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FAST ALGORITHMS FOR COMPUTING
THE BOLTZMANN COLLISION OPERATOR

CLÉMENT MOUHOT AND LORENZO PARESCHI

Abstract. The development of accurate and fast numerical schemes for the
five-fold Boltzmann collision integral represents a challenging problem in sci-
entific computing. For a particular class of interactions, including the so-called
hard spheres model in dimension three, we are able to derive spectral methods
that can be evaluated through fast algorithms. These algorithms are based on
a suitable representation and approximation of the collision operator. Explicit
expressions for the errors in the schemes are given and spectral accuracy is
proved. Parallelization properties and adaptivity of the algorithms are also
discussed.

1. Introduction

The Boltzmann equation describes the behavior of a dilute gas of particles when
the only interactions taken into account are binary elastic collisions. It reads for
x, v ∈ R

d (d ≥ 2)
∂f

∂t
+ v · ∇xf = Q(f, f),

where f(t, x, v) is the time-dependent particle distribution function in the phase
space. The Boltzmann collision operator Q is a quadratic operator local in (t, x).
The time and position acts only as parameters in Q and therefore will be omitted
in its description

(1.1) Q(f, f)(v) =
∫

Rd×Sd−1
B(|v − v∗|, cos θ) (f ′

∗f
′ − f∗f) dv∗ dσ.

In (1.1) we used the shorthand f = f(v), f∗ = f(v∗), f
′
= f(v′), f

′

∗ = f(v
′

∗). The
velocities of the colliding pairs (v, v∗) and (v′, v′∗) are related by

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ.

The collision kernel B is a nonnegative function which by physical arguments of
invariance only depends on |v − v∗| and cos θ = ĝ · σ (where ĝ = (v − v∗)/|v − v∗|).
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1834 CLÉMENT MOUHOT AND LORENZO PARESCHI

The Boltzmann collision operator has the fundamental properties of conserving
mass, momentum, and energy,∫

Rd

Q(f, f)φ(v) dv = 0, φ(v) = 1, v1, . . . , vd, |v|2,

and satisfies the well-known Boltzmann H theorem

− d

dt

∫
Rd

f log f dv = −
∫

Rd

Q(f, f) log(f) dv ≥ 0.

The functional −
∫

f log f is the entropy of the solution. The Boltzmann H theorem
implies that any equilibrium distribution function, i.e., any function which is a
maximum of the entropy, has the form of a locally Maxwellian distribution

M(ρ, u, T )(v) =
ρ

(2πT )d/2
exp

{
−|u − v|2

2T

}
,

where ρ, u, T are the density, mean velocity, and temperature of the gas, defined
by

ρ =
∫

Rd

f(v) dv, u =
1
ρ

∫
Rd

vf(v) dv, T =
1
dρ

∫
Rd

|u − v|2f(v) dv,

respectively. For further details on the physical background and derivation of the
Boltzmann equation, we refer to [15, 49].

The construction of numerical methods for Boltzmann equations represents a
real challenge for scientific computing, and it is of paramount importance in many
applications, ranging from rarefied gas dynamics (RGD) [15], plasma physics [18],
granular flows [2, 3], semiconductors [29], and quantum kinetic theory [20].

Most of the difficulties are due to the multidimensional structure of the colli-
sional integral Q, as the integration runs on a five-dimensional unflat manifold. In
addition to the unpracticable computational cost of deterministic quadrature rules,
the integration has to be handled carefully since it is at the basis of the macroscopic
properties of the equation. Additional difficulties are represented by the stiffness
induced by the presence of small scales, like the case of small mean free path [25]
or the case of large velocities [22].

For such reasons realistic numerical computations are based on probabilistic
Monte Carlo techniques at different levels. The most famous examples are the
direct simulation Monte Carlo (DSMC) methods by Bird [4] and by Nanbu [35].
These methods preserve the conservation properties of the equation in a natural
way and avoid the computational complexity of a deterministic approach. However,
avoiding the low accuracy and the fluctuations of the results becomes extremely
expensive in presence of nonstationary flows or close to continuum regimes.

Among deterministic approximations, one of the most popular methods in RGD
is represented by the discrete velocity models (DVM) of the Boltzmann equation.
These methods [10, 30, 9, 17, 38, 47] are based on a regular grid in the velocity field
and construct a discrete collision mechanics on the points of the grid in order to
preserve the main physical properties. Unfortunately DVM have the same compu-
tational cost of a product quadrature rule, and due to the particular choice of the
nodes imposed by the conservation properties the accuracy of the schemes seems
to be less than first order [37, 36, 38].

More recently a new class of methods based on the use of spectral techniques
in the velocity space has attracted the attention of the scientific community. The
method was first developed for kinetic equations in [42], inspired from spectral
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COMPUTING THE BOLTZMANN COLLISION OPERATOR 1835

methods in fluid mechanics [11] and the use of Fourier transform tools in the analysis
of the Boltzmann equation [6]. It is based on a Fourier–Galerkin approximation
of the equation. Generalizations of the method and spectral accuracy have been
given in [43, 44]. This method, thanks to its generality, has been applied also to
nonhomogeneous situations [24], to the Landau equation [22, 40], and to the case
of granular gases [34, 23]. A related numerical strategy based on the direct use of
the fast Fourier transform (FFT) has been developed in [5, 7].

