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Qingmin Shi and Joseph JalJa
Institute for Advanced Computer Studies,
Department of Electrical and Computer Engineering,

Unwersity of Maryland, College Park, MD 20742
{gshi,joseph@umiacs.umd.edu}

Abstract
We present in this paper fast algorithms for the 3-D dominance reporting and counting
problems, and generalize the results to the d-dimensional case. Our 3-D dominance reporting
algorithm achieves O(logn/loglogn + f)' query time using O(nlog®n) space , where f is
the number of points satisfying the query and e > 0 is an arbitrarily small constant. For the
3-D dominance counting problem (which is equivalent to the 3-D range counting problem),
our algorithm runs in O((log n/loglog n)?) time using O(nlog'™“n/loglogn) space.

1 Introduction

Let S be a set of n points in R¢. The dominance reporting problem is to store S in a data
structure so that the subset ¢} of points in S that dominate an arbitrarily given point ¢
can be reported efficiently. Given two points p = (p1,p2,...,pa) and ¢ = (¢1,q2, ..., qa), We
say p dominates ¢ if and only if p; > ¢; for all 1 < ¢ < d. Another related problem is the
dominance counting problem. In this problem, the size k£ of () only needs to be reported.
Many computational geometry problems, such as the rectangle intersection problems, can
be reduced to the dominance search problem.

In this paper, we provide faster algorithms than previously known for both 3-D dominance
reporting and counting problems. Our model of computation is the RAM model as modified
by Fredman and Willard [8]. In this model, it is assumed that each word is of size w and that
the number of data elements n never exceeds 2%, that is, w > log, n. In addition, arithmetic
and bitwise logical operations take constant time.

Before outlining our results, we give a brief overview of related literature. The 3-D dom-
inance reporting is a special case of the 3-D orthogonal range search problem. Hence results
for orthogonal range search apply immediately to our problem. In particular, a class of
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In this paper, we always assume that the logarithmic operations are to the base two.



algorithms for orthogonal range reporting uses constant time for each reported point and
polylogarithmic search time (see for example, [3, 4, 13, 15, 1].) The best known result for
3-D orthogonal range search is given by Alstrup and Brodal, which achieves O(nlog'™ n)
space and O(logn + f) query time [1]. Several other data structures use less space but
require larger query time. In [4], Chazelle gives two data structures, one with query time
O(log®n + floglog(4n + f)) and using space O(nlognloglogn), and the other with query
time O(log” n+ flog®(2n/f)) and using O(nlog n) space. The best known dominance report-
ing algorithm is due to Makris and Tsakalidis [11], which follows the approach of Chazelle
and Edelsbrunner [5] and achieves linear space and O(logn + f) query time.

Unlike dominance reporting, which seems to be inherently simpler than general orthogo-
nal range reporting, the dominance counting problem is equivalent to the orthogonal range
counting problem, if the dimension d is assumed to be constant. Indeed, it is easy to show
that if a data structure of size O(s(n)) exists for answering any d-dimensional dominance
counting query in O(t(n)) time, then any d-dimensional range counting query can be an-
swered with O(2¢s(n)) space and using O(2%(n)) query time. Not many results are known for
the multidimensional dominance counting problem. In [4], Chazelle uses a compressed form
of the range tree [2] to achieve O(logn) query time and O(n) space for the 2-D dominance
counting problem. This result easily leads to a solution to the 3-D dominance counting with
O(nlogn) space, and O(log®n) query time. On the other hand, we can reduce the counting
query problem to the aggregation range query problem in the same dimension by assign-
ing a weight of 1 to each point. Willard in [15] shows how to combine the fusion tree [7]
and its variant, called the ¢*-heaps [8], and the fractional cascading technique [6] to achieve
O(nlog® “n) space and O((logn/loglogn)?) query time to handle 3-D aggregation range
queries, where € > 0 is arbitrarily small constant.

