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1. Introduction 

The modulated complex lapped transform (MCLT) is a cosine-modulated filter bank that 

maps overlapping blocks of a real-valued signal into complex-valued blocks of transform 

coefficients [1]. Thus, the MCLT performs a frequency decomposition that is similar to 

that obtained with the commonly-used discrete Fourier transform (DFT) filter bank [2]. 

The main advantage of the MCLT over DFT filter banks is that the MCLT allows for 

three simple reconstruction formulas, using all coefficients, only the cosine coefficients, 

or only the sine coefficients. That can be useful in audio enhancement and encoding 

systems; for example a noise reduction module can be implemented in the MCLT 

domain, and after enhancement only the cosine coefficients need to be sent to an encoder 

[1]. In fact, the MCLT cosine coefficients comprise the modulated lapped transform 

(MLT) coefficients for the same signal, and the MLT is quite popular in audio coding [3]. 

The MCLT has been used in applications where magnitude-phase decomposition is 

needed, as well as interfacing to coding systems, such as in audio watermarking [4], 

audio stream identification [5], acoustic echo cancellation [6], and microphone array 

beamforming [7]. 

In this report we present a new algorithm for computing the MCLT, for a sine 

window. This new algorithm leads to the simplest structure and the lowest computational 

complexity among MCLT algorithms reported to date. Thus, it should be quite attractive 

for practical applications, either in software or hardware platforms. The algorithm is the 

same as the one we presented in [8], but in this report we present more detailed 

derivations, including explicit formulas and the corresponding flowgraph for the inverse 

MCLT. 

2. Modulated complex lapped transforms 

A length-M MCLT of a length-2M signal block {x(n)} is defined by [1] 

 ( ) ( ) ( )
2 1

0
,

−

=
= ∑

M

n
X k x n p n k  (1) 
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where the frequency index k varies from 0 to M – 1, n is the time index, and p(n, k) are 

the analysis basis functions, defined by ( ) ( ) ( ), , ,c sp n k p n k j p n k= − , where 1−j  and 

 
( ) ( )
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 (2) 

where h(n) is the window function. Thus, we can also write ( ) ( ) ( )c sX k X k j X k= − , with 

 ( ) ( ) ( ) ( ) ( ) ( )
2 1 2 1

0 0
, ,

− −

= =
= =∑ ∑

M M

c c s s
n n

X k x n p n k X k x n p n k  (3) 

We see that X c(k), the cosine components of X(k), are the MLT of x(n). The window 

h(n) can be designed in many ways, and a common choice [1], [2] is 

 ( ) 1sin
2 2

π⎡ ⎤⎛ ⎞=− +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
h n n

M
 (4) 

The inverse MCLT can be computed via the reconstruction formula 

 ( ) ( ) ( ) ( ) ( )
1 1

0 0
, ,

M M

c c c s s s
k k

y n X k p n k X k p n kβ β
− −

= =
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where the coefficients βc and βs can be chosen in several ways. In [1] we propose: 

i) βc = 1 and βs = 0 (cosine only); 

ii) βc = 0 and βs = 1 (sine only); 

iii) βc = βs = ½. 

It is easy to see that the formula (5) works for any βc and βs such that βc + βs = 1. 

The choice βc = βs = ½ is particularly useful. Besides making the MCLT an 

overcomplete signal decomposition whose basis functions form a tight frame with a 

frame gain of two [9], with that choice the formula (5) leads to y(n) = x(n) h2(n), i.e., 

there is no time-domain aliasing, and the superposition of consecutive overlapping blocks 
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leads to the perfect reconstruction y = x, because h2(n) + h2(n + M) = 1 [2]. For βc ≠ βs, 

then y(n) for a single block also contains time-aliased versions of x(n). In all cases, after 

overlapping of the reconstructed blocks, the reconstructed signal y(n) matches the 

original signal x(n), because the overlapped squared windows add to one and time-

domain aliasing terms, if present, are canceled [1], [2]. Nevertheless, in applications 

where a signal is processed in the MCLT domain (i.e. the MCLT of each block is 

computed, transformed, and an inverse MCLT is computed to generate the processed 

block), aliasing cancellation cannot be perfect, because the MCLT coefficients are being 

modified. Thus, it is better to chose βc = βs = ½ so as to avoid time-domain aliasing1.  