The lack of discrete conservations in the spectral scheme (mass is preserved,
whereas momentum and energy are approximated with spectral accuracy) is com-
pensated by its higher accuracy and efficiency. In fact it has been shown that these
spectral schemes permit us to obtain spectrally accurate solutions with a reduction
of the computational cost strictly related to the particular structure of the collision
operator. A reduction from O(N2) to O(N log2 N) is readily deducible for the Lan-
dau equation, whereas in the Boltzmann case such a reduction had been obtained
until now only at the price of poor accuracy (in particular the loss of the spectral
accuracy); see [5, 7].

Finally we mention that spectral methods have been successfully applied also to
the study of noncutoff Boltzmann equations, like for RGD in the grazing collision
limit [41] and for granular flows in the quasi-elastic limit [34]. In particular, during
these asymptotic processes it is possible to obtain intermediate approximations
that can be evaluated with fast algorithms which bring the overall computational
cost to O(N log2 N). This idea has been used in [39] to obtain fast approximated
algorithms for the Boltzmann equation.

For a recent introduction to numerical methods for the Boltzmann equation and
related kinetic equations we refer the reader to [19].

In this paper we shall focus on the two main questions in the approximation
of the Boltzmann equation by deterministic schemes; that is the computational
complexity and the accuracy of the numerical schemes for computing the collision
operator Q.

Let us mention that a major problem associated with deterministic methods
that use a fixed discretization in the velocity domain is that the velocity space is
approximated by a finite region. Physically the domain for the velocity is Rd. But,
as soon as d ≥ 2, the property of having compact support is not conserved by the
collision operator (in fact for some Boltzmann models in dimension d = 1, like
granular models, the support is conserved [34]). In general the collision process
“spreads” the support by a factor

√
2 (see [46, 31]). As a consequence, for the

continuous equation in time, the function f is immediately positive in the whole
velocity domain Rd.

Thus at the numerical level some nonphysical condition has to be imposed to
keep the support of the function at velocity uniformly bounded. In order to do this
there are two main strategies, which we shall make more precise later in this paper.

(1) One can remove the physical binary collisions that will lead outside the
bounded velocity domain, which means a possible increase of the num-
ber of local invariants. If this is done properly (i.e., “without removing
too many collisions”), the scheme remains conservative (and without spuri-
ous invariants). However, this truncation breaks down the convolution-like
structure of the collision operator, which requires the invariance in veloc-
ity. Indeed the modified collision kernel depends on v through the boundary
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1836 CLÉMENT MOUHOT AND LORENZO PARESCHI

conditions. This truncation is the starting point of most schemes based on
discrete velocity models in a bounded domain.

(2) One can add some nonphysical binary collisions by periodizing the function
and the collision operator. This implies the loss of some local invariants
(some nonphysical collisions are added). Thus the scheme is not conser-
vative anymore, except for the mass if the periodization is done carefully
(and possibly the momentum if some symmetry properties are satisfied by
the function). In this way the structural properties of the collision operator
are maintained and thus they can be exploited to derive fast algorithms.
This periodization is the basis of the spectral method.

Note that in both cases by enlarging the computational domain enough the
number of removed or added collisions can be made negligible (as it is usually done
for removing the aliasing error of the FFT; see, e.g., [11]) as well as the error in the
local invariants.

In this paper we shall focus on the second approach, which means that the
schemes have to deal with some aliasing error introduced by the periodization. In
this way for a particular class of interactions, using a Carleman-like representa-
tion of the collision operator, we are able to derive spectral methods that can be
evaluated through fast algorithms. The class of interactions includes Maxwellian
molecules in dimension two and hard spheres molecules in dimension three.

The rest of the paper is organized in the following way. In Section 2 we introduce
a Carleman-like representation of the collision operator which is used as a starting
point for the development of our methods. After the derivation of the schemes the
details of the fast spectral algorithm together with its accuracy properties are given
in Section 3. In a separate Appendix we show a possible way to extend the present
fast schemes to general collision interactions.

2. Carleman-like representation

and approximation of the collision operator

In this section we shall approximate the collision operator starting from a repre-
sentation which somehow conserves more symmetries of the collision operator when
one truncates it in a bounded domain. This representation was used in [5, 7, 8, 28]
and it is close to the classical Carleman representation (cf. [12]). Also the kind of
periodization inspired from this representation was implicitly used in [7].

2.1. The Boltzmann collision operator in bounded domains. The basic
identity we shall need is

(2.1)
1
2

∫
Sd−1

F (|u|σ − u) dσ =
1

|u|d−2

∫
Rd

δ(2 x · u + |x|2) F (x) dx,

and can be verified easily by completing the square in the delta Dirac function,
taking the spherical coordinate x = r σ and performing the change of variable
r2 = s.
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COMPUTING THE BOLTZMANN COLLISION OPERATOR 1837

Setting u = v − v∗, we can write the collision operator in the form

Q(f, f)(v) =
∫

v∗∈Rd

{∫
σ∈Sd−1

B(|u|, cos θ)

[
f
(
v∗ −

|u|σ − u

2

)
f
(
v +

|u|σ − u

2

)
− f(v∗) f(v)

]
dσ

}
dv∗,

and thus equation (2.1) yields

Q(f, f)(v) = 2
∫

v∗∈Rd

{ ∫
x∈Rd

B

(
|u|, x · u

|x||u|

)
1

|u|d−2
δ(2 x · u + |x|2)

[
f(v∗ − x/2) f(v + x/2) − f(v∗) f(v)

]
dx

}
dv∗.

