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Fast algorithm for chirp transforms with
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A general fast numerical algorithm for chirp transforms is developed by using two fast Fourier transforms and
employing an analytical kernel. This new algorithm unifies the calculations of arbitrary real-order fractional
Fourier transforms and Fresnel diffraction. Its computational complexity is better than a fast convolution
method using Fourier transforms. Furthermore, one can freely choose the sampling resolutions in both x and
u space and zoom in on any portion of the data of interest. Computational results are compared with ana-
lytical ones. The errors are essentially limited by the accuracy of the fast Fourier transforms and are higher
than the order 10212 for most cases. As an example of its application to scalar diffraction, this algorithm can
be used to calculate near-field patterns directly behind the aperture, 0 < z , d2/l. It compensates another
algorithm for Fresnel diffraction that is limited to z . d2/lN [J. Opt. Soc. Am. A 15, 2111 (1998)]. Experi-
mental results from waveguide-output microcoupler diffraction are in good agreement with the calculations.
© 2000 Optical Society of America [S0740-3232(00)01704-X]

OCIS codes: 350.6980, 070.2590, 050.1590, 050.1940

1. INTRODUCTION

Responses of many physical systems can be described
with chirp transforms (ChT’s). For example, chirps on
laser pulses,1 scalar diffraction through a first-order opti-
cal system,2–6 holographic lenses,7 and Fresnel
transforms8 (FnT’s) are the most frequently reported
techniques used in scalar diffraction calculations. Re-
cent developments in optical interconnects spurred by
high-speed and huge-capacity optical communications in-
clude problems similar to those just mentioned.9–12 One
example of such a system is illustrated in Fig. 1, where
the optical signal is transmitted from board to board and
is detected by detectors located several tens of wave-
lengths away. The near-field diffraction pattern at the
detector ends directly affects the performance of the inter-
connection. It is preferable to obtain complete informa-
tion on the evolution of the optical signals along the in-
terconnecting path. In addition, it is easy to show that
fractional-order Fourier transforms13 (FrFT’s) can also be
treated as chirp transforms. Therefore, an accurate,
simple, and efficient numerical method will be beneficial
in the use of these extensively employed formulas.

Some studies have been done on the numerical evalua-
tion of Fresnel diffraction; two examples are the use of
fast Fourier transforms (FFT’s) and convolution
techniques14 and a discrete-Fourier-transform- (DFT-)
like matrix method.15,16 A number of algorithms are also
specifically devised for FrFT’s 17–21 whose properties have
been intensively investigated both mathematically3–5,22

and physically23–25 in terms of their applications to opti-
cal beam propagation,6 imaging,24–26 diffraction,27 and
signal and image processing.28–36 The relations among
FnT’s, DFT’s, and FrFT’s are also well established.32,37,38

Our aim in this paper is to develop an efficient algorithm
that unifies the evaluations of these formulas.

In this paper we describe a fast numerical algorithm
that is based on the chirp-z transform39,40 to calculate
chirp transforms. It employs two FFT’s with an analyti-
cal kernel, and its computational complexity is better
than a fast convolution. In addition, one can freely
choose the sampling resolutions in both x space (signal
domain) and u space (transformed, or response domain)
and zoom in on any portion of the data of interest. Zoom-
ing in may be very useful in studying fine structures of
some chirp systems, for example, near-field diffraction.41

The sampling condition will also be addressed under the
restriction of the Nyquist theorem.

In Section 2, first we compare several physical systems
that can be classified as chirp transforms and establish a
general mathematical description. Then in Subsection
3.A we present a discrete form of the transform. The
sampling condition and discussions on peeping any por-
tion of the data in u space are mentioned at the end of the
Subsection 3.A. Following the discretization of the inte-
gral form of the transform, we use similar techniques in
the chirp-z transform and develop the concrete fast algo-
rithm in Subsections 3.B and 3.C. In Section 4 we give
some numerical examples to demonstrate the effective-
ness of this algorithm. Some closed-form transforms
such as a Gaussian function and rect(x/a) are tested in
Subsection 4.A. In Subsection 4.B the algorithm is ap-
plied to zooming in on the Fresnel diffraction of a rectan-
gular window around the focal plane. Experimental re-
sults are provided for comparison. Near-field diffraction
patterns from a 1-to-48-waveguide fan-out interconnec-
tion layer were measured, and they corresponded well to
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the results simulated with this algorithm in Subsection
4.C. In Subsection 4.D the versatility of this algorithm is
demonstrated in calculating arbitrary real-order FrFT’s.