In this paper, we establish the following results that provide faster algorithms for 3-D
dominance reporting and counting:

e An algorithm for three-sided 2-D range reporting that achieves O(n) space and
O(logn/loglogn + f) query time. This result is similar to Willard’s modification of
priority tree [15] but the algorithm is much simpler. This algorithm plays an important
role in our 3-D dominance reporting algorithm.

e An algorithm for 3-D dominance reporting that uses O(nlog®n) space and
O(log n/loglogn+ f) query time, where f is the number of points satisfying the query.

e An algorithm for 2-D dominance counting problem, which uses O(nlog®n) space and
runs in O(logn/loglogn) query time. This algorithm can be seen as an improvement
on the query time over Chazelle’s algorithm at the expense of O(log®n) additional
space.

e An extension of the 2-D dominance counting algorithm and 3-D dominance reporting
algorithm to multidimensional dominance search, which leads to an O((log n/log logn)?!)
query time and O(nlog®n(logn/loglogn)?=%) space algorithm for the counting case
and an O((logn/loglogn)?=2+ f) query time and O(n log® n(logn/loglogn)?=3) space
algorithm for the reporting case, where d is the number of dimensions and d > 2 for
the counting case and d > 3 for the reporting case.



In Section 2, we briefly discuss several known techniques, and, in the case of fractional
cascading, some modifications to them. These techniques are used heavily in this paper.
The three-sided 2-D range reporting algorithm is described in Section 3 while the descrip-
tion of our 3-D dominance reporting algorithm is given in Section 4. Our 2-D dominance
counting algorithm is described in Section 5. Results in Sections 4 and 5 are extended to
the multidimensional case in Section 6.

2 Preliminaries

To avoid tedious details in describing the algorithms, we assume for the rest of this paper
that no two points have the same coordinate in any dimension. For simplicity, we call the
point with the largest x-coordinate smaller than or equal to a real number r the z-predecessor
of r and the one with the smallest x-coordinate larger than or equal to r the z-successor of
r. The y- and z-predecessors(successors) are defined similarly.

2.1 Cartesian Trees

Cartesian trees, defined over a finite set of 2-D points, were first introduced by Vuillemin [14].
Let p1,p2,...,p, be a set of n 2-D points sorted by their x-coordinates. The corresponding
Cartesian tree C' is defined recursively as follows. Let p; be the point with the largest y-
coordinate. Then p; is associated with the root r of C'. The left child of r is the root of
the Cartesian tree built on py,...,p;—1 and the right child of r is the root of the Cartesian
tree built on piy1,...,p,. The left(right) child does not exist if ¢ = 1(n). We call such a
Cartesian tree an (x,y)-Cartesian tree.
An important property of the Cartesian tree is given by the following observation [9]:

Observation 1 Consider a set S of 2-D points and the corresponding (x,y)-Cartesian tree
C. Let v1 < x4 be the xz-coordinates of two points in S, and let a and 3 be their respective
vertices. Then the point with the largest y-coordinate among those whose x-coordinates are
between w1 and x4 is stored in the nearest common ancestor of a and 3.

2.2 Fusion Trees

Fusion trees, developed by Fredman and Willard [7, 8], achieve sublogarithmic search time
of one-dimensional data, and can be exploited to asymptotically speed up many algorithms
as shown in [15]. In essence, this strategy achieves sublogarithmic search time by increasing
the degree of the search tree as a function of n, where n is the size of the data. Typically,
the degree ¢ of the fusion tree satisfies log ¢ = O(loglogn). As a result the depth of the tree
is reduced to logn/loglogn. Using compressed key representation, the fusion tree allows
the correct child of a node to be determined in constant time. The following Lemma, which
we make use of in our results, is a simplified version of Corollary 3.2 in [15].

Lemma 1 Assume that in a database of n elements, we have available the use of precomputed
tables of size o(n). Then it is possible to construct a data structure of size O(n) space,
which has a worst-case time O(logn/loglogn) for performing member, predecessor and rank
operations.



Closely related to fusion trees is the notion of a @-heap [8] that supports insert, delete,
and search operations in constant time for small sets. Its main properties is given in the
following lemma (the version presented here is taken from [15]).

Lemma 2 Suppose S is a subset of cardinality m < logl/Sn lying in a larger database
consisting of n elements. Then there exists a ()-heap data structure for representing S such
that the Q-heap uses O(m) space and enables insertions, deletions, member, and predecessor
queries into the subset S to run in constant worst-case time, provided access is available to
a precomputed lookup table of size o(n).

We note that the lookup table of size o(n) can be shared by many Q-heaps built on subsets
of S.