Now let us make the change of variable x → x/2 in x to get

Q(f, f)(v) = 2d+1

∫
v∗∈Rd

∫
x∈Rd

B

(
|u|, x · u

|x||u|

)
1

|u|d−2
δ(4 x · u + 4|x|2)

[f(v∗ − x) f(v + x) − f(v∗) f(v)] dx dv∗.

Then setting y = v∗ − v − x in v∗, we obtain

Q(f, f)(v) = 2d+1

∫
y∈Rd

∫
x∈Rd

B

(
|u|, x · u

|x||u|

)
1

|u|d−2
δ(−4x · y)

[f(v + y) f(v + x) − f(v + x + y) f(v)] dx dy,

where now u = −(x + y). Thus in the end we have

Q(f, f)(v) = 2d−1

∫
x∈Rd

∫
y∈Rd

B

(
|x + y|,−x · (x + y)

|x||x + y|

)
1

|x + y|d−2

δ(x · y) [f(v + y) f(v + x) − f(v + x + y) f(v)] dx dy.

Figure 1 sums up the different geometrical quantities of the usual representation
and the one we derived from the Carleman-like representation.

x

y

*v

*v’
v

v’

θ
σ

Figure 1. Geometry of the collision (v, v∗) ↔ (v′, v′∗).
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1838 CLÉMENT MOUHOT AND LORENZO PARESCHI

Now let us consider the bounded domain DT = [−T, T ]d (0 < T < +∞). There
are two possibilities of truncation to reduce the collision process in a box. From
now on let us write

B̃(x, y) = 2d−1 B

(
|x + y|,−x · (x + y)

|x||x + y|

)
|x + y|−(d−2).

One can easily see that on the manifold defined by x · y = 0, a simpler formula
(using the parities of the collision kernel) is

(2.2)

B̃(x, y) = B̃(|x|, |y|) = 2d−1 B

(√
|x|2 + |y|2, |x|√

|x|2 + |y|2

)
(|x|2 + |y|2)− d−2

2 .

First one can remove the collisions connecting with some points out of the box.
This is the natural preliminary stage for deriving conservative schemes based on
the discretization of the velocity. In this case there is no need for a truncation on
the modulus of x and y since we impose them to stay in the box. It yields

Qtr(f, f)(v) =
∫ ∫{

x, y ∈Rd | v+x, v+y, v+x+y ∈DT

} B̃(x, y) δ(x · y)

[f(v + y) f(v + x) − f(v + x + y) f(v)] dx dy

defined for v ∈ DT . One can easily check that the following weak form is satisfied
by this operator

(2.3)∫
Qtr(f, f) ϕ(v) dv =

1
4

∫ ∫ ∫{
v, x, y ∈Rd | v, v+x, v+y, v+x+y ∈DT

} B̃(x, y) δ(x·y)

f(v + x + y) f(v) [ϕ(v + y) + ϕ(v + x) − ϕ(v + x + y) − ϕ(v)] dv dx dy,

and this implies conservation of mass, momentum, and energy as well as the H
theorem on entropy. Note that at this level this formulation gives no advantage
with respect to the usual one obtained from (1.1) by restricting v, v∗, v

′, v′∗ ∈ DT

(except that consistency results for discrete velocity models seem easier to prove
when they are derived by quadrature on this formulation; see [38]). The problem
of this truncation on a bounded domain is the fact that we have changed the
collision kernel itself by adding some artificial dependence on v, v∗, v

′, v′∗. In this
way convolution-like properties are broken.

A different approach consists in periodizing the function f on the domain DT .
This amounts in adding some nonphysical collisions by connecting some points in
the domain DT which are geometrically included in a collision circle “modulo 2T”
(i.e., up to a translation of 2T of certain points in certain directions). Here we
have to truncate the integration in x and y since periodization would yield infinite
results if not. Thus we set them to vary in BR, the ball of center 0 and radius R.
For a compactly supported function f with support BS , we take R = 2S in order
to obtain all possible collisions. Then a geometrical argument (see [43]) shows that
by using the periodicity of the function it is enough to take T ≥ (1 + 3

√
2)S/2 to

prevent intersections of the regions where f is different from zero. Note that here
this so-called dealiasing condition is slightly worse from the one in [43], since the
truncation on the modulus of x and y in the ball BR implies only a truncation in
the ball B√

2R for the relative velocity.
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COMPUTING THE BOLTZMANN COLLISION OPERATOR 1839

The operator now reads

(2.4) QR(f, f)(v) =
∫

x∈BR

∫
y∈BR

B̃(x, y) δ(x · y)

[f(v + y)f(v + x) − f(v + x + y)f(v)] dx dy

for v ∈ DT (the expression for v ∈ Rd is deduced by periodization). The interest of
this representation is to preserve the real collision kernel and its properties.