2. COMPARISON OF SEVERAL GENERAL
CHIRP TRANSFORM SYSTEMS

A chirp transform of an arbitrary signal f(x) in an
N-dimensional system is expressed by

gch
p ~u! [ C

p$f~x!% 5 E
2`

1`

f~x!Bch
p ~u,x!dx, (1)

and the integration kernel is

Bch
p ~u, x! [ A~p!expF22pi(

l51

N

~a lx l
2

1 b lx lu l 1 g lu l
2!G ,

u, x P R
N, (2)

where A(p) is the amplitude of the kernel and generally a
complex value, i [ A21, and p [ (a, b, g) are the pa-
rameters of the transform, each of them being an
N-dimensional vector. This transform maps the signal in
x space (signal domain) to u space (chirp space, or re-
sponse domain). All variables are dimensionless. To
simplify the discussion, we will use the one-dimensional
form of the above equations from now on. However, all
the conclusions and results are applicable to the higher-
dimensional cases as well.

In comparison, the Fresnel formula of scalar diffraction
through a general Gaussian (first-order) optical system
can be expressed with the Collins formula,2,6,42 in which
the transforming kernel is a special case of chirp trans-
forms [Eq. (1)], namely,

BFnT
M ~u, x ! [

2i

Bl
expF ik

2B
~Ax2

2 2xu 1 Du2!G , (3)

which is associated with a ray-transfer matrix,2,42,43

M [ FA B

C D
G , det M 5 61. (4)

In Eq. (3), l [ (2p)/k is the wavelength. This formula
connects the paraxial parameters and the Fresnel diffrac-

tion of the system. It can be rewritten as a special case of
chirp transforms when the corresponding parameters are
used:

p [ ~a, b, g ! 5
2k

4pB
~A,22, D !,

A~p! 5
2i

Bl
. (5)

Similarly, the kernel of a real-value kth-order FrFT,
BFrFT

k , is another special case of the chirp transform and
can be written as44

BFrFT
k ~u, x ! 5

exp@2i~ fs2f !/2#

~2pusin~ f !u!1/2

3 expH iF ~u2
1 x2!

2

3 cot f 2 ux csc fG J ,

k Þ 2n, (6)

in which f [ (p/2)k, fs 5 @(p/2)sign(sin f)# and n is an
integer.45 Apparently, the corresponding ChT’s param-
eters are

p [ ~a, b, g ! 5
21

4p
@cot~ f !, 22 csc~ f !, cot~ f !#,

A~p! 5

exp@2i~ fs2f !/2#

~2pusin~ f !u!1/2 . (7)

Therefore a general algorithm for chirp transform applies
to computations of all these cases of Fresnel diffraction,
the Collins formula, and FrFT’s. To preset a suitable
form for numerical calculation of any ChT, in Subsection
3.A we will derive a discrete form of Eq. (1), and in Sub-
section 3.B we will concentrate on developing the fast al-
gorithm.

3. DEVELOPMENT OF A FAST NUMERICAL
ALGORITHM FOR THE GENERAL
CHIRP TRANSFORM

A. Discrete Form of the Chirp Transform
For numerical calculation of the ChT of an arbitrary func-
tion f(x) except those having analytical forms, first Eq. (1)
will be digitized. For simplicity, we will use the simplest
equidistant sampling. The sample steps are denoted dx

for the signal space and du for the chirp space. The
sample numbers Nx and Nu for x space and u space must
be limited; they are not necessarily equal. Therefore the
discretization of Eq. (1) may be given as

x → n8dx [ S n 2

Nx

2
D dx, n 5 0, 1, 2,... Nx 2 1,

u → k8du [ S k 2

Nu

2
D du, k 5 0, 1, 2,... Nu 2 1,

Fig. 1. Schematic top view of the H-tree waveguide used in op-
tical interconnections. The side view of one of its 48 microcou-
plers is illustrated at the right. Near-field diffraction patterns
of the outcoupling are critical to the coupling of the optical signal
to detectors in successive layers and hence to the performance of
the optical interconnections.
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and

gk
p

5 gch
p ~kdu ! ' (

n50

Nx21

fnBD
p ~k, n !dx,

BD
p ~k, n ! [ A~ p !exp$22pi@a~n8dx !2

1 bn8k8dxdu

1 g~k8du !2#%, (8)