2.3 Fractional Cascading

Suppose we have a tree T' of bounded degree ¢ and rooted at node r such that each node v
contains a list L(v) of elements sorted increasingly by their values. Let n be the total size of
all the lists stored in T', and let F' be an arbitrary forest with p nodes consisting of subtrees
of T' determined by some of the children of r. F' may be specified on line, i.e. not necessarily
known during the preprocessing step. The following lemma is a direct derivation from the
one given by Chazelle and Guibas [6] for identifying all the successors of a value x in the
lists stored in F'. The successor of = in a list L(v) is defined as the first element of L(v)
whose value is greater than or equal to x.

Lemma 3 There exits a linear size fractional cascading data structure that can be used to
determine the successors of a given item x in the lists stored in F in O(plogc+ t(n)) time,
where t(n) is the time it takes to identify the successor of x in L(r).

The main component of a fractional cascading structure is the notion of the augmented
lists. At each node v in T, in addition to the original list L(v), we store another augmented
list A(v), which is a superset of L(v) and contains additional copies of elements from the
augmented lists associated with its parent and children. Each element h in A(v) is coupled
with a pointer to its successor opy(h) in L(v). Since A(v) is a superset of L(v), we have
orw)(9) = orw)(40)(g)). Note that the elements in an augmented list A(v) form a multiset
S(v), that is, a single element can appear multiple times in an augmented list. The elements
in an augmented list are chained together to form a double linked list.

Let v and v be two neighboring nodes in 7', say u is the parent of v. There exists a subset
B(u,v) of S(u) x S(v) such that each pair of elements (¢, h) € B(u,v) have the same value.
The pair of elements (g, k) is called a bridge. We store with the element ¢ a pointer to h,
and similarly we associate with i a pointer to g. We will call ¢ a down-bridge, and h an
up-bridge, associated with the edge (u,v). It is important to point out that each element in
an augmented list can serve as at most one up-bridge or one down-bridge. Bridges respect
the ordering of equal-valued elements and thus do not “cross”. This guarantees that B(u,v)
can be ordered and hence the concept of gap presented next is well defined. In an ordered
set B(u,v), the bridge (g, h) appears after the (¢',h’) if and only if ¢ appears after ¢’ in
A(u). A gap Gua(g,h) of bridge (g,h) is defined as the multiset of elements from both
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A(u) and A(v) that are strictly between two bridges (g, h) and (¢', '), where (¢’,h’) is the
bridge that appears immediately before (¢, ) in B(u,v). Accordingly, we define the up-gap
(down-gap) Guwy(g) (G (h)) as the subset of G(y,.)(g, k) containing elements from A(u)
(A(v)), preserving their orders in the respective augmented lists.

The fractional cascading structure maintains the invariant that the size of any gap cannot
exceed 6¢ — 1. Chazelle and Guibas provide an algorithm that can in O(n) time construct
such a data structure; moreover, the size of the data structure is O(n).

Given a parent-child pair (u,v) € FE, suppose we know the successor o 4¢y)(z) of a value
zin A(u), we follow A(u) along the direction of increasing values to the next down-bridge ¢
connecting u and v, cross it to the corresponding up-bridge h, and scan A(v) in the opposite
direction until the successor of x in A(v) is encountered. o 4(,)(z) is guaranteed to be found
in this process because the value associated with the up-bridge before h is smaller than .
The constraint of the gap size ensures that the number of comparisons required is O(c¢). (A
modification of the above data structure described in [6] achieves the result in Lemma 3.
But this simpler one suffices for our purposes.)

By incorporating the @Q-heap technique of Fredman and Willard [8], we can achieve
constant search time per node (independent of ¢) for trees whose degree ¢ is bounded by
log® n, where n is the total size of all the lists, and ¢ is any positive constant smaller than
1/5, at the cost of increasing the storage by a factor of ¢. We call this variation of fraction
cascading structure fast fractional cascading and the original linear-space fractional cascading
structure of Chazelle and Guibas compact fractional cascading.

