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Fast Algorithms for 3-D Dominance Reporting andCounting�Qingmin Shi and Joseph JaJaInstitute for Advanced Computer Studies,Department of Electrical and Computer Engineering,University of Maryland, College Park, MD 20742fqshi,joseph@umiacs.umd.edugAbstractWe present in this paper fast algorithms for the 3-D dominance reporting and countingproblems, and generalize the results to the d-dimensional case. Our 3-D dominance reportingalgorithm achieves O(log n= log log n + f)1 query time using O(n log� n) space , where f isthe number of points satisfying the query and � > 0 is an arbitrarily small constant. For the3-D dominance counting problem (which is equivalent to the 3-D range counting problem),our algorithm runs in O((log n= log log n)2) time using O(nlog1+�n= log log n) space.1 IntroductionLet S be a set of n points in <d. The dominance reporting problem is to store S in a datastructure so that the subset Q of points in S that dominate an arbitrarily given point qcan be reported e�ciently. Given two points p = (p1; p2; : : : ; pd) and q = (q1; q2; : : : ; qd), wesay p dominates q if and only if pi � qi for all 1 � i � d. Another related problem is thedominance counting problem. In this problem, the size k of Q only needs to be reported.Many computational geometry problems, such as the rectangle intersection problems, canbe reduced to the dominance search problem.In this paper, we provide faster algorithms than previously known for both 3-D dominancereporting and counting problems. Our model of computation is the RAM model as modi�edby Fredman and Willard [8]. In this model, it is assumed that each word is of size w and thatthe number of data elements n never exceeds 2w, that is, w � log2 n. In addition, arithmeticand bitwise logical operations take constant time.Before outlining our results, we give a brief overview of related literature. The 3-D dom-inance reporting is a special case of the 3-D orthogonal range search problem. Hence resultsfor orthogonal range search apply immediately to our problem. In particular, a class of�Supported in part by the National Science Foundation through the National Partnership for AdvancedComputational Infrastructure (NPACI), DoD-MDProcurement under contract MDA90402C0428, and NASAunder the ESIP Program NCC5300.1In this paper, we always assume that the logarithmic operations are to the base two.1



algorithms for orthogonal range reporting uses constant time for each reported point andpolylogarithmic search time (see for example, [3, 4, 13, 15, 1].) The best known result for3-D orthogonal range search is given by Alstrup and Brodal, which achieves O(n log1+� n)space and O(log n + f) query time [1]. Several other data structures use less space butrequire larger query time. In [4], Chazelle gives two data structures, one with query timeO(log2 n+ f log log(4n + f)) and using space O(n log n log log n), and the other with querytimeO(log2 n+f log�(2n=f)) and using O(n log n) space. The best known dominance report-ing algorithm is due to Makris and Tsakalidis [11], which follows the approach of Chazelleand Edelsbrunner [5] and achieves linear space and O(log n+ f) query time.Unlike dominance reporting, which seems to be inherently simpler than general orthogo-nal range reporting, the dominance counting problem is equivalent to the orthogonal rangecounting problem, if the dimension d is assumed to be constant. Indeed, it is easy to showthat if a data structure of size O(s(n)) exists for answering any d-dimensional dominancecounting query in O(t(n)) time, then any d-dimensional range counting query can be an-swered withO(2ds(n)) space and using O(2dt(n)) query time. Not many results are known forthe multidimensional dominance counting problem. In [4], Chazelle uses a compressed formof the range tree [2] to achieve O(log n) query time and O(n) space for the 2-D dominancecounting problem. This result easily leads to a solution to the 3-D dominance counting withO(n log n) space, and O(log2 n) query time. On the other hand, we can reduce the countingquery problem to the aggregation range query problem in the same dimension by assign-ing a weight of 1 to each point. Willard in [15] shows how to combine the fusion tree [7]and its variant, called the q�-heaps [8], and the fractional cascading technique [6] to achieveO(n log2+� n) space and O((log n= log log n)2) query time to handle 3-D aggregation rangequeries, where � > 0 is arbitrarily small constant.In this paper, we establish the following results that provide faster algorithms for 3-Ddominance reporting and counting:� An algorithm for three-sided 2-D range reporting that achieves O(n) space andO(log n= log log n + f) query time. This result is similar to Willard's modi�cation ofpriority tree [15] but the algorithm is much simpler. This algorithm plays an importantrole in our 3-D dominance reporting algorithm.