As suggested in [1], an efficient way to compute the MCLT is to borrow from the fast 

MLT algorithms in [2]. The cosine component could be computed via a MLT algorithm 

based on the type-IV discrete cosine transform (DCT-IV), and the sine component via a 

slightly modified MLT algorithm based on the type-IV discrete sine transform (DST-IV). 

In that way, the computational complexity of the MCLT would be exactly twice that of 

the MLT, that is M (log 2 M +5) multiplications and M (3 log 2 M +3) additions, for M a 

power of two. The fast MCLT algorithm presented in [1] shares some of the windowing 

operations between the two transforms, reducing the computational complexity to 

M (log 2 M +4) multiplications and M (3 log 2 M+2) additions. 

3. New fast MCLT algorithm 

One disadvantage of the fast MCLT algorithm in [1] is that it does not use a fast Fourier 

transform (FFT) directly. It maps the MCLT into DCT-IVs, which can be computed via 

length-M/2 complex FFTs, but through a process that requires data shuffling [2]. Data 

shuffling means additional data buffer reads and writes, which can take a considerable 

fraction of the total processing time, especially in general-purpose processors, where 

access to data memory is relatively slow (compared to access to internal CPU registers). 

                                                 
1 Note that frequency-domain aliasing cannot be avoided, because the frequency selectivity of each 
subband filter defined by each analysis or synthesis basis functions cannot be perfect, that is, there is 
always some signal leaking into other subbands. For most applications, though, frequency-domain aliasing 
does not lead to significant distortions. 
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We now describe a new MCLT algorithm that uses a single length-2M real FFT, with 

no additional data shuffling.  We start by assuming that M is even, and that the window 

function h(n) is the common sine window, which can be written as a sum of two complex 

exponentials 

 ( ) ( ) ( )8 8
1sin 2 1 2 1
2 2 2

π⎡ ⎤⎛ ⎞= − + = − + − − −⎡ ⎤⎜ ⎟⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦
M M

jh n n W n W n
M

 (6) 

Where ( )MW r  is the common notation for the complex exponential used in Fourier 

transforms, namely 

 ( ) 2exp π−⎛ ⎞
⎜ ⎟
⎝ ⎠

M
j rW r
M

 (7) 

The same notation can be used to map (1)–(3) to 

 ( ) ( ) ( ) ( )( )
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8
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Combining (6) and (8), we obtain 
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Using three basic properties of the complex exponential, ( ) ( ) ( )= +M M MW a W b W a b , 

( ) ( )2 2 =M MW r W r , and  ( )4 1= −j W , it is easy to see that 

 

( ) ( )( ) ( ) ( ) ( )
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 (10) 

Then, combining (9) and (10), we get 

 ( ) ( ) ( )1= + +X k jV k V k  (11) 
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Figure 1: Flowgraph of the new fast MCLT algorithm. The input data is first 
transformed through an FFT for real inputs. The FFT coefficients are then 
combined to form the MCLT coefficients. Arrows with hollow heads mean 
multiplication by j. 

where 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

8 4

2 1

2
0

2 1

1
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−

=

+

∑

M

M
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n

V k c k U k

c k W k W k

U k x n W kn
M

 (12) 

We recognize U(k) as a normalized2 2M-point FFT of the input block x(n). Then, it is 

clear from (11) and (12) that the MCLT coefficients X(k) can be obtained by first 

computing the FFT of the input vector to obtain U(k) and then performing the additional 

operations with the factors c(k), as shown in Figure 1. The coefficients c(k) satisfy |c(k)| = 

1, thus they are rotation operations. That guarantees good numerical properties of the 

algorithm, i.e. rounding errors due to fixed- precision arithmetic have a minimal 

influence on the final result. 