By making some translation changes of variable on v (by x, y and x + y), using
the changes x → −x and y → −y, and the fact that

B̃(−x, y) δ(−x · y) = B̃(x, y) δ(x · y) = B̃(x,−y) δ(x · −y),

one can easily prove that for any function ϕ periodic on DT the following weak form
is satisfied:

(2.5)
∫
DT

QR(f, f) ϕ(v) dv =
1
4

∫
v∈DT

∫
x∈BR

∫
y∈BR

B̃(x, y) δ(x · y)

f(v + x + y)f(v) [ϕ(v + y) + ϕ(v + x) − ϕ(v + x + y) − ϕ(v)] dv dx dy.

About the conservation properties one can show the following.
(1) The only invariant ϕ is 1: it is the only periodic function on DT such that

ϕ(v + y) + ϕ(v + x) − ϕ(v + x + y) − ϕ(v) = 0

for any v ∈ DT and x⊥y ∈ BR (see [13] for instance). It means that the
mass is locally conserved but not necessarily the momentum and energy.

(2) When f is even there is global conservation of momentum, which is 0 in
this case. Indeed QR preserves the parity property of the solution, which
can be checked using the change of variable x → −x, y → −y.

(3) The collision operator satisfies formally the H theorem∫
Rd

QR(f, f) log(f) dv ≤ 0.

(4) If f has compact support included in BS , and we have R = 2S and T ≥
(3
√

2+1)S/2 (no aliasing condition, see [43] for a detailed discussion), then
no unphysical collisions occur, and thus mass, momentum, and energy are
preserved. Obviously this compactness is not preserved with time since the
collision operator spreads the support of f by a factor

√
2.

To sum up, one could say that the lack of conservation originates from the fact that
the geometry of the collision does not respect the periodization.

Finally we give the Cauchy theorems for the homogeneous Boltzmann equations
in DT computed with Qtr or QR.

Theorem 2.1. Let f0 ∈ L1(DT ) be a nonnegative function. Then there exists a
unique solution f ∈ C1(R+, L1(DT )) to the Cauchy problems

(2.6)
∂f

∂t
= Qtr(f, f), f(t = 0, ·) = f0,

(2.7)
∂f

∂t
= QR(f, f), f(t = 0, ·) = f0,

which is nonnegative and has constant mass (and so constant L1 norm). If f0

has finite entropy, the entropy is finite and nondecreasing for all time. Moreover
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1840 CLÉMENT MOUHOT AND LORENZO PARESCHI

in the case of (2.6), if f0 has finite momentum (respectively energy) on DT , the
momentum (respectively energy) is conserved with time.

Remark. When the initial data f0 is nonnegative and has finite mass and entropy,
it is possible to show by the Dunford-Pettis compactness theorem that the solution
f converges weakly in L1(DT ), as t goes to infinity, to the unique maximum of the
entropy functional compatible with the conservation law(s) (and the periodicity
in the case (2.7)). In the case (2.6) this equilibrium state is a sort of truncated
Maxwellian on DT defined by the conservation laws (see [13]). In the case (2.7) this
equilibrium state is a constant defined by the mass of the initial data, which is due
to the effect of aliasing in the very long-time. We omit the proof for brevity.

Proof of Theorem 2.1. For clarity we briefly sketch the main lines of the proof.
The existence and uniqueness are proved by the method of Arkeryd for bounded
collision kernels; see [1, Part I, Proposition 1.1]. In our case the collision kernel
is bounded because of the boundedness of the domain. The only a priori estimate
required in [1, Part I, Proposition 1.1] is the mass conservation, valid for the two
equations under consideration. This method is based on a monotonicity argument
to prove propagation of the sign of the solution. The argument relies on a splitting
of the collision operator Q into a gain part Q+ which is monotonic (i.e., Q+(f, f) is
nonnegative when f is nonnegative), and a loss part Q− which writes Q−(f, f) =
L(f)f with L is a linear operator such that ‖L(f)‖∞ ≤ C ‖f‖L1 . One can check
easily that this splitting is still valid for the two collision operators Qtr and QR.
For brevity we omit the details and refer to the article [1]. The conservation law(s)
and the H theorem are deduced from the weak forms (2.3) and (2.5) (see the proof
of [1, Part I, Proposition 1.2] and [1, Part I, Theorem 2.1]). �

2.2. Application to spectral methods. In this section we use the representation
QR to derive new spectral methods. The spectral methods for kinetic equations
originated in [42] and [43], and were further developed in [44] and [24]. Before they
had a long history in fluid mechanics; see [11].

The main change compared to the usual spectral method is in the way we trun-
cate the collision operator. In fact as we shall see in the next section this yields
better decoupling properties between the arguments of the operator.

To simplify notation, let us take T = π. Hereafter we use just one index to
denote the d-dimensional sums of integers.

The approximate function fN is represented as the truncated Fourier series⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fN (v) =
N∑

k=−N

f̂keik·v,

f̂k =
1

(2π)d

∫
Dπ

f(v)e−ik·v dv.

The spectral equation is the projection of the collision equation in PN , the (2N+1)d-
dimensional vector space of trigonometric polynomials of degree at most N in each
direction, i.e.,

∂fN

∂t
= PNQR(fN , fN ),

where PN denotes the orthogonal projection on PN in L2(Dπ). A straightforward
computation leads to the following set of ordinary differential equations on the
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COMPUTING THE BOLTZMANN COLLISION OPERATOR 1841

Fourier coefficients

(2.8) f̂ ′
k(t) =

N∑
l,m=−N

l+m=k

β̂(l, m) f̂l f̂m, k = −N, . . . , N,

where β̂(l, m) are the so-called kernel modes, given by

β̂(l, m) =
∫

x∈BR

∫
y∈BR

B̃(x, y) δ(x · y)
[
eil·x eim·y − eim·(x+y)

]
dx dy.