where fn 5 f(n8dx) and BD
p (k, n) 5 Bch

p (k8du, n8dx). It
can be seen that the parameterized ChT of f(x) is equiva-
lent to the Fourier transform of the modified function
fm(x) [ f(x)exp(22piax2), with a simultaneous variable
scaling in u space except for the difference of a complex
phasor. This could be inferred from Eq. (2) and written
as

gch
p ~u ! } g~v ! [ F $fm~x !% 5 F $f~x !exp~22piax2!%,

(9)

where v 5 bu and F denotes a Fourier transform.46

This is a well-known technique and was used in deriving
several properties of FrFT (for example, see Refs. 13, 37,
and 38). Therefore, according to the Nyquist sampling
theorem, if fm(x) is band limited (i.e., there exists a mini-
mum value vm , g(v) 5 0, uvu > vm . 0), the sampling
step in x space must satisfy

dx <
1

2vm

[
1

2bum

. (10)

This is one implicit form of the Nyquist sampling theorem
in ChT spaces.34,47 Another explicit form of the sampling
condition will be derived in Subsection 3.B. Under this
restriction, one may correctly calculate the numerical
transform of a given function.

If one is interested in the data peeping in u space and
wants to scrutinize any region of gch

p (u), it may be in-
structive to look at the shifting rule of Fourier trans-
forms. For any nontrivial ChT, b Þ 0, and any inter-
ested data window center c in u space,

gch
p ~u 2 c ! } g~v 2 bc ! 5 F $fm~x !exp@2pibcx#%. (11)

The implementation for the data peeping is straightfor-
ward and needs no further discussion. In Subsection 3.B
we will present the concrete fast procedure for numerical
evaluation of the ChT.

B. Fast Numerical Algorithm for the Chirp Transform
The techniques used in the chirp-z transform39,40 are also
useful for efficient calculation of the ChT of a given func-
tion f(x). Substituting the following expression into Eq.
(8),

n8k8 5 2
1
2 @~n8 2 k8!2

2 n8
2

2 k8
2#, (12)

we get

BD
p ~k, n ! 5 A~ p !Pn

pQk
pBconvol

p ~n8 2 k8!,

where the phasorlike Pn
p and Qk

p , as well as the modified
kernel Bconvol

p (n8 2 k8) are

Pn
p

5 expF22piS adx2
2

b

2
dxdu D ~n8!2G ,

Qk
p

5 expF22pi S gdu2
2

b

2
dxdu D ~k8!2G ,

(13)

Bconvol
p ~n8 2 k8! 5 exp@pib~n8 2 k8!2dxdu#.

Substituting Eq. (13) into Eq. (8), one can obtain

gk
p

5 A~ p !dxF (
n50

Nx21

f n
~m !Bconvol

p ~n8 2 k8!GQk
p , (14)

where f n
(m)

5 fnPn
p is the modified discrete signal.

Therefore the discrete ChT of fn can be efficiently calcu-
lated through a fast convolution algorithm by use of FFT’s
such as the techniques in Refs. 17 and 39 which are
straightforward and simple to implement. We can write
the procedure symbolically as

gk
p

5 A~ p !$F 21$F $ f n
~m !%F $dxBconvol

p ~n8!%%Qk
p . (15)

F denotes a FFT and F
21 an inverse FFT. However, this

is not the most efficient method. The transforming ker-
nel is actually a generalized Gaussian function whose
Fourier transform has a closed form,48 i.e.,

F $exp~2ax2!% 5 Ap

a
expF2

~pu !2

a
G , R$a% > 0,

(16)

which, when applied to Eq. (15), becomes

B̂convol
p ~k ! 5 F $dxBconvol

p ~n8!%

5 A idx

bdu
expS 2pi

u2

bdxdu
D , RH i

b
J > 0.