                                                 
2 By normalized we mean with orthonormal basis functions. 



  Microsoft Research TR-2005-2 

  7 

4. Fast inverse MCLT 

To derive the inverse MCLT relationships for a fast FFT-based algorithm, we first 

assume that we are interested in the inverse MCLT formula (5) with βc = βs = ½, that is 

 ( ) ( ) ( ) ( ) ( )
1 1

0 0

1 , ,
2

− −

= =

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑

M M

c c s s
k k

y n X k p n k X k p n k  (13) 

As we commented before, in this case there’s a simple relationship between the output 

y(n), of the inverse MCLT and the input x(n) to the direct MCLT, namely 

 ( ) ( ) ( )2=y n x n h n  (14) 

Let us consider the length-2M FFT of y(n), which is defined by 

 ( ) ( ) ( )
2 1

2
0

1
2

−

=
∑
M

M
n

Y k y n W kn
M

 (15) 

Substituting (14) into (15), we get 

 ( ) ( ) ( ) ( ) ( )
2 1

2
0

1
2

−

=
= ∑

M

M
n

Y k x n h n W kn h n
M

 (16) 

where it is clear that our intent is to relate Y(k) to MCLT equation in (8). Replacing the 

rightmost term h(n) by its representation via complex exponentials in (6), we obtain 

 ( ) ( ) ( ) ( ) ( ) ( )
2 1

2 8 8
0

2 2 1 2 1
4

−

=

⎛ ⎞= − − − +⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠
∑
M

M M M
n

jY k x n h n W kn W n W n
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 (17) 

where we have used the fact that ( ) ( )1 2 2 2 4=M j M j . 

Using again basic properties of the complex exponential, it is easy to see that 

 
( ) ( ) ( )( ) ( ) ( )
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(18) 

Thus, replacing (18) into (17), we obtain 



  Microsoft Research TR-2005-2 

  8 

 ( ) ( ) ( ) ( )
*

1
4

= − −⎡ ⎤⎣ ⎦
c k

Y k X k j X k  (19) 

where X(k) are the MCLT coefficients, the superscript * denotes complex conjugation, 

and the modulation c(k) is the same as that in (12), namely ( ) ( ) ( )8 42 1+ Mc k W k W k . 

Equation (19) leads to a simple algorithm for computing the inverse MLCT: given the 

MCLT coefficients X(k), for k = 0, 1, …, M – 1, we compute the FFT coefficients Y(k) 

via (19) and then we use an inverse real FFT3 to compute the output signal y(n), for n = 0, 

1, …, 2M – 1. Note that we need 2M complex values of Y(k), but we have only M values 

of X(k). However, since output signal y(n) is real, we know that its FFT coefficients Y(k) 

must satisfy the conjugate symmetry property 

 ( ) ( )*2 − =Y M k Y k  (20) 

Plus, we know that Y(0) and Y(M) must be real-valued. Thus, we cannot just use (19) to 

compute Y(0) and Y(M). After some manipulations based on (19) and (20), we arrive at 

 

( ) ( ){ } ( ){ }

( ) ( ){ } ( ){ }

10 Re 0 Im 0
8

1 Re 1 Im 1
8

⎡ ⎤= +⎣ ⎦

⎡ ⎤= − − + −⎣ ⎦

Y X X

Y M X M X M

 (21) 

where Re{} and Im{} mean taking the real and imaginary parts, respectively. 

We then have a complete four-step algorithm for the inverse MCLT: 

1. Map the input MCLT coefficients X(k) into Y(k), using (19), for k = 1, 2, …, M – 1. 

2. Use (21) to compute Y(0) and Y(M). 

3. Use (20) to complete the vector Y(k), for k = M + 1, M + 2, …, 2M – 1. 

4. Use an inverse real FFT to compute the output vector y(n) from Y(k). 

These steps are represented by the flowgraph in Figure 2. 

                                                 
3 By “an inverse real FFT” we mean an inverse FFT that takes complex FFT coefficients that satisfy the 
conjugate symmetry property and compute the corresponding real-valued time-domain signal. 
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Figure 2: Flowgraph of the new fast inverse MCLT algorithm. The input 
MCLT coefficients are combined to form a new set of coefficients; those are 
then sent to an inverse real FFT to generate the output signal. Arrows with 
hollow heads mean multiplication by –j, and the shaded boxes represent the 
special mappings in (21). 