� An algorithm for 3-D dominance reporting that uses O(n log� n) space andO(log n= log log n+f) query time, where f is the number of points satisfying the query.� An algorithm for 2-D dominance counting problem, which uses O(n log� n) space andruns in O(log n= log log n) query time. This algorithm can be seen as an improvementon the query time over Chazelle's algorithm at the expense of O(log� n) additionalspace.� An extension of the 2-D dominance counting algorithm and 3-D dominance reportingalgorithm to multidimensional dominance search, which leads to an O((log n= log log n)d�1)query time and O(n log� n(log n= log log n)d�2) space algorithm for the counting caseand an O((log n= log log n)d�2+f) query time and O(n log� n(log n= log log n)d�3) spacealgorithm for the reporting case, where d is the number of dimensions and d � 2 forthe counting case and d � 3 for the reporting case.2



In Section 2, we brie
y discuss several known techniques, and, in the case of fractionalcascading, some modi�cations to them. These techniques are used heavily in this paper.The three-sided 2-D range reporting algorithm is described in Section 3 while the descrip-tion of our 3-D dominance reporting algorithm is given in Section 4. Our 2-D dominancecounting algorithm is described in Section 5. Results in Sections 4 and 5 are extended tothe multidimensional case in Section 6.2 PreliminariesTo avoid tedious details in describing the algorithms, we assume for the rest of this paperthat no two points have the same coordinate in any dimension. For simplicity, we call thepoint with the largest x-coordinate smaller than or equal to a real number r the x-predecessorof r and the one with the smallest x-coordinate larger than or equal to r the x-successor ofr. The y- and z-predecessors(successors) are de�ned similarly.2.1 Cartesian TreesCartesian trees, de�ned over a �nite set of 2-D points, were �rst introduced by Vuillemin [14].Let p1; p2; :::; pn be a set of n 2-D points sorted by their x-coordinates. The correspondingCartesian tree C is de�ned recursively as follows. Let pi be the point with the largest y-coordinate. Then pi is associated with the root r of C. The left child of r is the root ofthe Cartesian tree built on p1; : : : ; pi�1 and the right child of r is the root of the Cartesiantree built on pi+1; : : : ; pn. The left(right) child does not exist if i = 1(n). We call such aCartesian tree an (x; y)-Cartesian tree.An important property of the Cartesian tree is given by the following observation [9]:Observation 1 Consider a set S of 2-D points and the corresponding (x; y)-Cartesian treeC. Let x1 < x2 be the x-coordinates of two points in S, and let � and � be their respectivevertices. Then the point with the largest y-coordinate among those whose x-coordinates arebetween x1 and x2 is stored in the nearest common ancestor of � and �.2.2 Fusion TreesFusion trees, developed by Fredman and Willard [7, 8], achieve sublogarithmic search timeof one-dimensional data, and can be exploited to asymptotically speed up many algorithmsas shown in [15]. In essence, this strategy achieves sublogarithmic search time by increasingthe degree of the search tree as a function of n, where n is the size of the data. Typically,the degree c of the fusion tree satis�es log c = �(log log n). As a result the depth of the treeis reduced to log n= log log n. Using compressed key representation, the fusion tree allowsthe correct child of a node to be determined in constant time. The following Lemma, whichwe make use of in our results, is a simpli�ed version of Corollary 3.2 in [15].Lemma 1 Assume that in a database of n elements, we have available the use of precomputedtables of size o(n). Then it is possible to construct a data structure of size O(n) space,which has a worst-case time O(log n= log log n) for performing member, predecessor and rankoperations. 3