(17)

For the discrete transform, suppose that the sampling
number in x space is Lx > Nx and the Fourier transform
of the kernel on the u grids is

B̂convol
p ~k ! 5 A idx

bdu
expF2pi

1

bdxdu S k8

Lx
D 2G ,

k8 [ k 2

Lx

2
, k 5 0, 1, 2,..., Lx 2 1. (18)

The discrete ChT of Eq. (15) can be rewritten as

gk
p

5 A~ p !$F 21$F $f n
~m !%B̂convol

p ~k !%Qk
p%. (19)

For implementation of this algorithm, the sampling of the

B̂convol
p (k) in u space must be so dense that the kernel is

well approximated. In practice, this condition may be
satisfied by

1

bdxdu S 1

Lx
D 2

! 1. (20)

It has been assumed that the FFT’s of the functions in-
volved do exist. However, these functions can be a dis-
tribution (for example, the Dirac delta function) if we take
the Fourier transforms in a general sense. Therefore one
need not resort to mathematically rigorous conditions of
the fast algorithm in practice by abiding by the sampling
condition mentioned above. An alternative is to explic-
itly impose the restrictions of Eq. (17) on the parameter b.
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One can easily verify that all the Fourier transforms are
valid if the chirp transform in Eq. (1) exists.

The complexity of numerically evaluating Eq. (19) is
about the same as that of two FFT’s and no more than six
sequential complex multiplications (including the possible
data-peeping operation), namely, 2Lx@log(Lx) 1 O(1)# (Lx

is the number of FFT samples). Compared with the pre-
vious chirp-z techniques,39,40 such as those used in Ref.
17, whose time complexity is exactly as that of Eq. (15),
namely, 3Lx@log(Lx) 1 O(1)#, the improvement in compu-
tation time is about one third. Besides, with an analyti-
cal form, the accuracy will be much better. Some ex-
amples will be presented in Section 4. By using this
algorithm, one can freely set the sampling steps in both x

and u space, which is very useful under some circum-
stances such as examining near-field diffraction patterns
and interpolation of sparse data in u space.15,39 One can
also choose different numbers of samples in x and u space
by means of the implementation techniques in Subsection
3.C.

C. Implementation of the Fast Algorithm
To implement the algorithm, the most convenient and ef-
ficient way is probably to use the standard FFT’s. Differ-
ent numbers of samples in x and u space will be used in
the following procedure.

Suppose that the original number of samples in x space
is Nx and the required sampling number in u space is Nu ,
which can be different from Nx . Thus the length of a
noncircular convolution is Lconvol 5 Nx 1 Nu 2 1, which
is the minimum length that should be used for a FFT in
Eq. (19). The sequence of calculations is summarized be-
low.

1. Find a positive number Lx > Lconvol that makes
(Lx 2 Nx) an even number. Lx usually can take the low-
est value that satisfies this requirement.

2. Then compute fn and zero-pad f n
(m) :

Z$f n
~m !%~n !

5 5
0 0 < n ,

~Lx 2 Nx!

2

f n2~Lx2Nx!/2
~m ! ~Lx 2 Nx!

2
< n ,

~Lx 1 Nx!

2

0
~Lx 1 Nx!

2
< n < Lx 2 1

.

(21)

3. Compute the analytical kernel B̂convol
p (k) by means

of Eq. (18) for k8 5 k 2 Lx/2, k 5 0, 1, 2,..., Lx 2 1.
4. Perform the fast convolution operation in Eq. (19):

C~l ! 5 F
2$Z$ f n

~m !%%B̂convol
p ~k !%,

l 5 0, 1, 2,..., Lx 2 1. (22)

5. Discard the first and last (Lx 2 Nu)/2 data of C(l),
and for 0 < k < Nu 2 1 let

gk
p

5 A~ p !Qk
pCS k 1

Lx 2 Nu

2
D , (23)

in which (Lx 2 Nu) should be an even number. This
constraint is not necessary, though it could be met easily
in practice.

Similar procedures with minor modifications can be de-
veloped for arbitrary Nu . To simplify our discussion be-
low, the equivalent requirement that Nx and Nu be of the
same parity will be used. The performance of the algo-
rithm will be evaluated with some application examples
in Section 4.

4. APPLICATION EXAMPLES

To demonstrate the performance of this fast algorithm,
we examine several chirp systems. Different samplings
and resolutions are used for these systems. In addition,
to unify our discussions, we define a scaling factor,

zzoom 5
du

dx
, zzoom . 0, (24)

which defines the finesse of the zooming in. Its recipro-
cal, 1/zzoom , is the magnification of the data window. For
applications of data peeping or interpolation, 0 , zzoom

< 1, whereas zoom-out effects occur when zzoom . 1 un-
der proper sampling; this topic will be addressed below.