The kernel modes can be written as

β̂(l, m) = β(l, m) − β(m, m),

where

β(l, m) =
∫

x∈BR

∫
y∈BR

B̃(x, y) δ(x · y) eil·x eim·y dx dy.

Therefore, later in this paper we shall focus on β, and one easily checks that β(l, m)
depends only on |l|, |m|, and |l · m|.

Note that the usual way to truncate the Boltzmann collision operator for periodic
function starts from the representation (see [43])

(2.9) Q(f, f) =
∫

u∈Rd

∫
σ∈Sd−1

B(|u|, cos θ)[
f
(
v − (u − |u|σ)/2

)
f
(
v − (u + |u|σ)/2

)
− f(v)f(v − u)

]
dσ du,

and then truncates the parameter u = x + y in order that u ∈ BR. Thus we have

QR
usual(f, f)(v) =

∫
x∈Rd

∫
y∈Rd

B̃(x, y) δ(x · y) χ{|x+y|≤R}

[f(v + y)f(v + x) − f(v + x + y)f(v)] dx dy,

where χ{|x+y|≤R} denotes the characteristic function of the set {|x + y| ≤ R}. One
can notice that here x and y are also restricted to the ball BR but the condition
|x + y|2 = |x|2 + |y|2 ≤ R2 couples the two modulus, such that the ball is not
completely covered (for instance, if x and y both have modulus R, the condition is
not satisfied, since |x + y| =

√
2R).

Finally let us compare the new kernel modes with the usual ones. As a conse-
quence of representation (2.9), the usual kernel modes (cf. [43]) are

β̂usual(l, m) =
∫

u∈BR

∫
σ∈Sd−1

B(|u|, cos θ)
[
e−i u·(l+m)+|u|σ·(m−l)

2 − e−i(u·m)
]
dσ du,

and hence coming back to the representation in x and y,

β̂usual(l, m) =
∫

x∈BR

∫
y∈BR

B̃(x, y) δ(x · y) χ{|x+y|≤R}

[
eil·x eim·y−eim·(x+y)

]
dx dy.

Thus the usual representation contains more coupling between x and y and it is
less appropriate for the construction of fast algorithms.
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3. Fast spectral algorithm for a class of collision kernels

As soon as one is searching for fast deterministic algorithms for the collision
operator, i.e., algorithms with a cost lower than O(N2d+ε) (which is the cost of
a usual discrete velocity model, with typically ε = 1), one has to find some way
to compute the collision operator without going through all the couples of collision
points during the computation. This leads naturally to search for some convolution
structure (discrete or continuous) in the operator. Unfortunately, as discussed in
the previous sections, this is rather contradictory with the search for a conservative
scheme in a bounded domain, since the boundary condition needed to prevent the
outgoing or ingoing collisions breaks the invariance. Thus fast algorithms seem more
adapted to spectral methods, or more in general to methods where the invariance
is conserved thanks to the periodization.

Here we search for a convolution structure in equation (2.8). The aim is to
approximate each β̂(l, m) by the sum

β̂(l, m) �
A∑

p=1

αp(l)α′
p(m).

This gives the sum of A discrete convolutions and so the algorithm can be com-
puted in O(A Nd log2 N) operations by means of standard FFT techniques [11, 16].
Obviously this is equivalent to obtaining such a decomposition on β. To this pur-
pose we shall use a further approximated collision operator where the number of
possible directions of a collision is reduced to a finite set.

The starting point of our study is an idea of [7]: use the Carleman-like represen-
tation (2.4) to obtain a convolution structure for every fixed direction of the vectors
x and y. In [7] the corresponding set of directions

S =
{
(e, e′) ∈ S

N−1 × S
N−1 | e⊥e′

}
is very difficult to discretize in a way that preserves the symmetry properties of
the collision operator. No systematic process is available, and the discretization
is done only for some particular number of grid points. Then the FFT is used in
each couple of directions and finally a correction is imposed at the end to preserve
the conservation laws. However no consistency result is available and the accuracy
suggested by the numerical simulation is of order 1. The two main new ingredients
of our method follow.

• First we project the collision operator on the Fourier basis. This enables
us to integrate one of the two coordinates of the manifold S and to reduce
the discretization of the sphere SN−1. This discretization is straightforward
and can be made easily to preserve the symmetries of the collision operator.
Moreover it reduces the complexity of the algorithm by suppressing N − 2
degrees of freedom to discretize.

• Second we choose to discretize SN−1 by the rectangular rule. Indeed the
periodization shall imply that this quadrature rule is of infinite order. This
point will allow us to obtain a spectrally accurate scheme and adaptativity
properties.
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3.1. A semi-discrete collision operator. We write x and y in spherical coordi-
nates

QR(f, f)(v) =
1
4

∫
e∈Sd−1

∫
e′∈Sd−1

δ(e · e′) de de′{∫ R

−R

∫ R

−R

ρd−2 (ρ′)d−2 B̃(ρ, ρ′)

[
f(v + ρ′e′)f(v + ρe) − f(v + ρe + ρ′e′)f(v)

]
dρ dρ′

}
.

