (because of the need to extract
the stride length of the next node in variable stride nodes), and ordinary
nodes take longer to process than packed nodes. However, at a large clock
rate (e.g., 300MHz) the difference between 12 clock cycles and 6 clock cycles
(20 nsec.) is not as significant as the memory access times (75 nsec.). In
hardware, the extra processing time will completely be hidden. Thus the
search time differences between the various trie schemes do not appear to
be very significant.

MD depends on the data required being in the L1 cache, L2 cache or in
the main memory. With the 512KB of L2 cache available in the Pentium
Pro, we can sometimes fit an entire four-level trie and the intermediate
table into the L2 cache. Thus our tables will sometimes show that the
search times decrease as we increase the number of levels because the
storage reduces and the trie fits completely into the L2 cache. The access
delay from the L2 cache is 15 nsec. The delay for an access to the main
memory is 60 nsec. When there is a L2 miss, the total time needed for an
access is 60 1 15 5 75 nsecs.

5.4.6 Putting It Together. From Tables IV–VII we use appropriate val-
ues to construct Tables IX and X which illustrate storage and search time
trade-offs for the various species of tries we have discussed. Table IX
assumes 512KB of L2 cache as in the Pentium Pro, while Table X is a
projection to a Pentium that has 1MB of L2 cache. The values in these two
tables are constructed from the earlier tables.

Note that instead of storing the next hop pointers directly in the trie, we
use a level of indirection: the longest matching prefix in the trie points to

Table VIII. Time requirements for search when using a k level trie, found using Vtune for
the Pentium. clk is the clock cycle time and M_D is the memory access delay.

Type of Trie Time for Search

Leaf-Pushed Fixed Stride ~6k 1 4!*clk 1 k*MD

Leaf-Pushed Variable Stride ~8k 1 2!*clk 1 k*MD

Non-Leaf-Pushed Fixed Stride ~~10k 1 1!*clk 1 k*MD!
Non-Leaf-Pushed Variable Stride ~12k 2 1!*clk 1 k*MD

Leaf-Pushed Variable Stride with packed array nodes ~8k 1 12!*clk 1 k*MD

Non-Leaf-Pushed Variable Stride with packed array nodes ~12k 1 5!*clk 1 k*MD
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an entry in an intermediate table that stores the actual next hop for
forwarding. This helps in speeding up route changes, which are much more
frequent than insert/deletes. This is because only one entry (corresponding
to the prefix whose route is changing) has to be changed, and no expansion
needs to be done. Thus we need to account for the intermediate table size
(which is 2 bytes per prefix, and is thus 80KB for the MaeEast database) in
computing memory requirements.

For example, the memory requirement for the MaeEast database for
Non-Leaf-Pushed Variable stride trie for three levels is found from Table V
to be 575*2 5 1150KB. We add the intermediate table size of 80KB to get
1230KB, which is the corresponding entry in Tables IX and X.

Tables IX and X estimate the memory access delay as follows. If the data
structure is small enough to be fit in the L2 cache of 512KB, then the
memory access delay MD is taken to be 15 nsec.; if not, it is taken to be 75
nsec. All numbers assume that all accesses miss the L1 cache. The total
memory requirement for each trie is calculated by adding the size of the
trie that is built using the dynamic program, with the size of the interme-
diate table. When the total size is a little more than 512KB, we assume
that only the first level of the trie is in the L2 cache, while the other levels
lead to a L2 miss.

For a machine which is to be used as a router, we might be able to afford
a larger L2 cache. For a machine with 1MB of L2 cache, the projected
search times would be as in Table X.

5.5 Choosing a Trie

As an example, from Table IX, we can decide which type of trie to use for
the MaeEast database. We see that the minimum search time of 196 nsec.

Table IX. Memory and Worst-Case Lookup Times for Various Types of Trie. With a 512KB
L2 cache, when the memory required is less than 512KB, the table can be fit into the L2
cache. The memory requirement in this table is for the MaeEast database, including the

intermediate table. Notice how the search time drops when the entire structure fits into L2,
even though the number of trie levels have increased.