We augment the original fractional cascading structure by adding two types of compo-
nents to each augmented list A(v). First, we store ¢ additional pointers p1(g), p2(¢), ..., p:(g)
with each element ¢ in A(v) such that p;(¢g) points to the next down-bridge (possibly g itself)
connecting v to w;, where w; is the ith child of v. Second, we build for each up-gap G/, ()
a Q-heap structure (%), containing elements in G/, ,)(h) with distinct values (choosing
the first one whenever multiple elements have the same value). For large enough n and
c= o(logl/5 n), we have 6¢c — 1 < logl/5 n; and therefore Lemma 2 is applicable. We have
added ¢ pointers to each element in the augment lists, whose overall size is O(n). In addition,
a global look-up table of size o(n) is used to support the constant time operations on all
the Q-heaps. And finally, since no two up-gaps in an augmented list overlap (because they
correspond to the same edge in T'), the Q-heaps consume a total of no more than O(n) space.

Now suppose we have found g = o4(,)(z) in A(u). Let v be the ith child of u. By
following the pointer p;(¢), we can reach in constant time the next down-bridge in v and
then its companion up-bridge % in v. Using ()(h), we can find the successor of z in G'(y)(h)
in constant time.

Lemma 4 If the degree ¢ of T is bounded by O(log®n), where € is any positive constant
smaller than 1/5, then the fast fractional cascading structures allows the identification of the
successors of a given value x in the list stored in F' in O(p+1t(n)) time, where t(n) is time
it takes to identify the successor of x in L(r). This structure requires O(cn) space.

We show in a forthcoming paper that the storage of our modified fractional cascading data
structure can be reduced to linear. However the above result is sufficient for our purposes
in this paper.



3 Fast Algorithm for Three-sided 2-D Range Report-
ing

A three-sided range reporting query looks for the two-dimensional points p = (p,,p,) in a
data set such that 1 < p, < a3 and p, > y. Using McCreight’s priority search tree [12],
this problem can be solved in O(log n) time using O(n) space. In [15], Willard improves this
algorithm by increasing the degree of the priority search tree to y/logn and applying the
(Q)*-heap structure. A global table is required in order to avoid the access of the tree nodes
that do not have any point to report. We describe below another algorithm that achieves
the same bound but is much simpler.

Instead of using a balanced tree, we construct an (x,y)-Cartesian tree C' and chain its
nodes together in increasing order of the x-coordinates using a double linked list L. Given
a query (x1,xq,y), if we know the x-successor of xy and the x-predecessor of x3 and their
corresponding nodes « and § in the Cartesian tree ', then the nearest common ancestor
~ of o and [ stores the point with the largest y-coordinate among those points whose x-
coordinates are between 1 and 3. By transforming C' into the structure D(C') using the
techniques of Harel et al [10], the node ¥ can be found in O(1) time. After the node v
is located, we check whether the point stored there should be reported. If not, we stop
exploring the subtree of v. Otherwise, we find the nearest common ancestor 4’ of o and the
predecessor of v in L, and the nearest common ancestor 4" of # and the successor of v in L,
both of which can be identified in constant time. Then we recursively access the subtrees of
~" and 4".

Lemma 5 Let C be an (x,y)-Cartesian for a set of n two-dimensional points. Given a
three-sided two-dimensional range query given as (x1,xq,y), with the two pointers to the left-
and right-most nodes of C whose x-coordinates fall within the range [x1, x5, then the query

can be answered in O(f) time using D(C') of size O(n).

The x-successor of x1 and x-predecessor of x5 can be found in O(logn/loglogn) time if
we build a fusion tree to index the nodes of the Cartesian tree according to the increasing
order of the x-coordinates of their associated points. Thus we have an algorithm that can
handle three-sided two-dimensional range queries in O(log n/loglogn+ f) time, using linear
space.

4 Fast Algorithm for 3-D Dominance Reporting

The 3-D dominance reporting problem involves the determination of all the points that
dominate the query point (¢s, ¢y, ¢-). In this section, we describe a faster algorithm than the
one presented by Makris and Tsakalidis [11] at the expense of a factor of log®n additional
space. Our algorithm is inspired by Willard’s improvement [15] on the priority search tree.
We first give a brief overview of the algorithm of Makris and Tsakalidis.