In the Appendix we show reference implementations of the direct and inverse MCLT 

algorithms presented here, in the form of Matlab routines. Note that those routines were 

not written for fast execution; their purpose is to verify the mappings in (11)–(12) and 

(19)–(21). For example, they don’t make use of the fast recursion for computing the 

modulation terms c(k), as described in the next section. 

5. Computational complexity 

The coefficients c(k) can be generated recursively, to avoid either the use of tables or the 

computation of trigonometric functions. From (12) we can write 

 ( ) ( ) ( ) ( )80 1 cos 4 sin 4π π= = −c W j  (22) 

and 

 ( ) ( ) ( )41 ,         with   1γ γ= − +Mc k c k W M  (23) 
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Thus, in a loop that computes the MCLT coefficients for each k in increasing order, each 

coefficient c(k) can be generating by just multiplying the previous value c(k – 1) by a 

fixed complex-valued constant γ. Therefore, to implement the fast direct and inverse 

MCLT algorithms, as in Figures 1 and 2, we need only complex multiplications and 

additions, as well as a length-2M FFT. 

One of the advantages of our new fast MCLT algorithms in Figures 1 and 2 is that 

they do not require data shuffling, as in the MLT and MCLT algorithms in [1], [2]. That 

reduces execution time in software implementations and simplifies VLSI chip structures 

in hardware implementations. 

From the derivations above, we conclude that the computational complexity of our 

direct MCLT algorithm is that of a length-2M FFT for real inputs, plus the operations in 

(12). The length-2M real-input FFT requires M (log 2 M–2) +2  multiplications and 

M (3 log 2 M–2) +4  additions, for M equal to a power of two [2]. Besides the FFT, we 

need to perform M + 1 complex multiplications and M complex additions, according to 

(12). Each complex multiplication can be performed with three multiplications and three 

additions [2]. Additionally, U(0) and U(M) are real, c(0) and c(M) have identical real and 

imaginary parts (except for sign), and ( ) ( )4/2 2 1c M W M= + , which is either purely real 

or purely imaginary for M > 2.  Then, the rotations by c(k) take 3M–2 multiplications 

and 5M–6  additions. Thus, the total computational complexity of our new fast direct 

MCLT algorithm is M (log 2 M+1) multiplications and M (3 log 2 M+3) –2 additions. 

In Table 1 we compare the complexity of our proposed algorithm to those of the 

algorithms in [1], [10], and [11]. Our new algorithm is similar to the one presented in 

[10], except that the latter involves complex multiplications before and after the FFT, and 

thus a complex-input FFT must be used, approximately doubling the computational 

complexity. With our proposed algorithm, not only we avoid data shuffling, but also 

reduce the total complexity when compared to the algorithm in [1] (3M fewer 

multiplications and M – 2 extra additions, for a net savings of 2M + 2 operations). For 

“C” implementations running on a personal computer with a Pentium 4 processor, the 

proposed algorithm runs about 25% faster than the one in [1], and about 50% faster than 

the one in [10]. 
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Algorithm Number of real 
multiplications 

Number of real 
additions 

Data shuffling? 

Ref. [1] M (log 2 M+4) M (3 log 2 M+2) Yes 
Ref. [10] M (2 log 2 M+3) +2 M (6 log 2 M+3) +4 No 
Ref. [11] M (log 2 M+1) M (3 log 2 M+4) No 
Proposed M (log 2 M+1) M (3 log 2 M+3) – 2 No 

 
Table 1: Computational complexity of several fast MCLT algorithms. 

The algorithm recently presented in [11] has the advantage that it can be used for any 

symmetric window function h(n), whereas our new algorithm applies only to the sine 

window in (6) (that is not a major limitation, since most applications use the sine 

window).  Also, the algorithm in [11] maps the MCLT into two length-M discrete cosine 

transforms (DCTs), each one responsible for the real and the imaginary parts of the 

MCLT coefficients, respectively. The algorithm in [11] also avoids data reshuffling. So, 

in practice the choice between the algorithm presented here and the one in [11] depends 

on the availability of either an FFT or a DCT, for the desired target platform. For 

applications requiring biorthogonal transforms [12], that is, if h(n) is not the sine window 

in  (6), the algorithm in [11] is preferable. 