2 levels 3 levels 4 levels 5 levels 6 levels

Mem Time Mem Time Mem Time Mem Time Mem Time

Leaf-Pushed fixed stride 49168 203 1930 298 820 393 660 428 550 523
Leaf-Pushed Variable

stride
1640 219 655 268 500 196 460 244 450 293

Non-Leaf-Pushed fixed 98275 209 3780 311 1560 413 1240 514 1020 616
Non-Leaf-Pushed

variable
3200 226 1230 341 920 456 840 571 820 686

Leaf-Pushed variable
stride with packed
array nodes

1063 243 540 284 450 206 427 248 420 289

Non-Leaf-Pushed
variable with packed
array nodes

1824 246 808 361 640 476 623 591 614 706
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is attained for the leaf-pushed Variable Stride trie with four levels. Next,
we have to see if this meets the requirements for insertion and deletion.
For a leaf-pushed trie, a single insert or delete can cause nearly all the
array elements in the entire trie to be scanned. For this 500KB structure,
this could take at least 10 msec. We find that the Non-Leaf-Pushed variable
stride trie takes 226 nsec. worst case for search, and can support prefix
insert and delete operations with a worst case of 2.5 msec. (the maximum
stride is constrained to be 17 as described earlier to guarantee worst-case
insert/delete times). Also note that in this case, the worst case of 226 nsec.
is calculated assuming that the entire structure is only in main memory
(without any assumptions about part of the structure being in the L2
cache).

Now we consider the same database using a machine with 1MB of L2
cache (Table X). Here we see that the minimum time is 148 nsec.; however
this does not meet the worst-case deletion time requirements. In practice, it
might work quite well because the average insertion/deletion times are a
few microseconds compared to the worst-case requirement of 2.5 msec.
However, we see that the Non-Leaf-Pushed variable stride trie with packed
array nodes and three levels gives a worst-case bound of 181 nsec. and
supports insert/delete with a worst-case bound of 2.5 msec. Similar tables
can be constructed for other databases and a choice made based on the
requirements and the machine that is being used.

5.6 Comparing Multibit Trie Schemes

The Lulea scheme [Degermark et al. 1997] uses a clever scheme to
compress multibit trie nodes using a bitmap. While we have used compres-
sion on a limited scale (for sparse nodes with no more than three pointers),
our compression scheme will not work well with large sparse trie nodes.
The Lulea scheme uses a trie with fixed strides of 16,8,8; they are able to
compress large trie nodes without using (slow) linear search using a fast

Table X. Memory and Time Taken for Various Types of Trie with 1MB L2 Cache

2 levels 3 levels 4 levels 5 levels 6 levels

Mem Time Mem Time Mem Time Mem Time Mem Time

Leaf-Pushed fixed stride 49168 203 1930 298 820 153 660 188 550 223
Leaf-Pushed Variable

stride
1640 219 655 148 500 196 460 244 450 293

Non-Leaf-Pushed fixed 98275 209 3780 311 1560 413 1240 514 1020 256
Non-Leaf-Pushed

variable
3200 226 1230 341 920 216 840 271 820 326

Leaf-Pushed variable
stride with packed
array nodes

1063 183 540 164 450 206 427 248 420 289

Non-Leaf-Pushed
variable with packed
array nodes

1824 246 808 181 640 236 623 291 614 346
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method of counting the number of bits set in a large bitmap. It appears that
the Lulea scheme uses leaf-pushing; thus insertion and deletion will be
slow. The Lulea scheme also optimizes the information associated with
prefixes by noting that there are (typically) only a small number of next
hops. Both the Lulea node compression and next-hop optimizations are
orthogonal to and can be used together with our schemes.

The LC Trie scheme [Nilsson and Karlsson 1998] essentially constructs a
variable stride trie7 but with the special property that all trie nodes are
completely packed. The LC trie implementation begins with a one-bit trie
and forms the root node of the LC trie as the largest multibit trie node that
is full (i.e., contains no null entries). Removing the root node breaks up the
original one-bit trie into multiple subtries, and the process is repeated with
each subtrie. Finally, the variable stride trie nodes are laid out contigu-
ously in an array. Once again, this makes insertion and deletion slow.