4.1 The Makris-Tsakalidis Algorithm

This algorithm is based on the linear space data structure of Chazelle and Edelsbrunner [5],
which handles queries in O(log”n + f) time. The primary data structure used is a binary
search tree T' built on the points in decreasing order of the z-coordinate. Fach internal node
v stores the maximal set M (v) of the points stored in the subtree rooted at v and which are
not stored in one of its ancestors. A maximal set of a point set S consists of the points in S
whose projections onto the xy-plane are not dominated by any other projection.

At each node v, M(v) is represented by three data structures. The first two are lists
L1(v) and Ly(v) that store the points in M(v) in increasing order of the x-coordinates and
decreasing order of the y-coordinates respectively. The third structure D(v) = D(C(v)) is the
derivation of the (x,z)-Cartesian tree C'(v) built on M(v), and ignoring the y-coordinates.
Lists L1 and L, associated with all the primary tree nodes are chained together separately
using fractional cascading to facilitate constant time search of these lists. Elements of L1(v),
Ly(v) and D(v) that correspond to the same point are also linked together.

Given a query (qs, ¢y, =), the algorithm works as follows. First, we identify in O(logn)
time the path II from the root to the leat node whose corresponding point has the smallest
z-coordinate that is larger than or equal to ¢.. Then we perform a pre-order traversal of the
tree performing the following operations:

e For each node v visited, determine the points in M(v) that need to be reported.

e If v does not have any point to be reported and is not on II, do not visit any of its

children.
o If v and its left child are both on the path II, do not visit its right child.

The above restrictions guarantee that the number of nodes visited is bounded by O(log n+ f).

For a node v that is visited but not on II, we find the x-successor of ¢, in Li(v) in O(1)
time, except when v is the root, which requires O(logn) time. If this point does not satisfy
the query, then we are done with this node and its descendants. Otherwise, we follow L;(v)
until a point not in () is encountered and recursively visit the two children v.

At each node v on I, we can easily in O(1) time find left most and right most leaf nodes
a and  of C'(v), the x- and y-coordinates of whose points satisfy the query. By Lemma 4,
D(v) allows us to report points in M(v) in O(f(v)) time, where f(v) is the number of points
reported in M (v).

4.2 Our Algorithm

To reduce the query complexity, we increase the degree of the primary tree T used in the
previous section from 2 to ¢ = log® n, where € is an arbitrary positive constant smaller than
1/5. As a result, the height of the tree as well as the length of the path II is reduced to
O(log n/loglogn).

Each node v contains ¢+ 4 auxiliary structures. First, a Q-heap K (v) is used to organize
the keys separating the z-ranges of its children. Second, two lists L,(v) and L,(v) represent
of the points in M(v) sorted according to the x and y order respectively. The L,-, L,-lists
of all the nodes are chained together separately using the fast fractional cascading structure.



Also we have the structure D(v), which is the same as described in Section 4.1, associated
with the maximal set of points M (v) stored at v. In addition, log®n (x,y)-Cartesian trees
C1(v),C2(v),...,C:(v) are built. C;(v) contains the points stored in the first ¢ children of v,
starting from the left. The leaf nodes of C;(v) are in decreasing order of the x-coordinates
of their associated points; and each internal node stores the point whose y-coordinate is the
largest among the points stored in its subtree. Actually, we are not storing the Cartesian
trees themselves in v but rather the transformations D;(v) = D(C;(v)) so that each such
structure can be used to answer two-sided two-dimensional range queries in constant time.
And finally, one fusion tree is built for each of the three lists stored at the root, and hence
a member lookup in each of them can be performed in O(logn/loglogn) time.

It is obvious that the total size of all the sorted lists and their corresponding fractional
cascading structures is O(nlog®n). Each point can appear in at most one (x, z)-Cartesian
tree and ¢ (x,y)-Cartesian trees, and hence the overall storage cost of these Cartesian trees
is O(nlogn).

As we have seen before, we do not need to access the children of a node v if it contains no
points to be reported. Also, the combination of the three fast fractional cascading structures
and the (x, z)-Cartesian trees guarantees that O(1 4 f(v)) time will be spent on each node v
on II. However, since the degree of our primary tree is no longer a constant, we cannot afford
to access each child of v even if v has contributed some points. Doing so would result in a
flog®n term in the overall query time. We have to be sure at least one point will be reported
during the visit of a node v before it is actually visited. This is where the (x,y)-Cartesian
trees come into play.

