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Abstract - Embedded wavelet codes are very sensitive to channel
noise because a single bit error can lead to an irreversible loss of syn-
chronization between the encoder and the decoder. Sherwood and Zeger
protected a zero-tree based embedded wavelet code sent through a mem-
oryless noisy channel by using cyclic redundancy detection codes (CRC)
and channel correction codes. Chande and Farvardin proposed an opti-
mal joint source-channel allocation strategy for such systems. We show
how to accelerate their algorithm without quality loss. For grey scale test
images of size 512 × 512, our speedup factors ranged from 1.2 to 6 for
total bit rates between 0.25 and 1.0 bits per pixel. Moreover, by using
turbo codes as channel codes, we obtained competitive peak-signal-to-
noise ratio (PSNR) results.

1. INTRODUCTION

The rate-distortion performance of zero-tree based wavelet coders (e.g.,
the SPIHT coder [6]) is competitive, both the encoding and the decoding are
very fast, and the bit stream is embedded, allowing progressive transmission.
The encoder uses a discrete wavelet transform to decompose the image into
subbands. Coding of the wavelet coefficients exploits a tree-structured de-
pendency across subbands at different scales and consists of a sequence of
sorting and refinement passes. A single error in the bits sent in the sorting
pass leads to a loss of synchronization between the encoder and the decoder.
Errors in the refinement bits do not propagate, but still cause a big loss in
PSNR. Zhao et al. [9] showed that one should stop decoding when the first
error is detected because further decoding would make the reconstructed im-
age worse. Sherwood and Zeger [7] protected the SPIHT code against noise
in a memoryless binary symmetric channel (BSC) by concatenating CRC bits
and rate-compatible punctured convolutional (RCPC) codes. Chande and
Farvardin [2] and Zhao et al. [9, 10, 11] proposed optimal error protection
algorithms for this system, which maximize the expected number of received
source bits before an error occurs. In this paper, we find the optimal error
protection with a faster strategy and give an implementation for turbo codes.
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2. ALGORITHM FOR OPTIMAL BIT ALLOCATION

We assume that the source code is protected by a concatenation of CRC
bits as an outer code and protection bits as an inner code. The bitstream is
organized in packets of fixed length L. Packets are sent over a memoryless
BSC. When the first error is detected, the decoding is stopped, and the image
is reconstructed from the packets received until that point.

LetR be a set ofm available channel rates r1 < · · · < rm with p(r1) < · · · <
p(rm), where p(rj), j = 1, . . . ,m, is the probability of an error in a packet
protected by channel rate rj . Given a target total number N of packets of
L bits each to be sent, we want to find an N -packet error protection scheme
(EPS) (rk1 , . . . , rkN ) that assigns a channel rate rki to each packet i such
that the expected mean squared error (MSE) of the reconstructed image is
minimum. For i = 1, . . . , N , suppose that packet i is protected by channel
rate rki . Then for i = 1, . . . , N − 1, the number Pi = p(rki+1)

∏i
j=1(1 −

p(rkj )) is the probability that no errors occur in the first i packets, with an
error in the next one, and PN =

∏N
j=1(1− p(rkj )) is the probability that no

errors occur in the N packets. Because the image is reconstructed only from
the packets received before the first error is detected, the expected MSE is
EN [D](rk1 , . . . , rkN ) =

∑N
i=0 Pidi, where P0 = p(rk1), d0 is a constant, and

for i ≥ 1, di is the MSE from the reconstruction using the first i (error-
free) packets. It is equivalent, but computationally simpler, to maximize the
expected number of source-encoder bits received in a total of N packets before
an error occurs [2, 9], which is

EN (rk1 , . . . , rkN ) =
N∑
i=1

Pi

i∑
j=1

v(rkj ), (1)

where v(rkj ) is the number of source bits in packet j protected by rkj . For
every N an optimal equal error protection (EEP) scheme can easily be found.
However, because in an embedded code the bits in the source code have de-
creasing importance, an unequal error protection (UEP) scheme where the
channel rate is dynamically adjusted may be more efficient. Zhao et al. [10]
proposed an algorithm (called two-rate UEP scheme) for finding the opti-
mal N -packet error protection scheme, when only one channel rate change
is allowed. The algorithm is time-consuming because it maximizes EN for
all possible N -tuples (ri, . . . , ri, rj , . . . , rj), i, j ∈ {1, . . . ,m}. In [11], a
solution to the three-rate case is given. Chande and Farvardin [2] find a
dynamic programming solution to the more general problem of maximiz-
ing (1) when an arbitrary N -packet protection scheme may be used. We
now show how to accelerate this algorithm. For rj , rk ∈ R and any inte-

ger i ≥ 1, let q(rj) = 1 − p(rj), T (rj , i) = E1(rj)(1−q(rj)i)
1−q(rj) , and M(rk, rj) =