When compared to these other schemes, our multibit trie schemes have
greater tunability and faster insertion/deletion times. We have paid a great
deal of attention to insertion and deletion times. But perhaps more impor-
tantly, our schemes are tunable: we can generate a collection of trie
schemes with various trade-offs in terms of search, insertion times, and
storage. Since the requirements of hardware and software designers on
different platforms and in different environments can be so different, we
believe this tunability is an important advantage. For example, the LC-trie
scheme is limited to building a single variable stride trie (of depth 6 or 7)
for each database of prefixes. By contrast, our schemes allow an implemen-
tor to add more memory to reduce search time.

6. FASTER BINARY SEARCH ON LEVELS

So far, we have applied the general ideas of expansion and optimal choice of
levels to trie schemes. To show that our ideas are general, we apply our
ideas to a completely different type of lookup algorithm based on repeated
hashing. We start by reviewing the existing idea of binary search on levels
[Waldvogel et al. 1997] in Section 6.1. We then describe in Section 6.2 how
our new expansion ideas can reduce the worst-case time. Next, in Section
6.3 we describe a dynamic programming solution for picking optimum
levels. Finally, in Section 6.4, we describe implementation and performance
measurements for binary search on hash tables with expansion.

6.1 The Base Idea

We briefly review the main idea of binary search on levels [Waldvogel et al.
1997]. Binary search on levels should not be confused with binary search on
prefixes described in Lampson et al. [1998]. The first step is to separate
prefixes by lengths; more precisely, we keep an array A@i# such that A@i#
points to all prefixes of length i. A simple way to search for a longest
matching prefix for say address D is as follows. We start with the longest

7Our schemes were invented concurrently.
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length nonempty set A@max#. We then extract the first max bits of D and
search for an exact match with any element in set A@max#. This can be
done efficiently if each set A@i# is organized as a hash table (or a CAM in
hardware). If we find a match, we find the longest matching prefix;
otherwise, we backup to the next longest length A@l# that has a nonempty
set and continue the process until we run out of lengths. This scheme will
take a worst case of 32 hashes for IPv4.

The main idea in Waldvogel et al. [1997] is to use binary search on levels.
Rather than start searching for an exact match in the largest length table
the scheme searches for an exact match in the median length table. If we
find a match, we recursively search the right half (i.e., all lengths strictly
greater than the median); if we do not find a match we recursively search
the left half (i.e., all lengths strictly less than the median). This will result
in a worst-case search time of log232 5 5 hashes for IPv4. However, the
basic scheme needs additional machinery for correctness. The main mech-
anism that concerns us here is the addition of markers.

Consider the data structure shown in Figure 10 corresponding to the
unexpanded database of Figure 1. Each prefix P1 to P7 is placed in a
separate hash table (shown vertically using a dashed line) by length. Thus
the length 1 hash table contains P4 and P5, and the length two database
contains P1, etc. The bolded entries in the hash tables are what we call
markers.

To see why markers are required, consider a search in the for an address
D whose first five bits are 11001. Assume the bolded markers nodes do not
exist in 10. Thus if we do a search in the length 4 table for the string 1100
(first four bits of D), we will not find a match (because there is no prefix
1100*). According to our binary search rules, we have to backup to the left
half. But the correct answer, P3 5 11001*, is in the right half! To fix this
problem, we add a bolded marker corresponding to the first four bits of
11001* (see Figure 10) to the Length 4 table. This will guide binary search
to the right half if the destination address has first four bits equal to 1100.

It may appear that one has to have a marker for each prefix P of length L
at all smaller lengths from 1. . . L 2 1. Actually, one needs only markers
at lengths where binary search will search for P, and that are smaller than
L. Thus if the largest length is 7, the prefix P8 5 1000000* only needs a
marker 1000* in the Length 4 table and a marker 100000* in the Length 6
table (see Figure 10).8 This leads to at most log2W hash table entries per
input prefix, where W is the maximum prefix length.