Let v be the node being visited. Suppose v is on II. (We always start by searching the
root, which is always visited and always on 11.) We first use D(v) to report M(v)N@Q. If v is
a leaf node, we are done. Otherwise, we find in O(1) time, using K (v), the child v of v that
is also on II. Suppose it is the 2th child from the left. If ¢ = 1, then we recursively search
the subtree of u. If not, D;_1(v) is accessed as described in Section 3 to answer the query
(¢z < peyqy < py). Since all the points p in the subtrees of the first 7 — 1 children already
satisfy p. > ¢., we can be confident that the points reported in the search of D;_1(v) using
the x- and y-coordinates do belong to ). Note that the right-most node of C;_1(v) that
satisfies ¢, < p, should be identified in constant time (and hence Lemma 4 to be applicable).
This condition can be satisfied by augmenting the fractional cascading structure for the
L;-lists to include the lists of tree nodes of D;(v),7 = 1,2,...,logn as well. This will not
asymptotically increase the storage cost.

To ensure we reach in constant time each child of v that has at least one point to be
reported, we maintain a vector of ¢ bits initialized as zeros, and set the jth bit to 1 whenever
a point from the subtree of the jth child of v is reported. After this process, the 1-bits
correspond to the children of v, in addition to the child of v already identified on II, which
needs to be accessed. Let k be the number of such children. In order to find these children in
O(k) time, we maintain a table of size 2°. The dth entry of this table stores a list of integers
(I, 11, Is,- -+, I;), where [ is the number of 1-bits in the binary representation of d, and I; is
the position of the ¢th 1-bit in the integer d. Since ¢ = log® n, each of these integers can be
encoded in O(log log n) bits. Therefore, each entry uses at most O(log® n-loglogn) = O(logn)
bits; and thus each entry can be stored in one word and the size of the table is O(n). Note
that this single table is used for the entire searching process.



Now suppose v is not on II. We then simply use D(v) to report M(v) N Q, visit D.(v)
to determine the children of v to be visited, and recursively access these children. The
description of our algorithm is now complete.

It should be clear from the above discussion that the number of primary tree nodes visited
is O(log n/loglog +f) and O(f(v)) time is spent at each node v. Moreover, each point in ()
will be reported at most twice. We therefore have the following theorem:

Theorem 1 A set of n three-dimensional points can be stored in a data structure of size
O(nlog® n), where € is an arbitrary positive constant smaller than 1/5, such that any three-
dimensional dominance reporting query can be answered in O(logn/loglogn + f) time.

5 An Improved Algorithm for 2-D Range Counting

In this section, we describe a fast algorithm for handling the two-dimensional dominance
range counting problem.

Our solution uses ideas similar to the ones used in [4]. Instead of using a binary search
tree as the skeleton of our data structure, we use a tree of degree ¢ = log® n. Points are stored
in the leaf nodes in order by decreasing x-coordinates. Each internal node v corresponds
to an x-range |7, 3], where x; and z; are the x-coordinates of the points stored in its
leftmost and rightmost leaf descendants. We call a5 the key of node v denoted as k(v). Each
internal node v of the tree stores the list of keys of its ¢ children and the pointers to them
in a Q-heap K(v). In addition, v also contains an auxiliary data structure to be used to
gain information about the y-coordinates of those points in v’s subtree. We will describe
this structure soon. In addition to our tree structure, we have a fusion tree that occupies
O(n) space and performs rank searches on the n points sorted on decreasing y-coordinates
in O(log n/loglogn) time.

The auxiliary data structure of each internal node v consists of two parts. First, similar
to Chazelle’s bit vector, a vector is used to record, for each point in the subtree rooted at v
in order of decreasing y-coordinates, which of the ¢ child subtrees it belongs to. Obviously,
we need log ¢ bits to encode this information. We call these log ¢ bits a microword and the
vector of microwords a router, denoted as r(v). Since a word can accommodate logn/logc
microwords, m(v) = [n(v)loge/logn] words are needed to store r(v) if v has n(v) leaf
descendants. In addition, we count, for each ¢ between 1 and m(v) — 1 and j between 1 and
¢, the number of microwords stored in the first ¢ words of r(v) whose values are between
0 and j — 1, and store them in a (m(v) — 1) x ¢ two-dimensional array, called a counter,
denoted as ¢(v).