The direct MCLT algorithm presented in Section 3 is for the computation of the 

MCLT of a single block. For the next block, a new FFT of length 2M must be computed. 

Even though the first half of the new block is identical to the second half of the previous 

block, that property cannot be used to speed up the FFT computation. Similarly, the 

inverse MCLT algorithm presented in Section4 is for the computation of the inverse 

MCLT of a single block. To reconstruct the signal, that block must be overlapped and 

added to the next reconstructed block, after a shift on M samples [1], [2]. 

6. Conclusion 

We introduced a new fast algorithm for the computation of the MCLT. The proposed 

algorithm improves over the original algorithm in [1] by reducing the total number of 

operations and removing the need for data shuffling. It leads to about half the complexity 
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of the algorithm in [10]. By using a larger FFT as its first step, and applying a simple 

modification to the FFT output to generate the MCLT coefficients, the proposed 

algorithm also leads to a short code size whenever an efficient real FFT module is 

available, which is usually the case. The corresponding inverse MCLT algorithm has a 

similar structure, and thus it is also simple to implement in software or hardware. 
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Appendix: Matlab reference implementations 

We present here reference implementations for the direct and inverse MCLT algorithms 

in Sections 3 and 4. The routines below are not written for fast execution; their purpose is 

to verify the mappings in (11)–(12) and (19)–(21). 

 

A.1. Direct transform 

function X = fmclt(x) 
 
% FMCLT - Compute MCLT of a vector via double-length FFT 
% 
% H. Malvar, September 2001  --  (c) 1998-2001 Microsoft Corp. 
% 
% Syntax:  X = fmclt(x) 
% 
% Input:   x : real-valued input vector of length 2*M 
% 
% Output:  X : complex-valued MCLT coefficients, M subbands 
 
% in Matlab, by default j = sqrt(-1) 
 
% determine # of subbands, M 
L = length(x); 
M = L/2; 
 
% normalized FFT of input 
U = sqrt(1/(2*M)) * fft(x); 
 
% compute modulation function 
k = [0:M]'; 
c = W(8,2*k+1) .* W(4*M,k); 
 
% modulate U into V 
V = c .* U(1:M+1); 
 
% compute MCLT coefficients 
X = j * V(1:M) + V(2:M+1); 
 
return; 
 
 
% Local function: complex exponential 
 
function w = W(M,r) 
 
w = exp(-j*2*pi*r/M); 
 
return; 
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A.2. Inverse transform 

function y = fimclt(X) 
 
% FIMCLT - Compute IMCLT of a vector via double-length FFT 
% 
% H. Malvar, September 2001  --  (c) 1998-2001 Microsoft Corp. 
% 
% Syntax:  y = fimclt(X) 
% 
% Input:   X : complex-valued MCLT coefficients, M subbands 
% 
% Output:  y : real-valued output vector of length 2*M 
 
% in Matlab, by default j = sqrt(-1) 
 
% determine # of subbands, M 
M = length(X); 
 
% allocate vector Y  
Y = zeros(2*M,1); 
 
% compute modulation function 
k = [1:M-1]'; 
c = W(8,2*k+1) .* W(4*M,k); 
 
% map X into Y 
Y(2:M) = (1/4) * conj(c) .* (X(1:M-1) - j * X(2:M)); 
 
% determine first and last Y values 
Y(1)   =   sqrt(1/8) * (real(X(1)) + imag(X(1))); 
Y(M+1) = - sqrt(1/8) * (real(X(M)) + imag(X(M))); 
 
% complete vector Y via conjugate symmetry property for the 
% FFT of a real vector (not needed if the inverse FFT 
% routine is a "real FFT", which should take only as input 
% only M+1 coefficients) 
Y(M+2:2*M) = conj(Y(M:-1:2)); 
 
% inverse normalized FFT to compute the output vector 
% output of ifft should have zero imaginary part; but 
% by calling real(.) we remove the small rounding noise 
% that's present in the imaginary part 
y = real(ifft(sqrt(2*M) * Y)); 
 
return; 
 
 
% Local function: complex exponential 
 
function w = W(M,r) 
 
w = exp(-j*2*pi*r/M); 
 
return; 

 

 