Closely related to fusion trees is the notion of a Q-heap [8] that supports insert, delete,and search operations in constant time for small sets. Its main properties is given in thefollowing lemma (the version presented here is taken from [15]).Lemma 2 Suppose S is a subset of cardinality m < log1=5 n lying in a larger databaseconsisting of n elements. Then there exists a Q-heap data structure for representing S suchthat the Q-heap uses O(m) space and enables insertions, deletions, member, and predecessorqueries into the subset S to run in constant worst-case time, provided access is available toa precomputed lookup table of size o(n).We note that the lookup table of size o(n) can be shared by many Q-heaps built on subsetsof S.2.3 Fractional CascadingSuppose we have a tree T of bounded degree c and rooted at node r such that each node vcontains a list L(v) of elements sorted increasingly by their values. Let n be the total size ofall the lists stored in T , and let F be an arbitrary forest with p nodes consisting of subtreesof T determined by some of the children of r. F may be speci�ed on line, i.e. not necessarilyknown during the preprocessing step. The following lemma is a direct derivation from theone given by Chazelle and Guibas [6] for identifying all the successors of a value x in thelists stored in F . The successor of x in a list L(v) is de�ned as the �rst element of L(v)whose value is greater than or equal to x.Lemma 3 There exits a linear size fractional cascading data structure that can be used todetermine the successors of a given item x in the lists stored in F in O(p log c+ t(n)) time,where t(n) is the time it takes to identify the successor of x in L(r).The main component of a fractional cascading structure is the notion of the augmentedlists. At each node v in T , in addition to the original list L(v), we store another augmentedlist A(v), which is a superset of L(v) and contains additional copies of elements from theaugmented lists associated with its parent and children. Each element h in A(v) is coupledwith a pointer to its successor �L(v)(h) in L(v). Since A(v) is a superset of L(v), we have�L(v)(g) = �L(v)(�A(v)(g)). Note that the elements in an augmented list A(v) form a multisetS(v), that is, a single element can appear multiple times in an augmented list. The elementsin an augmented list are chained together to form a double linked list.Let u and v be two neighboring nodes in T , say u is the parent of v. There exists a subsetB(u; v) of S(u)� S(v) such that each pair of elements (g; h) 2 B(u; v) have the same value.The pair of elements (g; h) is called a bridge. We store with the element g a pointer to h,and similarly we associate with h a pointer to g. We will call g a down-bridge, and h anup-bridge, associated with the edge (u; v). It is important to point out that each element inan augmented list can serve as at most one up-bridge or one down-bridge. Bridges respectthe ordering of equal-valued elements and thus do not \cross". This guarantees that B(u; v)can be ordered and hence the concept of gap presented next is well de�ned. In an orderedset B(u; v), the bridge (g; h) appears after the (g0; h0) if and only if g appears after g0 inA(u). A gap G(u;v)(g; h) of bridge (g; h) is de�ned as the multiset of elements from both4



A(u) and A(v) that are strictly between two bridges (g; h) and (g0; h0), where (g0; h0) is thebridge that appears immediately before (g; h) in B(u; v). Accordingly, we de�ne the up-gap(down-gap) G(u;v)(g) (G(u;v)(h)) as the subset of G(u;v)(g; h) containing elements from A(u)(A(v)), preserving their orders in the respective augmented lists.The fractional cascading structure maintains the invariant that the size of any gap cannotexceed 6c � 1. Chazelle and Guibas provide an algorithm that can in O(n) time constructsuch a data structure; moreover, the size of the data structure is O(n).Given a parent-child pair (u; v) 2 E, suppose we know the successor �A(u)(x) of a valuex in A(u), we follow A(u) along the direction of increasing values to the next down-bridge gconnecting u and v, cross it to the corresponding up-bridge h, and scan A(v) in the oppositedirection until the successor of x in A(v) is encountered. �A(v)(x) is guaranteed to be foundin this process because the value associated with the up-bridge before h is smaller than x.The constraint of the gap size ensures that the number of comparisons required is O(c). (Amodi�cation of the above data structure described in [6] achieves the result in Lemma 3.But this simpler one su�ces for our purposes.)By incorporating the Q-heap technique of Fredman and Willard [8], we can achieveconstant search time per node (independent of c) for trees whose degree c is bounded bylog� n, where n is the total size of all the lists, and � is any positive constant smaller than1=5, at the cost of increasing the storage by a factor of c. We call this variation of fractioncascading structure fast fractional cascading and the original linear-space fractional cascadingstructure of Chazelle and Guibas compact