Now, we analyze the storage cost of the overall data structure. The tree itself is clearly
of size O(n). Since each microword corresponds to a point, which is represented once at each
of the log.n levels of the tree, there are a total number of nlogn/log ¢ microwords. The
word cost of all the routers is thus O(n). Let T" denote the set of internal nodes. The total
size of all the counters is Y-, cr(m(v) — 1)e = O(cen). The overall size of our data structure
is thus O(nlog®n).

A query given as (¢, q,) is answered by recursively exploring the tree. We will show
that, only a constant time is spent at each level of the tree, and hence the complexity of
our query algorithm is O(log n/loglogn). First, we use the fusion tree to find the rank ¢ of
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the successor of ¢,. This implies that the points that correspond to the first : microwords in
r(h) have their y-coordinates no less than ¢,, where h is the root of the tree. If the x-range
of the root h is included in [¢,, o0), then ¢ is the answer. Otherwise, suppose the jth child
v of h is the rightmost one such that k(v) > ¢, (the value of j can be decided in O(1) time
using K'(v)). The number of points in the subtrees rooted the first j children of v that
should be counted are those whose y-cooridnates are no less than ¢,. This number can be
computed by counting how many points that correspond to the first ¢ microwords in r(h)
go to its first j children. Let ¢ = [ilog¢/logn] — 1. The number of points that correspond
to the first glogn/log ¢ microwords can be immediately found in ¢(v)[g][j]. The number of
points corresponding to the remaining : — ¢lognlog ¢ microwords that should be counted
can be obtained by looking up a table, which costs only a constant amount of storage. The
number of remaining points to be counted are stored in the subtree of the (5 + 1)th child
v of h. Hence we repeat the above procedure on node v. The only difference is that, we
already know the rank of ¢, in (k). By Lemma 4, we can compute the rank of ¢, in r(v) in
constant time without asymptotically increasing the storage cost. It is now clear the overall
complexity of our algorithm is O(log n/loglogn).

Theorem 2 There exist an algorithm that solves two-dimensional dominance counting query
and range counting query O(logn/loglogn) time. This algorithm uses O(nlog®n) space.

6 Fast Algorithms for Multidimensional Dominance
Searching

Using the results obtained for the two-dimensional dominance counting case, we can achieve
a better query complexity for the three-dimensional dominance counting problem. We
build a search tree of degree ¢ = loge/zn on the points sorted on decreasing z-values.
Let D(S) denote the data structure described in the previous section for answering two-
dimensional dominance counting queries. For each internal node v, we construct ¢ data
structures {D(S(¢))|e = 1,---,¢}, where S(7) is the set of points stored in the subtrees
rooted at the first ¢ children of v. To answer a query given as (¢, ¢y, q-), we identify
O(log n/loglogn) two-dimensional data structures, one at each level, each corresponding
to a node whose z-range is completely covered by [¢.,00). This takes O(logn/loglogn)
time. We then obtain the answers to the two-dimensional dominance query given by (x,y)
by searching each of the two-dimensional data structures identified. The complexity of this
algorithm is O((logn/loglogn)?). Let sy, 53, -, s; be the size of the point sets stored at the
[ two-dimensional data structures at a certain level. Then the storage cost of that level is
O(X izt S log®/? 8i) = O(loge/2 nYiz1..15) = O(nlog®n). Thus the overall storage cost is
O(nlog'tn/loglogn). Generalization of this result to higher dimensions is straightforward.

Similar technique can be used for to obtain fast algorithms for the multi-dimensional
dominance reporting case, in which we use the data structure described in Section 4 to
handle the lowest three dimensions.

Theorem 3 There exist data structures such that any d-dimensional dominance counting
query can be answered in O((logn/loglogn)?~t) time using O(nlog®n (logn/loglogn)?=?%)
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space for d > 2, where ¢ is an arbitrarily positive constant smaller than 1/5. Similarly, an

arbitrary d-dimensional reporting query can be answered in O((logn/loglogn)®=2 + f) time
using O(nlog® n(logn/loglogn)?=3) space for d > 3.
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