This algorithm is attractive because it offers a very scalable solution
(O~log2W! time and O~nlog2W! memory), where n is the number of

8Note that some nodes such as 1000* and 100000* are markers as well as prefixes. This is
shown in Figure 10 by making the entries bolded but also having them contain a prefix entry.
Every entry also contain a precomputed bmp value that is the best matching prefix of the
entry itself. These bmp values are used in Waldvogel et al. [1997] to prevent backtracking.
However, they are not relevant to the rest of this article.
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prefixes. For IPv4, this algorithm takes a worst case of 5 hashes; for IPv6
with W 5 128, the worst case only increases to 7 hashes. Waldvogel et al.
[1997] describe another enhancement called Rope Search, and the idea of
having an initial array; however, these improvements improve the average
performance and not the worst case. There are no measurements in
Waldvogel et al. [1997] except some estimates based on estimating the cost
of hashing.

6.2 Faster Binary Search through Expansion

The speed of binary search on levels is actually log2l, where l is the number
of distinct prefix lengths. For the real backbone databases we examined, l
is 23. Thus the worst-case time of binary search for IPv4 is indeed 5
hashes. However, this immediately suggests the use of expansion to reduce
the number of distinct lengths to k , l. While the gain is only logarithmic
in the reduced lengths, if we can reduce the worst case from 5 to 2 (or 3) we
can double performance.

Figure 11 shows the binary search database for the expanded set of
prefixes shown on the right of Figure 1. Because the length of the set
pointed to by A@i# is not i, we have to store the length of the prefixes in the
set along with the pointer to the set. The search will start in the median
length set (Length 5 table). If we find a match we try the Length 7 set;
otherwise we try the Length 3 set. When we compare with the unexpanded
binary search database (Figure 10) we find that the number of distinct
lengths has reduced from 7 to 3. Thus the worst-time number of hashes
decreases from log2~7 1 1! 5 3 to log2~3 1 1! 5 2. On the other hand,
the number of nodes has increased from to 10 to 13. The number of
markers, however, actually decreases.

Fig. 10. The binary search database corresponding to the unexpanded prefix set of Figure 1.
The marker entries are shown bolded.
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6.3 Applying Dynamic Programming

We have already seen that expansion can increase the number of prefixes
but reduce the number of markers. These two effects can compensate up to
a point, even in a worst-case sense. When n prefixes are expanded so that
only W/ 2 distinct lengths are left in the database the number of prefixes
doubles to 2n. The worst-case number of markers changes from n*~log2W
2 1! to n*~log2W/ 2 2 1! 5 n*~log2W 2 2!. Thus the total storage re-
mains unchanged at n*log

2
W! Thus the worst-case number of hashes can

be reduced by 1 without changing the worst-case storage requirement.
A further expansion to W/4 lengths however will improve the worst-case

number of hashes to log2W 2 2 but increase the maximum number of hash
table entries to 8*n 1 n*~log2W/4 2 1! 5 n*~5 1 log2W!. Thus further
expansion can potentially increase the worst-case storage by a factor of 5.

In practice, we have found that expansion from 23 distinct lengths to 8
lengths—and even 3 lengths—does not increase the storage by such dra-
matic factors. The key to this improvement is to use dynamic programming
to pick the levels so as to balance the costs of expansion and the (secondary)
cost of markers. For instance, a natural heuristic would be to pick the k
expansion levels at the k most densely populated prefix lengths (e.g., 24, 16
etc.). However, suppose we had only two expansion levels and we tried to
pick these levels as 24 and 16. If there are several 17- and 18-bit prefixes,
the cost of expanding these to 24 bits may be quite high. Thus we have
found that a dynamic programming solution produces much better results
than the natural heuristics.

Fig. 11. The binary search database corresponding to the expanded prefix set of 1. The single
marker node (which points to the presence of P7 and P8 at higher lengths) is shown bolded.
Compare with the database of 10 and observe that the number of hash tables has decreased.
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To this end, we define ExpansionCost@i, j# as the number of prefixes
obtained by expanding all prefixes length l such that i # l , j to length j,
with ExpansionCost@j, j# 5 0 for all j.

We begin by filling the table ExpansionCost@i, j#. Let n~i! denote the
number of prefixes of length i. The number of prefixes of length j that
would result from expanding all prefixes of length i to length j is given by
n~i!*2 j2i. However, to find the number of prefixes that would end up in
level j by expanding all prefixes of length i. . . j 2 1 to length j, we cannot
simply compute Om5i..j21n~m!*2 j2m. This is because this does not take into
account common prefixes. For example, while 0* and 00* expanded to
length 3 would yield only 4 prefixes of length 3, the above sum would yield
6. (This is identical to the double counting problem described when we
described the trie dynamic programming solution.)