fractional cascading.We augment the original fractional cascading structure by adding two types of compo-nents to each augmented list A(v). First, we store c additional pointers p1(g); p2(g); : : : ; pc(g)with each element g in A(v) such that pi(g) points to the next down-bridge (possibly g itself)connecting v to wi, where wi is the ith child of v. Second, we build for each up-gap G(u;v)(h)a Q-heap structure Q(h), containing elements in G(u;v)(h) with distinct values (choosingthe �rst one whenever multiple elements have the same value). For large enough n andc = o(log1=5 n), we have 6c � 1 < log1=5 n; and therefore Lemma 2 is applicable. We haveadded c pointers to each element in the augment lists, whose overall size is O(n). In addition,a global look-up table of size o(n) is used to support the constant time operations on allthe Q-heaps. And �nally, since no two up-gaps in an augmented list overlap (because theycorrespond to the same edge in T ), the Q-heaps consume a total of no more than O(n) space.Now suppose we have found g = �A(u)(x) in A(u). Let v be the ith child of u. Byfollowing the pointer pi(g), we can reach in constant time the next down-bridge in u andthen its companion up-bridge h in v. Using Q(h), we can �nd the successor of x in G(u;v)(h)in constant time.Lemma 4 If the degree c of T is bounded by O(log� n), where � is any positive constantsmaller than 1=5, then the fast fractional cascading structures allows the identi�cation of thesuccessors of a given value x in the list stored in F in O(p + t(n)) time, where t(n) is timeit takes to identify the successor of x in L(r). This structure requires O(cn) space.We show in a forthcoming paper that the storage of our modi�ed fractional cascading datastructure can be reduced to linear. However the above result is su�cient for our purposesin this paper. 5



3 Fast Algorithm for Three-sided 2-D Range Report-ingA three-sided range reporting query looks for the two-dimensional points p = (px; py) in adata set such that x1 � px � x2 and py � y. Using McCreight's priority search tree [12],this problem can be solved in O(log n) time using O(n) space. In [15], Willard improves thisalgorithm by increasing the degree of the priority search tree to plog n and applying theQ�-heap structure. A global table is required in order to avoid the access of the tree nodesthat do not have any point to report. We describe below another algorithm that achievesthe same bound but is much simpler.Instead of using a balanced tree, we construct an (x,y)-Cartesian tree C and chain itsnodes together in increasing order of the x-coordinates using a double linked list L. Givena query (x1; x2; y), if we know the x-successor of x1 and the x-predecessor of x2 and theircorresponding nodes � and � in the Cartesian tree C, then the nearest common ancestor
 of � and � stores the point with the largest y-coordinate among those points whose x-coordinates are between x1 and x2. By transforming C into the structure D(C) using thetechniques of Harel et al [10], the node 
 can be found in O(1) time. After the node 
is located, we check whether the point stored there should be reported. If not, we stopexploring the subtree of 
. Otherwise, we �nd the nearest common ancestor 
0 of � and thepredecessor of 
 in L, and the nearest common ancestor 
00 of � and the successor of 
 in L,both of which can be identi�ed in constant time. Then we recursively access the subtrees of
0 and 
 00.Lemma 5 Let C be an (x; y)-Cartesian for a set of n two-dimensional points. Given athree-sided two-dimensional range query given as (x1; x2; y), with the two pointers to the left-and right-most nodes of C whose x-coordinates fall within the range [x1; x2], then the querycan be answered in O(f) time using D(C) of size O(n).The x-successor of x1 and x-predecessor of x2 can be found in O(log n= log log n) time ifwe build a fusion tree to index the nodes of the Cartesian tree according to the increasingorder of the x-coordinates of their associated points. Thus we have an algorithm that canhandle three-sided two-dimensional range queries in O(log n= log log n+f) time, using linearspace.4 Fast Algorithm for 3-D Dominance ReportingThe 3-D dominance reporting problem involves the determination of all the points thatdominate the query point (qx; qy; qz). In this section, we describe a faster algorithm than theone presented by Makris and Tsakalidis [11] at the expense of a factor of log� n additionalspace. Our algorithm is inspired by Willard's improvement [15] on the priority search tree.We �rst give a brief overview of the algorithm of Makris and Tsakalidis.6