Fig. 2. (a) Errors ep 5 max@e(x)# of the ChT’s of a Gaussian
function compared with the analytical transforms for different
zoom factors zzoom . (b) Typical error curve e(x) (zzoom

5 0.5380).
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A. Analytical Chirp Transforms
There are many functions whose ChT’s are analytically
available, such as a generalized Gaussian in Eq. (16).
For simplicity, a 5 g 5 0 and Rx 5 ANx were used. The
ChT becomes a Fourier transform, and its space–

bandwidth product47,49 is Nx . We tested the fast algo-
rithm with a Gaussian function for which a2

5 ApNx/(2Rx), where x P @2Rx/2,Rx/2#, Nx 5 Nu

5 512, and Lx 5 Nx 1 Nu 5 1024. A normalized error
measurement

e 5

ugk
p

2 F $exp~2ax2!%u

max~ ugk
pu!

(25)

between the numerical result and the analytical one is
used to check the accuracy. For different values of zzoom ,
the ChT’s and the corresponding ep [ max(e) are plotted
in Fig. 2(a), and a typical error curve for the ChT is plot-
ted in Fig. 2(b). For 0.01 < zzoom , 2.0, corresponding to
a magnification of the data window of 0.5 ; 100,
ep ' 10212.

A square function, rect(x/a), was used to test the algo-
rithm. Its Fourier transform also has the closed form,
F $rect(x/a)% 5 sin(2pau)/pu. For the same scaling fac-
tors, a 5 Rx/4, the ChT’s as well as the accuracy mea-
surement ep are presented in Fig. 3(a). A typical error
curve for the ChT is plotted in Fig. 3(b). The accuracy of

the transform is much lower than that for a Gaussian,
e ' 1023. However, this does not decrease the validity
and performance of the algorithm. Comparisons of Fig.
2(b), Fig. 3(b), and Fig. 4 indicate that most of the errors
are accumulated in the FFT’s used in the calculations.
Therefore one can optimize the FFT parameters to
achieve higher accuracy.50

B. Fresnel Diffraction of a Rectangular Window
The diffraction of a first-order optical system is perhaps
one of the simplest chirp transforms but is not a trivial
chirp one. In this section we calculate the well-known
near-field diffraction of a rectangular window,
rect(x/a, y/b), behind an ideal focusing lens at different
distances. The system is illustrated in Fig. 5(a), whose
space–bandwidth product is discussed in Ref. 49. The el-
ements of its ray-transfer matrix M are A 5 1 2 l2 /f, B

5 l1A 1 l2 , C 5 21/f, and D 5 1 2 l1 /f. In the simu-
lations Nx 5 2Nu 5 1024, l 5 0.85 mm, a 5 400 mm, b

5 200 mm, l1 5 1.028 mm, f 5 5 3 103 mm, and l2 were
varied from l1 to l1 1 f while zzoom changed correspond-
ingly.

Fig. 3. (a) Errors max(e) of the ChT’s of a rect(x/a) function
compared with the analytical transforms for different zoom fac-
tors zzoom . (b) Typical error curve e(x) (zzoom 5 0.5380).

Fig. 4. Typical error curve of the FFT for (a) a Gaussian func-
tion, (b) rect(x/a).
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A little trick can be employed for the x – y-separable
cases like this one. In Cartesian coordinates, we can just
use outer product of two one-dimensional ChT’s in the x

and y directions, i.e.,

udiff
M ~ux , uy! [ C

M$rect~x/a, y/b !%

5 @CM$rect~x/a !%# t
C

M$rect~ y/b !%, (26)

in which the one-dimensional transform is regarded as a
row vector and the superscript t denotes its transpose.

For nonseparable cases, one can directly use the one-
dimensional ChT’s and the techniques of multidimen-
sional FFT’s.51 Two calculated diffraction patterns are
depicted in Figs. 5(b) and 5(c). With the zoom-in factor
changing with each distance, it is convenient to examine
the fine structures near the focal regions as in Fig. 5(c) by
using this fast algorithm.

C. Near-Field Outcoupling Patterns from a Waveguide
In another important application, we examine the near-
field patterns of the outputs from the microcouplers in a
1-to-48 H-tree fan-out waveguide optoelectronics inter-
connection layer for massive clock signal distribution in a
Cray T-90 supercomputer.9 The optical layer of the sys-
tem is illustrated in Fig. 1, where a side view of the struc-
ture of one of the 48 outcoupling points is schematically
presented at the right. The polyimide waveguide is fab-
ricated on a silicon substrate with 2-mm-thick silicon di-
oxide as bottom cladding. The waveguide is 65 mm
wide52 and 10 mm thick. The refractive index of the poly-
imide is ;1.5364 at l 5 1.310 mm for TE-polarized
waves. The outcoupling window is a 45° slanted rectan-
gular mirror.