ExpansionCost can be computed correctly by actually simulating the
placement of hash entries for each possible expansion. However, this would
be an exponential time algorithm.

Instead, we use our old workhorse, the auxiliary one-bit trie. When we
are calculating ExpansionCost@i, j# assume that ExpansionCost@i 1 1, j#
has been calculated. Now we examine the nodes in trie level i 2 1. For
each node x, calculate the number of prefixes of length j that it would
contribute. This can be done as follows. Assume each node has a 0-pointer
and a 0-info field, and similarly a 1-pointer and 1-info field. (Recall that
trie node locations without leaf-pushing contain information about prefixes
alongside the pointers.) We find the expansion cost contributed by the 0
and 1 pointers separately and add them up.

If the 0-info value is nonnull, then this represents a valid prefix, and
would expand to level j, giving 2 j2i prefixes of length j. If the 0-info value is
null, then that does not correspond to a valid prefix. In this case, if the
0-pointer points to a nonnull value y, then we count the value contributed
by y when expanded to length j. If y is null, there is no cost contribution.
We do the same computation for the 1-pointer and then add up the total to
find the total contributed by node x.

It is interesting to see why counting the cost of expansion is more
complicated than for tries (see Figure 8). This is because every trie node
must be accounted for in trie solutions, whether the trie node contains a
prefix or not. In the binary search case, a trie node contributes to the final
database only if it contains a valid stored prefix or if it contributes a
marker. Since markers do not need to be expanded, we count markers
separately.

The complexity for computing ExpansionCost can be shown to be
O~n*W2!). This is because for each of the O~W2! pairs of possible values of
i, j we must examine potentially O~n! nodes at a trielevel. We also need to
bound the storage contributed by markers.
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Let Entries@j# be the maximum number of markers and entries that
would be induced by prefixes of length j when a level is placed at length j.
We can estimate this quantity by examining the nodes in the trie at trie
level j 2 19 and counting the number of pointers that go from level j 2 1
to level j, and the number of info values stored at level j 2 1.

If there is a prefix of length j, then must be an info value at trie level j
2 1. On the other hand, a prefix of length greater than j, would contribute
a nonnull pointer at trie level j 2 1. Thus each info value corresponds to a
prefix entry stored at level j; each nonnull pointer corresponds to a possible
marker. This is a considerable over-estimate of the number of markers
because it essentially assumes that each prefix of length L will contribute a
marker at each level less than L. However, it seems very hard to perfectly
account for the number of markers contributed by a given set of prefixes for
arbitrary expansion levels. The approximation also does produce good
results.

If we denote the cost of covering lengths 1 . . . j using levels 1 . . . r by
T@j, r#, we have:

T@j, r# 5 Entries@j# 1 minm[$r21· · ·j21%$T@m, r 2 1#

1 ExpansionCost@m 1 1, j#

T@j, 1# 5 Entries@j# 1 ExpansionCost@1, j#

There are k*W elements in the array; computing each finding each
element takes O~W! time, since we take a minimum over at most W
quantities. Thus the overall complexity of this algorithm is O~k*W2!.

6.4 Performance of Expansion 1 Binary Search on Hash Tables

We present the results obtained by expanding the prefixes to have only
three distinct levels. For each database, our program searches for a
semiperfect hash function that gives at most six collisions; the time to find
one such function is also given in Table XI. The 16-bit table is implemented
as a full array, while the other tables are hash tables. The time taken when
random IP addresses were searched, the time taken by the dynamic
program, and the memory requirement when using levels given by the
dynamic program, are all presented in Table XI.

When compared to the worst-case figure for 5 levels for the unexpanded
form of MaeEast, we have roughly twice the memory requirement (3220KB
versus 1600) but a factor of 1.66 reduction in the worst-case number of
memory accesses (3 versus 5). This appears to be an attractive trade-off.
The only fly in the ointment is that searching for a good semiperfect hash

9Although this might seem as if it should be j instead of j 2 1, the statement is correct
because level numbers start from 0.
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function (in order to guarantee worst-case times) can take as long as 13
minutes! Once again, we could make the argument that such a search could
be relegated to a management station to be done once every hour because
the rate at which managers add prefixes to the Internet (a manual process)
is on the order of hours, if not days. Note that if we calculate a semiperfect
hash function for the set S of all prefixes that a router sees in a day,
deletions will cause no problems because the same semiperfect hash
function will work for any subset of S.