4.1 The Makris-Tsakalidis AlgorithmThis algorithm is based on the linear space data structure of Chazelle and Edelsbrunner [5],which handles queries in O(log2 n + f) time. The primary data structure used is a binarysearch tree T built on the points in decreasing order of the z-coordinate. Each internal nodev stores the maximal set M(v) of the points stored in the subtree rooted at v and which arenot stored in one of its ancestors. A maximal set of a point set S consists of the points in Swhose projections onto the xy-plane are not dominated by any other projection.At each node v, M(v) is represented by three data structures. The �rst two are listsL1(v) and L2(v) that store the points in M(v) in increasing order of the x-coordinates anddecreasing order of the y-coordinates respectively. The third structureD(v) = D(C(v)) is thederivation of the (x; z)-Cartesian tree C(v) built on M(v), and ignoring the y-coordinates.Lists L1 and L2 associated with all the primary tree nodes are chained together separatelyusing fractional cascading to facilitate constant time search of these lists. Elements of L1(v),L2(v) and D(v) that correspond to the same point are also linked together.Given a query (qx; qy; qz), the algorithm works as follows. First, we identify in O(log n)time the path � from the root to the leaf node whose corresponding point has the smallestz-coordinate that is larger than or equal to qz. Then we perform a pre-order traversal of thetree performing the following operations:� For each node v visited, determine the points in M(v) that need to be reported.� If v does not have any point to be reported and is not on �, do not visit any of itschildren.� If v and its left child are both on the path �, do not visit its right child.The above restrictions guarantee that the number of nodes visited is bounded byO(log n+f).For a node v that is visited but not on �, we �nd the x-successor of qx in L1(v) in O(1)time, except when v is the root, which requires O(log n) time. If this point does not satisfythe query, then we are done with this node and its descendants. Otherwise, we follow L1(v)until a point not in Q is encountered and recursively visit the two children v.At each node v on �, we can easily in O(1) time �nd left most and right most leaf nodes� and � of C(v), the x- and y-coordinates of whose points satisfy the query. By Lemma 4,D(v) allows us to report points inM(v) in O(f(v)) time, where f(v) is the number of pointsreported in M(v).4.2 Our AlgorithmTo reduce the query complexity, we increase the degree of the primary tree T used in theprevious section from 2 to c = log� n, where � is an arbitrary positive constant smaller than1=5. As a result, the height of the tree as well as the length of the path � is reduced toO(log n= log log n).Each node v contains c+4 auxiliary structures. First, a Q-heap K(v) is used to organizethe keys separating the z-ranges of its children. Second, two lists Lx(v) and Ly(v) representof the points in M(v) sorted according to the x and y order respectively. The Lx-, Ly-listsof all the nodes are chained together separately using the fast fractional cascading structure.7



Also we have the structure D(v), which is the same as described in Section 4.1, associatedwith the maximal set of points M(v) stored at v. In addition, log� n (x; y)-Cartesian treesC1(v); C2(v); : : : ; Cc(v) are built. Ci(v) contains the points stored in the �rst i children of v,starting from the left. The leaf nodes of Ci(v) are in decreasing order of the x-coordinatesof their associated points; and each internal node stores the point whose y-coordinate is thelargest among the points stored in its subtree. Actually, we are not storing the Cartesiantrees themselves in v but rather the transformations Di(v) = D(Ci(v)) so that each suchstructure can be used to answer two-sided two-dimensional range queries in constant time.And �nally, one fusion tree is built for each of the three lists stored at the root, and hencea member lookup in each of them can be performed in O(log n= log log n) time.It is obvious that the total size of all the sorted lists and their corresponding fractionalcascading structures is O(n log� n). Each point can appear in at most one (x; z)-Cartesiantree and c (x; y)-Cartesian trees, and hence the overall storage cost of these Cartesian treesis O(n log� n).As we have seen before, we do not need to access the children of a node v if it contains nopoints to be reported. Also, the combination of the three fast fractional cascading structuresand the (x; z)-Cartesian trees guarantees that O(1+f(v)) time will be spent on each node