E1(rk)(1−q(rj))−E1(rj)(1−q(rk))
(q(rk)−q(rj))(1−q(rj)) . Then we have:



Lemma 1 Let N ≥ 1. Then for any positive integers t0, . . . , ti, N = t0 +
· · ·+ ti, and channel rates rj0 , . . . , rji , p(rjk) 6= 0, 0 ≤ k ≤ i

EN (rji , . . . , rji︸ ︷︷ ︸
ti

, . . . , rj0 , . . . , rj0︸ ︷︷ ︸
t0

) =
i∑
l=0

T (rjl , tl)
i∏

k=l+1

q(rjk)tk .

Proof. The proof is obtained by successive applications of the equality

EN (rk1 , rk2 . . . , rkN ) = (1− p(rk1))(v(rk1) + EN−1(rk2 , . . . , rkN ))
= E1(rk1) + q(rk1)EN−1(rk2 , . . . , rkN ).

Lemma 2 If the (N − 1)-packet EPS (r∗2 , . . . , r
∗
N ) is optimal and if for all

rk1 6= r∗1, we have EN (r∗1 , r
∗
2 , . . . , r

∗
N ) > EN (rk1 , r

∗
2 , . . . , r

∗
N ), then the N -

packet EPS (r∗1 , . . . , r
∗
N ) is optimal.

Proof. Let rk1 , rk2 , . . . , rkN ∈ R. Then

EN (r∗1 , r
∗
2 , . . . , r

∗
N ) > EN (rk1 , r

∗
2 , . . . , r

∗
N )

= q(rk1)(v(rk1) + EN−1(r∗2 , . . . , r
∗
N ))

> EN (rk1 , rk2 , . . . , rkN ).

Lemma 3 If the N -packet EPS (r∗1 , . . . , r
∗
N ) is optimal, then r∗1 ≤ · · · ≤ r∗N .

Proof. Let (r∗1 , . . . , r
∗
N ) = (rjn , . . . , rjn︸ ︷︷ ︸

tn

, . . . , rj0 , . . . , rj0︸ ︷︷ ︸
t0

) with ti ≥ 1 and

rji 6= rji+1 , i ≥ 0. Then Et0+1(rj1 , rj0 , . . . , rj0) > Et0+1(rj0 , rj0 , . . . , rj0).
Thus, E1(rj0)−E1(rj1) < (p(rj0)− p(rj1))Et0(rj0 , . . . , rj0), which shows that
rj1 < rj0 . Using similar techniques, one can show that rji+1 < rji for i ≥ 1.

Proposition 1 The optimal N -packet EPS is (rjn , . . . , rjn︸ ︷︷ ︸
tn

, . . . , rj0 , . . . , rj0︸ ︷︷ ︸
t0

),

where rj0 , . . . , rjn and t0, . . . , tn are as follows. Let rj0 = arg maxrk E1(rk).
Set i = 0.
1. Let Ai = E1(rji )

1−q(rji )
and Bi =

∑i−1
l=0 T (rjl , tl)

∏i−1
k=l+1 q(rjk)tk . Let k ∈

{1, . . . ,m} and rk < rji . If ai,k =
log

M(rk,rji
)

Ai−Bi
log q(rji )

+ 1 exists and is finite, then

set ti,k = bai,kc. Otherwise, set ti,k = N −
∑i−1
p=0 tp. Let ti = mink ti,k.

2. If N ≤
∑i
p=0 tp, set rjn = rji , tn = ti and stop. Otherwise, set ji+1 =

arg mink ti,k (we assume that ji+1 is unique), i = i+ 1 and go to 1.

Proof. The proof is a consequence of Lemma 2, Lemma 3, and the fact that
for all 0 ≤ i ≤ n, if 1 ≤ t ≤ ti, then for all rk < rji

E(rji , . . . , rji︸ ︷︷ ︸
t

, . . . , rj0 , . . . , rj0︸ ︷︷ ︸
t0

) > E(rk, rji , . . . , rji︸ ︷︷ ︸
t−1

, . . . , rj0 , . . . , rj0︸ ︷︷ ︸
t0

), (2)



Total rate (bpp) L = 2048 L = 1024 L = 512

0.25 1.2 1.61 2.33
0.5 1.6 2.15 3.45
0.75 1.85 3.13 4.83
1.0 2.3 4 6

Table 1: Average (over BER = 0.05 and 0.1) speed-up factors of our algorithm
over the one in [2] for various packet lengths L and target total rates.