7. IP LOOKUPS IN HARDWARE

While this article has focused on software comparisons, it is also important
to consider how IP lookup schemes could be implemented in hardware.
Many vendors today are using hardware IP lookup engines because of the
cheaper cost and the higher speeds offered by such engines. Thus in this
section, we first present a hardware model and the relevant metrics for
hardware. We then briefly consider the schemes described in this article
from a hardware implementation perspective.

7.1 Hardware Model

We assume a cheap forwarding engine (say US $50 assuming high volumes)
operating at a clock rate of 2–10 nsec. We assume the chip can place its
data structure in SRAM (with say 10 nsec. access times) and/or DRAM
(60–100 nsec. access times). In memory comparisons, it is important to
observe that SRAM is several times more expensive than DRAM. For
example, following current prices, SRAM costs six times as much as DRAM
per byte. Finally, some forwarding engines may have a few megabits of
on-chip memory that is extremely fast (say 5 nsec. access times).

Also, modern memory technologies like SDRAM and RAMBUS10 provide
a way to hide the long access times of DRAMs. They do so by providing a
single chip with multiple DRAM banks to which accesses can be inter-
leaved. Thus an access for bank B1 can be started while the results of a
previous access to bank B0 are still forthcoming. Such technology lends

10http://www.rambus.com/

Table XI. Binary Search on Hash Tables after Expanding to Levels Given by the Dynamic
Program and Time Taken for the Dynamic Program. Random-search time is found by

computing the average measured search time to a million randomly chosen IP addresses.

Database
Time to Find
Hash (sec.)

Memory (KB)
(16, 24, 32)

Time for
Dynamic
Program
(msec.)

Memory (KB)
Using Levels
from dynprog

Random
Search (nsec.)

MaeEast 750 4250 650 3250 190
MaeWest 150 2250 287 1250 190
Pac 8 512 55 512 180
Paix 0.1 256 15 256 180
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itself naturally to pipelining, with the memory for each pipeline stage in a
separate bank. At the same time, the forwarding engine only needs a single
set of address pins to drive the multiple memory banks of a single
RAMBUS or SDRAM.

Besides the search time measured in memory accesses, two other crucial
measures for a hardware implementation are worst-case memory usage and
update times. While our article has described the memory usage of trie
algorithms on “typical databases,” it would be better to have a hardware
implementation that can specify the worst-case number of prefixes it can
support, given a bounded amount of fast memory. For single chip forward-
ing engines, fast update times are also crucial. Besides the problem of
backbone instability alluded to earlier, a chip that can do database updates
entirely in hardware is much more attractive to customers. For example,
consider an IP lookup chip that can do wire speed forwarding at OC-48
rates (one lookup every 166 nsec.), can handle 50,000 arbitrary prefixes,
and can do an update every msec. Such a chip would be extremely valuable
today compared to CAM solutions that can only handle around 8000
prefixes.

7.2 Comparing Schemes in Hardware

None of the schemes described in this article have good worst-case memory
usage. However, it is easy to add worst-case memory bounds for multibit
tries using a technique called path compression, first described in Wilkin-
son et al. [1998]. In this technique, trie nodes with only one pointer are
removed and substituted with an equivalent bit string. Path compression
differs slightly from the more standard technique for compressing one-way
branches using a skip count, is described in Knuth [1973] and used in
Sklower [1991]. An important advantage of path compression over skip
count compression is that path compression does not require backtracking
[Sklower 1991; Stevens 1994] during search.

Using path compression, the number of trie nodes used to store n
prefixes can be shown to be no more than 2n. Path compression [Wilkinson
et al. 1998] can be applied to all the multibit trie schemes described in this
article to provide worst-case memory bounds.