(3.1)

Let us take A a set of orthogonal couples of unit vectors (e, e′), which is even:
(e, e′) ∈ A implies that (−e, e′), (e,−e′) and (−e,−e′) belong to A (this property
on the set A is required to preserve the conservation properties of the operator).
Now we define

QR,A(f, f)(v) =
1
4

∫
(e,e′)∈A{∫ R

−R

∫ R

−R

ρd−2 (ρ′)d−2 B̃(ρ, ρ′)

[
f(v + ρ′e′)f(v + ρe) − f(v + ρe + ρ′e′)f(v)

]
dρ dρ′

}
dA,

where dA denotes a measure on A which is also even in the sense that dA(e, e′) =
dA(−e, e′) = dA(e,−e′) = dA(−e,−e′). Using translation changes of variable on
v by ρe, ρ′e′, and ρe + ρ′e′ and the symmetries of the set A, one can easily derive
the following weak form on QR,A. For any function ϕ periodic on DT ,∫

DT

QR,A(f, f) ϕ(v) dv =
1
16

∫
v∈DT

∫
(e,e′)∈A

∫ R

−R

∫ R

−R

ρd−2 (ρ′)d−2 B̃(ρ, ρ′)

f(v+ρe+ρ′e′)f(v)
[
ϕ(v+ρ′e′)+ϕ(v+ρe)−ϕ(v+ρe+ρ′e′)−ϕ(v)

]
dρ dρ′ dA dv.

This immediately gives the same conservation properties as QR. Of course one
could also prove exactly as for QR:

Theorem 3.1. Let f0 ∈ L1(DT ) be a nonnegative function. Then there exists a
unique solution f ∈ C1(R+, L1(DT )) to the Cauchy problem

∂f

∂t
= QR,A(f, f), f(t = 0, ·) = f0,

which is nonnegative and has constant mass (and so constant L1 norm). Moreover,
if f0 has finite entropy, the entropy is nondecreasing with time.

3.2. Expansion of the kernel modes. We make the decoupling assumption that

(3.2) B̃(x, y) = a(|x|) b(|y|).

This assumption is obviously satisfied if B̃ is constant. This is the case of
Maxwellian molecules in dimension two and hard spheres in dimension three (the
most relevant kernel for applications). Extensions to more general interactions are
discussed in the Appendix.
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First let us deal with dimension two with B̃ = 1 to explain the method. Here
we write x and y in spherical coordinates x = ρe and y = ρ′e′ to get

β(l, m) =
1
4

∫
e∈S1

∫
e′∈S1

δ(e · e′)
[∫ R

−R

eiρ(l·e) dρ

] [∫ R

−R

eiρ′(m·e′) dρ′

]
de de′.

Let us denote

φ2
R(s) =

∫ R

−R

eiρs dρ,

for s ∈ R. It is easy to see that φ2
R is even and we can give the explicit formula

φ2
R(s) = 2 R Sinc(Rs)

with Sinc(θ) = (sin θ)/θ.
Thus we have

β(l, m) =
1
4

∫
e∈S1

∫
e′∈S1

δ(e · e′) φ2
R(l · e) φ2

R(m · e′) de de′,

and thanks to the parity property of φ2
R we can adopt the periodic parametrization

β(l, m) =
∫ π

0

φ2
R(l · eθ) φ2

R(m · eθ+π/2) dθ.

The function θ → φ2
R(l · eθ) φ2

R(m · eθ+π/2) is periodic on [0, π] and thus the rect-
angular quadrature rule is of infinite order and optimal. A regular discretization of
M equally spaced points thus gives

β(l, m) =
π

M

M−1∑
p=0

αp(l)α′
p(m)

with
αp(l) = φ2

R(l · eθp
), α′

p(m) = φ2
R(m · eθp+π/2),

and θp = πp/M .
More generally under the decoupling assumption (3.2) on B̃, we get the decom-

position formula

β(l, m) =
π

M

M−1∑
p=0

αp(l)α′
p(m),

where
αp(l) = φ2

R,a(l · eθp
), α′

p(m) = φ2
R,b(m · eθp+π/2)

and

φ2
R,a(s) =

∫ R

−R

a(ρ) eiρs dρ, φ2
R,b(s) =

∫ R

−R

b(ρ′) eiρ′s dρ′

with θp = πp/M .

Remark. In the symmetric case a = b (for instance for hard spheres) it is possible
to parametrize β(l, m) as

β(l, m) = 2
∫ π/2

0

φ2
R,a(l · eθ) φ2

R,a(m · eθ+π/2) dθ,

and the function θ → φ2
R,a(l · eθ) φ2

R,a(m · eθ+π/2) is periodic on [0, π/2]. Thus the
decomposition can be obtained by applying the rectangular rule on this interval.
At the numerical level it yields a reduction of the cost by a factor 2.
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Now let us deal with dimension d = 3 with B̃ satisfying the decoupling assump-
tion (3.2). First we change to the spherical coordinates

β(l, m) =
1
4

∫
e∈S2

∫
e′∈S2

δ(e · e′)[∫ R

−R

|ρ| a(ρ) eiρ(l·e) dρ

] [∫ R

−R

|ρ′| b(ρ′) eiρ′(m·e′) dρ′

]
de de′,

and then we integrate first e′ on the intersection of the unit sphere with the plane
e⊥,

β(l, m) =
1
4

∫
e∈S2

φ3
R,a(l · e)

[∫
e′∈S2∩e⊥

φ3
R,b(m · e′) de′

]
de,

where

φ3
R,a(s) =

∫ R

−R

|ρ| a(ρ) eiρs dρ, φ3
R,b(s) =

∫ R

−R

|ρ| b(ρ) eiρs dρ.