and that for 1 ≤ i ≤ n, (2) holds for t = 1 and rji < rk ≤ rji−1 . We start
with i = 0. If ai,k exists and is finite, then Ai − Bi > 0. Thus ψi,k(t) =
(Ai −Bi)q(rji)t−1 −M(rk, rji) is decreasing from +∞ to −M(rk, rji). Since
ψi,k(1) > 0 = ψi,k(ai,k), we have ti,k > 0, which ensures that ti > 0. Let
1 ≤ t ≤ ti. Then ψi,k(t) ≥ ψi,k(ti) ≥ ψi,k(ti,k) > ψi,k(ai,k) = 0. According
to Lemma 1, the left-hand side of (2) is equal to T (rji , t) + q(rji)

tBi and the
right-hand side to E1(rk) + q(rk)(T (rji , t− 1) + q(rji)

t−1Bi). Thus ψi,k(t) >
0 gives (2) for rk < rji . Moreover, ψi,ji+1(ti,ji+1 + 1) < ψi,ji+1(ai,ji+1) =
0, which gives E(rji+1 , rji , . . . , rji︸ ︷︷ ︸

ti

) > E(rji , . . . , rji︸ ︷︷ ︸
ti+1

). But E(rji , . . . , rji︸ ︷︷ ︸
ti+1

) ≥

E(rk, rji , . . . , rji︸ ︷︷ ︸
ti

) for rk 6= rji+1 . Hence (2) is satisfied for i = 1, t = 1, and

rji < rk ≤ rji−1 . Using the same approach, we can complete the proof for
i = 1, 2, . . . , n.

3. RESULTS

We protected the source bits of Fowler’s implementation [3] of the SPIHT
coder by concatenating CRC bits and rate compatible punctured turbo (RCPT)
codes [4]. The turbo coder consisted of two identical recursive systematic
convolutional encoders [5] with memory length 4 and generators (31, 27) oc-
tal. Puncturing was dynamically changed, yielding different code rates. The
mother code was 20/60 = 1/3, and the puncturing rate was 20. We used
iterative maximum a posteriori decoding, which was stopped if no correct
sequence was found after 20 iterations.

Table 1 compares the time complexity of our solution to that of Chande
and Farvardin [2] for various packet lengths L and target total rates RT =
NL/5122. In [2], the optimal solution is found by a repetitive use of Lemmas
2 and 3. Our algorithm determines ti ahead of time, which avoids many
unnecessary computations.

Figure 1 shows for two bit error rates, the difference in the expected number
of received source bits between optimal UEP and optimal EEP for various
target number of packetsN , when L = 2048. For example, forN ≤ 406 and at
BER = 0.1, EEP with rate 20/48 was optimal for 0 ≤ N ≤ 24, EEP with rate
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Figure 1: Difference between the expected number of received source bits for
optimal UEP and optimal EEP for BER 0.05 and 0.1.

Total rate (bpp) BER Our system [7] [8] [1] [11]

0.25 0.01 32.54 31.91 32.56
0.05 31.27 31.52
0.1 29.75 28.5 29.13

0.5 0.01 35.67 35.2 35.67 35.02
0.05 34.26 34.53
0.1 32.64 31.23 32.03 31.3

1 0.01 38.72 38.03 38.78 38.07
0.05 37.34
0.1 35.69 34.25 34.98 34.17

Table 2: PSNR for the 512 × 512 Lenna image.

20/50 was optimal for 25 ≤ N ≤ 86, and EEP with rate 20/52 was optimal for
87 ≤ N ≤ 406. Using the notation of Proposition 1, optimal UEP was given
by rj0 = 20/48, t0 = 11, rj1 = 20/50, t1 = 30, and rj2 = 20/52, t2 = 365.

Table 2 shows PSNR results for the luminance part of the USC 512 × 512
Lenna image. The table compares our UEP results with L = 2048 to some of
the best previously published ones. The side information needed to specify
the optimal channel rates and the points of rate change was always less than
30 bits. Note that Banister et al. [1] used JPEG2000 coded images, which
were protected by turbo codes. In [11], RCPC channel codes and a 3-rate
dynamic UEP scheme were used. In [8], turbo codes were used. Here, in
contrast to our work, the length of a packet was not fixed for all target rates.
Note, however, that a greater packet size improves the PSNR performance
but reduces the progressive ability.



5. CONCLUSION

We proposed a fast strategy for determining the optimal protection of em-
bedded wavelet codes sent through a memoryless binary symmetric channel.
Our algorithm improves the best previous solution. By using the SPIHT code
as a source code and RCPT codes as channel codes, we obtained an embedded
bitstream with state-of-the-art PSNR performance.
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