Given this modification, the expanded trie schemes described in our
article are best applicable to hardware implementations that use external
DRAM. This is because DRAM is cheap and inexpensive, and the increased
memory needs of expanded tries are not a significant issue. However, since
even our fastest trie schemes take 3–4 memory accesses, implementations
(e.g., routers that support OC-48 links) that require lookup times faster
than say 300 nsec. will require pipelining.

A simple observation is that any search tree, whether a trie or a binary
search tree, can be pipelined by splitting its levels into pipeline stages. The
idea is that each level of the tree corresponds to a pipeline stage. The
address is fed to the first stage which contains the root. The comparison at
the first stage stage tells which pointer to follow (e.g., to node N1 or N2).
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The address is then passed to the second stage along with the pointer to
say node N2. The second stage contains both nodes N1 and N2. Since the
passed pointer says N2, the address is compared with N2 and the resulting
pointer is passed to the third stage, and so on. Pipelining allows a speed of
one lookup per memory access at the cost of possibly increased complexity.
As we have seen, memory technologies such as SDRAM and RAMBUS lend
themselves naturally to pipelining, by providing a single set of pins that
drive multiple memory banks. In summary, all the schemes described in
this article can be pipelined to provide one lookup per memory access.

As link speeds continue to increase (e.g., terabit forwarding), DRAM
memory access times will become a bottleneck. At such speeds, the entire
IP lookup database will need to be stored in SRAM or on-chip memory. In
such environments, where memory is again limited, schemes that compress
trie nodes such as Degermark et al. [1997] and Eatherton et al. [1999] will
do better than multibit expanded tries.

8. CONCLUSIONS

We have described a new set of techniques based on controlled expansion
and optimization that can be used to improve the performance of any
scheme whose search times depend on the number of distinct prefix lengths
in the database. Our trie schemes provide fast lookup times and have fast
worst-case Insert/Delete times. When compared to the Lulea scheme
[Degermark et al. 1997] we have a version (leaf-pushed, variable stride)
that has faster lookup times (196 nsec. versus 409 nsec.) but more memory
(500KB versus 160KB). More significantly, we have a trie variant that has
fast lookup times (226 nsec.) and reasonably fast worst-case insert times
(2.5 msec.). There are no reported Insertion times for the Lulea scheme,
because Inserts are supposed to be rare [Degermark et al. 1997; Waldvogel
et al. 1997]. However, because BGP updates can add and withdraw prefixes
at a rapid rate, prefix insertion is important. Our schemes can also be
tuned to a wide range of software and hardware environments. Our
schemes have been implemented by at least three companies and will,
hopefully, appear in forthcoming products.

In general, the Lulea scheme can potentially be cheaper in hardware
because it uses a smaller amount of memory. However, it pays a penalty of
four memory accesses per trie node for node compression in place of one
access. Thus, using (expensive) 10 nsec. SRAM, we could easily build a trie
lookup scheme that takes 60 nsec. while the Lulea scheme would require
240 nsec. Our trie scheme would require more memory and hence cost
more, but the cost will potentially be dwarfed by the cost of expensive
optics needed for gigabit and terabit links. Our optimization ideas can also
be applied to the Lulea scheme to decrease memory further.

With expansion, binary search on levels [Waldvogel et al. 1997] can be
also made fairly competitive. Its main disadvantage is the time and
memory required to find semiperfect hash functions, and its slow Insert
times; however, its average performance for IPv4 databases is competitive.
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Its real advantage is the potential scalability it offers for IPv6, either
directly or using the combination scheme we described.

While our approach is based on new algorithms we emphasize that it is
also architecture and measurement driven. We rejected a number of
approaches (such as compressing one-way trie branches in our software
implementations) because the measurements on real databases indicated
only small improvements.

We believe with Waldvogel et al. [1997] and Degermark et al. [1997] that
IP lookup technology can be implemented in software, at least up to gigabit
speeds. We also believe that fast lookup algorithms make the arguments for
Tag and IP switching less compelling. Finally, we believe that routers of
the future may be less vertically integrated than at present; instead they
will be assembled from special chips for functions (e.g., lookups, switching,
and scheduling) and commodity routing software, just as computers evolved
from mainframes to PCs. We hope the lookup technology described by us
and others will contribute to this vision of the future.
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