Thus we get the following decoupling formula with two degrees of freedom

β(l, m) =
∫

e∈S2
+

φ3
R,a(l · e) ψ3

R,b

(
Πe⊥(m)

)
de,

where S2
+ denotes the half-sphere and

ψ3
R,b

(
Πe⊥(m)

)
=

∫ π

0

φ3
R,b

(
|Πe⊥(m)| cos θ

)
dθ

(this formula can be derived performing the change of variable de′ = sin θ dθ dϕ
with the basis (e, u = Πe⊥(m)/|Πe⊥(m)|, e × u)).

Again in the particular case where B̃ = 1 (hard spheres model), we can compute
explicitly the functions φ3

R (in this case a = b = 1),

φ3
R(s) = R2

[
2Sinc(Rs) − Sinc2(Rs/2)

]
.

Now the function e → φ3
R,a(l · e) ψ3

R,b

(
Πe⊥(m)

)
is periodic on S2

+ and so the
rectangular rule is of infinite order and optimal. Taking a spherical parametrization
(θ, ϕ) of e ∈ S

2
+ and uniform grids of respective size M1 and M2 for θ and ϕ we get

β(l, m) =
π2

M1M2

M1,M2∑
p,q=0

αp,q(l)α′
p,q(m),

where

αp,q(l) = φ3
R,a

(
l · e(θp,ϕq)

)
, α′

p,q(m) = ψ3
R,b

(
Πe⊥

(θp,ϕq)
(m)

)
and

(θp, ϕq) =
( p π

M1
,
q π

M2

)
.

From now on we shall consider this expansion with M = M1 = M2 to avoid
anisotropy in the computational grid.

Remarks. 1. It is possible to give more general exact formulas in dimension two
and three when a(r) = |r|t, b(r) = |r|t′ with t, t′ ∈ N by computing derivatives
along s of the two quantities∫ R

0

sin(ρs) dρ,

∫ R

0

cos(ρs) dρ.
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2. For any dimension, we can construct as above an approximated collision
operator QR,AM with

AM =
{
(e, e′) ∈ S

d−1 × S
d−1

∣∣ e ∈ S
d−1
M,+, e′ ∈ e⊥ ∩ S

d−1
}
,

where S
d−1
M,+ denotes a uniform angular discretization of the half sphere with M

points in each angular coordinate (the other half sphere is obtained by parity). Let
us remark that this discretization contains exactly Md−1 points. From now on we
shall denote

QR,M = QR,AM =
Md−1∑
p=1

QR,M
p .

3.3. Spectral accuracy. In this paragraph we are interested in computing the
accuracy of the scheme according to the three parameters N (the number of modes),
R (the truncation parameter), and M (the number of angular directions for each
angular coordinate). Instead of looking at the error on each kernel mode it is more
convenient to look at the error on the global operator. Here the Lebesgue spaces
Lp, p = 1, · · · , +∞, and the periodic Sobolev spaces Hk

p , k = 0, · · · , +∞ refer to
Dπ.

In order to give a consistency result, the first step will be to prove a consistency
result for the approximation of QR by QR,M .

Lemma 3.2. The error on the approximation of the collision operator is spectrally
small, i.e., for all k > d − 1 such that f ∈ Hk

p ,

‖QR(g, f) − QR,M (g, f)‖L2 ≤ C1

Rk‖g‖Hk
p
‖f‖Hk

p

Mk
.

Proof of Lemma 3.2. Starting from (3.1), one gets

QR(g, f)(v) =
1
2

∫
e∈S

d−1
+

[ ∫
e′∈Sd−1∩e⊥

∫ R

−R

∫ R

−R

ρd−2 (ρ′)d−2 B̃(ρ, ρ′)

[g(v + ρ′e′)f(v + ρe) − g(v + ρe + ρ′e′)f(v)] dρ dρ′ de′

]
de.

As the function in the brackets is a periodic function of e on S
d−1
+ with period π

in each coordinate, one can apply the error estimate for the rectangular rule (see,
e.g., [48, Theorem 19.10]). This error estimate is valid for k > d − 1 and depends
on the derivative along e of this functional in the following way:

‖QR(g, f) − QR,M (g, f)‖L2

≤ C

2kMk

d−1∑
i=1

∥∥∥∥∥
∫

e∈S
d−1
+

∣∣∣∣∣∂k
ei

∫
e′∈Sd−1∩e⊥

∫ R

−R

∫ R

−R

ρd−2 (ρ′)d−2

B̃(ρ, ρ′) [g(v+ρ′e′)f(v+ρe)−g(v+ρe+ρ′e′)f(v)] dρ dρ′ de′

∣∣∣∣∣de

∥∥∥∥∥
L2

v

,
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where the constant is independent on k and ∂k
ei

is the derivative of order k along
the coordinate ei. Then a straightforward computation gives