von �. However, since the degree of our primary tree is no longer a constant, we cannot a�ordto access each child of v even if v has contributed some points. Doing so would result in af log� n term in the overall query time. We have to be sure at least one point will be reportedduring the visit of a node v before it is actually visited. This is where the (x; y)-Cartesiantrees come into play.Let v be the node being visited. Suppose v is on �. (We always start by searching theroot, which is always visited and always on �.) We �rst use D(v) to report M(v)\Q. If v isa leaf node, we are done. Otherwise, we �nd in O(1) time, using K(v), the child u of v thatis also on �. Suppose it is the ith child from the left. If i = 1, then we recursively searchthe subtree of u. If not, Di�1(v) is accessed as described in Section 3 to answer the query(qx � px; qy � py). Since all the points p in the subtrees of the �rst i � 1 children alreadysatisfy pz � qz, we can be con�dent that the points reported in the search of Di�1(v) usingthe x- and y-coordinates do belong to Q. Note that the right-most node of Ci�1(v) thatsatis�es qx � px should be identi�ed in constant time (and hence Lemma 4 to be applicable).This condition can be satis�ed by augmenting the fractional cascading structure for theLx-lists to include the lists of tree nodes of Di(v); i = 1; 2; : : : ; log� n as well. This will notasymptotically increase the storage cost.To ensure we reach in constant time each child of v that has at least one point to bereported, we maintain a vector of c bits initialized as zeros, and set the jth bit to 1 whenevera point from the subtree of the jth child of v is reported. After this process, the 1-bitscorrespond to the children of v, in addition to the child of v already identi�ed on �, whichneeds to be accessed. Let k be the number of such children. In order to �nd these children inO(k) time, we maintain a table of size 2c. The dth entry of this table stores a list of integers(l; I1; I2; � � � ; Il), where l is the number of 1-bits in the binary representation of d, and Ii isthe position of the ith 1-bit in the integer d. Since c = log� n, each of these integers can beencoded inO(log log n) bits. Therefore, each entry uses at mostO(log� n�log log n) = O(log n)bits; and thus each entry can be stored in one word and the size of the table is O(n). Notethat this single table is used for the entire searching process.8



Now suppose v is not on �. We then simply use D(v) to report M(v) \ Q, visit Dc(v)to determine the children of v to be visited, and recursively access these children. Thedescription of our algorithm is now complete.It should be clear from the above discussion that the number of primary tree nodes visitedis O(log n= log log+f) and O(f(v)) time is spent at each node v. Moreover, each point in Qwill be reported at most twice. We therefore have the following theorem:Theorem 1 A set of n three-dimensional points can be stored in a data structure of sizeO(n log� n), where � is an arbitrary positive constant smaller than 1/5, such that any three-dimensional dominance reporting query can be answered in O(log n= log log n+ f) time.5 An Improved Algorithm for 2-D Range CountingIn this section, we describe a fast algorithm for handling the two-dimensional dominancerange counting problem.Our solution uses ideas similar to the ones used in [4]. Instead of using a binary searchtree as the skeleton of our data structure, we use a tree of degree c = log� n. Points are storedin the leaf nodes in order by decreasing x-coordinates. Each internal node v correspondsto an x-range [x1; x2], where x1 and x2 are the x-coordinates of the points stored in itsleftmost and rightmost leaf descendants. We call x2 the key of node v denoted as k(v). Eachinternal node v of the tree stores the list of keys of its c children and the pointers to themin a Q-heap K(v). In addition, v also contains an auxiliary data structure to be used togain information about the y-coordinates of those points in v's subtree. We will describethis structure soon. In addition to our tree structure, we have a fusion tree that occupiesO(n) space and performs rank searches on the n points sorted on decreasing y-coordinatesin O(log n= log log n) time.The auxiliary data structure of each internal node v consists of two parts. First, similarto Chazelle's bit vector, a vector is used to record, for each point in the subtree rooted at vin order of decreasing y-coordinates, which of the c child subtrees it belongs to. Obviously,we need log c bits to encode this information. We call these log c bits a microword and thevector