The mode structure of the waveguide was calculated;
its first ten eigenmodes in the 10 mm direction are plotted
in Fig. 6. Matching the excitation boundary conditions
for the waveguide indicate that multiple modes do exist in
the waveguide. This finding validates the choice of a
quasi-plane wave for the outcoupling wave at the outcou-
pling window in our calculations. For l 5 0.850 mm,
Nx 5 2Nu 5 1024, and Rx 5 Nxdx 5 103 mm, simulated
results from the fast algorithm are depicted in Figs. 7(a),
7(b), 7(c), and 7(d) that correspond to the distances
z 5 1028, 100, 1000, and 5000 mm, respectively, surface
normally above the waveguide. The zoom factor, zzoom ,
were also changed along with the propagation distance.
As a result of the divergence of the diffraction along the
10-mm side of the window, all zoom factors are greater
than unity.

The diffracted patterns were measured at z 5 100,
1000, and 5000 mm; they are presented in Figs. 7(e), 7(f),
and 7(g), respectively. A detailed comparison of the ex-
perimental data with the calculations confirms our as-
sumptions on the mode excitation of waveguide. The

Fig. 5. Fresnel diffraction patterns of different zoom factors at
different distances behind the aperture. (a) Layout of the optical
system. Diffraction patterns for (b) zzoom 5 0.325, l2

5 4500 mm and (c) zzoom 5 0.250, l2 5 5000 mm.

Fig. 6. First ten normalized eigenmodes in the 10 mm direction
of the outcoupling points of the 1-to-48 fan-out H-tree polyimide
waveguide. A slab waveguide model is used in the calculation
because the width or the thickness of the waveguide is much
larger than the wavelength.
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Fig. 7. Near-field outcoupling patterns from the waveguide as
depicted in Fig. 1. Simulated results at (a) z 5 1028 mm, zzoom

5 1.000; (b) z 5 100 mm, zzoom 5 1.120; (c) z 5 1000 mm, zzoom

5 1.600; (d) z 5 5000 mm, zzoom 5 4.000. Experimental im-
ages corresponding to (e) z 5 100 mm, (f) z 5 1000 mm, and (g)
z 5 5000 mm.
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spurious smaller dimensions in the experimental picture
at z 5 5000 mm, i.e., Fig. 7(g), result from the fact that
only the central lobe of the diffracted beam is visible, ow-
ing to background noise. A careful measurement of the
lobe size as well as the sidelobe positions reveals the cor-
rect correspondence between the calculations and the ex-
periments. For example, the vertical spot size is
;268 mm as determined from experiments, and the calcu-
lated vertical spot size is ;280 mm (the central gray re-
gion). Other characteristics such as nonzero regions
from the central lobe to the first-order spots in the hori-
zontal central region are also correctly located.

It is worth pointing out that the calculations for the
above two applications are carried out for distances rang-
ing from essentially zero behind the aperture to the focal
plane or the far field; these calculations compensate an-
other algorithm for Fresnel diffraction.15 In Ref. 15 the
applicable distance is limited to z . d2/lN, where d

5 Nxdx is the aperture size and N is the sampling num-
ber. However, the sampling requirement of our algo-
rithm, namely, Eq. (20), is equivalent to

1

bdxduLx
2

5

lB

~Nxdx !2zzoom~Lx /Nx!2
! 1, (27)

in which we have plugged in Eq. (5). For a free-space
system, B 5 z. The applicable distance range compen-
sates the distance range in Ref. 15, z ! (Nxdx)2/

lzzoom(Lx /Nx)2 ; Rx
2/l. The associated errors for scalar

diffraction and its validity are analyzed in Refs. 8 and 53,
and references therein.

D. Fractional Fourier Transform of Arbitrary Orders
The transverse distribution of the light propagating in
one kind of graded-index fiber can be described with con-
tinuous order FrFT’s.30,54 As in Subsection 4.B, the inci-
dent wave is chosen as a plane wave on the rectangular
aperture. For the fractional orders of k 5 0.1, 0.4, 0.7,
0.9, the x and u space are normalized so that the windows
for calculation are Rx 5 Nxdx 5 Ru 5 Nudu 5 ANx.
The size of the transparent aperture is 0.2Rx 3 0.5Rx .
The intensity of the FrFT’s of the field is plotted in Fig. 8.
Note that for k 5 1.0 the FrFT is just an ordinary Fourier
transform. One may refer to Refs. 15 and 30 for compari-
sons. In this case the domain of interest for most cases is
in the same range except for those with k 5 2n 1 1.
Therefore we have set the zoom-in factor zzoom 5 1.0 re-
gardless of the possible need to examine the details of the
transformation.

On the free choice of the resolutions, there is an uncer-
tainty principle in addition to the explicit restrictions
such as Eq. (20). The least product of space–bandwidth
for a FrFT system satisfies32,38

~^x2&^u2& !1/2 >
1

4p
. (28)

Fig. 8. FrFT’s of a rectangular aperture, zzoom 5 1.0. (a) k 5 0.1; (b) k 5 0.4; (c) k 5 0.7; (d) k 5 0.9.
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5. CONCLUSIONS

Employing some techniques formerly used in chirp-z
transforms, we have derived a general fast algorithm for
the numerical evaluation of chirp transforms. This algo-
rithm employs two fast Fourier transforms (FFT’s) and an
analytical Gaussian kernel. The new algorithm is also
suitable for the calculation of arbitrary real-order frac-
tional Fourier transforms and scalar-field diffraction in
first-order optical systems. Its computation complexity
is 2Lx@log2 Lx 1 O(1)# and is better than a fast convolu-
tion using Fourier transforms. In addition, one can
freely choose the sampling resolutions in both x and u

space under the restriction of the Nyquist sampling theo-
rem and zoom in on any portion of the data of interest.

Computational results are compared with analytical
ones. The errors are limited by the accuracy of the
FFT’s. Extensions of the algorithm to higher dimensions
is straightforward.

Several application examples are presented to demon-
strate the versatility of the algorithm. Experimental re-
sults from an H-tree waveguide for optical interconnec-
tions confirmed the simulations. The new algorithm is
capable of calculating near-field patterns directly behind
the aperture, 0 < z , d2/l. It compensates another al-
gorithm for Fresnel diffraction that is limited to z

. d2/lN. We believe that it is a handy tool for many
general scalar diffraction problems.
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42. P. A. Béleuger, ‘‘Beam propagation and the ABCD ray ma-
trix,’’ Opt. Lett. 16, 196–198 (1991).

43. A. Yariv, Optical Electronics (CBC College Publishing, New
York, 1985), Chap. 2, pp. 17–52.

44. Y. B. Karasik, ‘‘Expression of the kernel of a fractional Fou-
rier transform in elementary functions,’’ Opt. Lett. 19, 769–

771 (1994).
45. For k 5 2n the kernel becomes a Dirac delta function,

BFrFT
(2n) (u, x) 5 d @u 2 (21)nx#, and the transform is

straightforward and needs no further calculation.

46. To clarify the later results and be self-consistent, we will
adopt the following definition of Fourier transform in the
discrete form: Given f(x), its Fourier transform is

g~u! [ F $f~x !% 5 E
2`

`

f~x !exp~22pixu!dx,

which could be numerically approximated by

g~u ! 5 F $f~x !% ' gk

5 (
l50

Nx21

fnexp@ 2 2pi~n 2 Nx /2!~k 2 Nu /2!d xd u#d x.

We have assumed that the Fourier transform will map f (x)
from x P @2(Nxdx)/2, 1 (Nxdx)/2# to g(u) in the domain
u P @2(Nudu)/2, 1 (Nudu)/2#. If gk is given by a stan-
dard DFT or FFT, however, the mapped domain will be u

P @21/(2dx), 1 1/(2dx)# owing to the sampling condition
dxdu [ 1/Nx .

47. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevshy,
and C. Ferria, ‘‘Space–bandwidth product of optical signals
and systems,’’ J. Opt. Soc. Am. A 13, 470–473 (1996).

48. I. S. Granshteyn and I. M. Ryzhik, Table of Integrals, Se-
ries, and Products (Academic, New York, 1985).

49. H. M. Ozaktas and H. Urey, ‘‘Space–bandwidth product of
conventional Fourier transforming systems,’’ Opt. Com-
mun. 105, 1–6 (1994).

50. L. Austander and F. A. Grünbaum, ‘‘The Fourier transform
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