of microwords a router, denoted as r(v). Since a word can accommodate log n= log cmicrowords, m(v) = dn(v) log c= log ne words are needed to store r(v) if v has n(v) leafdescendants. In addition, we count, for each i between 1 and m(v)� 1 and j between 1 andc, the number of microwords stored in the �rst i words of r(v) whose values are between0 and j � 1, and store them in a (m(v) � 1) � c two-dimensional array, called a counter,denoted as c(v).Now, we analyze the storage cost of the overall data structure. The tree itself is clearlyof size O(n). Since each microword corresponds to a point, which is represented once at eachof the logc n levels of the tree, there are a total number of n log n= log c microwords. Theword cost of all the routers is thus O(n). Let T denote the set of internal nodes. The totalsize of all the counters is Pv2T (m(v)� 1)c = O(cn). The overall size of our data structureis thus O(n log� n).A query given as (qx; qy) is answered by recursively exploring the tree. We will showthat, only a constant time is spent at each level of the tree, and hence the complexity ofour query algorithm is O(log n= log log n). First, we use the fusion tree to �nd the rank i of9



the successor of qy. This implies that the points that correspond to the �rst i microwords inr(h) have their y-coordinates no less than qy, where h is the root of the tree. If the x-rangeof the root h is included in [qx;1), then i is the answer. Otherwise, suppose the jth childv of h is the rightmost one such that k(v) � qx (the value of j can be decided in O(1) timeusing K(v)). The number of points in the subtrees rooted the �rst j children of v thatshould be counted are those whose y-cooridnates are no less than qy. This number can becomputed by counting how many points that correspond to the �rst i microwords in r(h)go to its �rst j children. Let g = di log c= log ne � 1. The number of points that correspondto the �rst g log n= log c microwords can be immediately found in c(v)[g][j]. The number ofpoints corresponding to the remaining i � g log n log c microwords that should be countedcan be obtained by looking up a table, which costs only a constant amount of storage. Thenumber of remaining points to be counted are stored in the subtree of the (j + 1)th childv of h. Hence we repeat the above procedure on node v. The only di�erence is that, wealready know the rank of qy in r(h). By Lemma 4, we can compute the rank of qy in r(v) inconstant time without asymptotically increasing the storage cost. It is now clear the overallcomplexity of our algorithm is O(log n= log log n).Theorem 2 There exist an algorithm that solves two-dimensional dominance counting queryand range counting query O(log n= log log n) time. This algorithm uses O(n log� n) space.6 Fast Algorithms for Multidimensional DominanceSearchingUsing the results obtained for the two-dimensional dominance counting case, we can achievea better query complexity for the three-dimensional dominance counting problem. Webuild a search tree of degree c = log�=2 n on the points sorted on decreasing z-values.Let D(S) denote the data structure described in the previous section for answering two-dimensional dominance counting queries. For each internal node v, we construct c datastructures fD(S(i))ji = 1; � � � ; cg, where S(i) is the set of points stored in the subtreesrooted at the �rst i children of v. To answer a query given as (qx; qy; qz), we identifyO(log n= log log n) two-dimensional data structures, one at each level, each correspondingto a node whose z-range is completely covered by [qz;1). This takes O(log n= log log n)time. We then obtain the answers to the two-dimensional dominance query given by (x; y)by searching each of the two-dimensional data structures identi�ed. The complexity of thisalgorithm is O((log n= log log n)2). Let s1; s2; � � � ; sl be the size of the point sets stored at thel two-dimensional data structures at a certain level. Then the storage cost of that level isO(Pi=1;���;l si log�=2 si) = O(log�=2 nPi=1;���;l si) = O(n log� n). Thus the overall storage cost isO(n log1+� n= log log n). Generalization of this result to higher dimensions is straightforward.Similar technique can be used for to obtain fast algorithms for the multi-dimensionaldominance reporting case, in which we use the data structure described in Section 4 tohandle the lowest three dimensions.Theorem 3 There exist data structures such that any d-dimensional dominance countingquery can be answered in O((log n= log log n)d�1) time using O(n log� n (log n= log log n)d�2)10
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