‖QR(g, f) − QR,M (g, f)‖L2

≤ CRk

2kMk

d−1∑
i=1

[ ∑
k′+k′′=k

(
k
k′

)(
‖QR,+(|∂k′

g|, |∂k′′
f |)‖L2 +‖QR,−(|∂k′

g|, |∂k′′
f |)‖L2

)]
,

where ∂k′
and ∂k′′

denote some derivatives of order k′ and k′′. Then using the
estimates

‖QR,+(g, f), QR,−(g, f)‖L2 ≤ C ‖g‖L2‖f‖L2

proved in [25],1 we get

‖QR(g, f) − QR,M (g, f)‖L2 ≤ CRk

Mk
‖g‖Hk

p
‖f‖Hk

p
,

which concludes the proof. �

For the second step we shall use the consistency result [43, Corollary 5.4] on the
operator QR, which we quote here for the sake of clarity.

Lemma 3.3. For all k ∈ N such that f ∈ Hk
p ,

‖QR(f, f) − PNQR(fN , fN )‖L2 ≤ C2

Nk

(
‖f‖Hk

p
+ ‖QR(fN , fN )‖Hk

p

)
.

Combining these two results, one gets the following consistency result.

Theorem 3.4. For all k > d − 1 such that f ∈ Hk
p (Dπ),

‖QR(f, f) − PNQR,M (fN , fN )‖L2

≤ C1

Rk‖fN‖2
Hk

p

Mk
+

C2

Nk

(
‖f‖Hk

p
+ ‖QR(fN , fN )‖Hk

p

)
.

Proof of Theorem 3.4. By triangular inequality

‖QR(f, f) − PNQR,M (fN , fN )‖L2

≤ ‖PN

(
QR(fNfN ) − QR,M (fN , fN )

)
‖L2 + ‖QR(f, f) − PNQR(fN , fN )‖L2 .

The first term on the right-hand side is controlled by Lemma 3.2:

‖PN

(
QR(fN , fN ) − QR,M (fN , fN )

)
‖L2

≤ ‖QR(fN , fN ) − QR,M (fN , fN )‖L2 ≤ C1

Rk‖fN‖2
Hk

p (Dπ)

Mk
.

The second term in the right-hand side is controlled by Lemma 3.3, which concludes
the proof. �

Now let us focus briefly on the macroscopic quantities. In fact here no additional
error (related to M) occurs, compared with the usual spectral method, since the
approximation of the collision operator that we are using is still conservative. First
with Lemma 3.2 at hand one can establish the estimate

‖QR,M (g, f)‖L2 ≤ C ‖g‖Hd
p
‖f‖Hd

p
,

1Which are consequences of the Lp estimates proved in [26, 27], and revisited in [33].
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for a constant uniform in M . Then following the method of [43, Remark 5.4] and
using this estimate, we obtain the following spectral accuracy result∣∣〈QR,M (f, f), ϕ〉 − 〈PNQR,M (fN , fN ), ϕ〉

∣∣
L2

≤ C3

Nk
‖ϕ‖L2

(
‖f‖Hk+d

p
+ ‖QR,M (fN , fN )‖Hk

p

)
,

where ϕ can be replaced by v, |v|2. Indeed there is no need to compare the momenta
of PNQR,M (fN , fN ) with those of QR(f, f) since QR,M is also conservative, and
so they can be compared directly to those of QR,M . Thus the error on momentum
and energy is independent of M and is spectrally small according to N even for
very small value of the parameter M .

3.4. Implementation of the algorithm. The final spectral scheme depends on
the three parameters N , R, and M . The only condition on these parameters is the
no-aliasing condition that relates R and the size of the box T (here π). A detailed
study of the influence of the choices of N and R was done in [43]. Here we are
interested only in the influence of M over the computations, since M controls the
computations speed-up.

The method of the previous subsections yields a decomposition of the collision
operator, which after projection on PN gives the following decomposition

(3.3) PNQR,M =
Md−1∑
p=1

PNQR,M
p .

Each PNQR,M
p can be computed with a cost O(Nd log2 N). Thus for a general

choice of M and N we obtain the cost O(Md−1Nd log2 N). The decomposition (3.3)
is completely parallelizable and thus the cost can be strongly reduced on a parallel
machine (theoretically up to O(Nd log2 N)). One just has to make independent
computations for the Md−1 terms of the decomposition.

Moreover the formula of decomposition is naturally adaptive (that is, the number
M can be made space dependent), which can be quite useful in the inhomogeneous
setting, where some regions deserve less accuracy than others. Since it relies on
the rectangular formula, whose adaptivity property is well known, one can easily
double the number of directions M if needed, without computing again those points
already computed.

Finally the decomposition can be also interesting from the storage viewpoint, as
the classical spectral method requires the storage of an Nd × Nd matrix whereas
our method requires the storage of 2Md−1 vectors of size Nd. In dimension two
the classical method requires a storage of order O(N4) and our method requires
a storage of order O(MN2). In dimension three the classical method requires a
storage of order O(N4) (thanks to the symmetries of the matrix of kernel modes,
see [25]), and our method requires a storage of order O(M2 N3).

As a numerical example we report the results obtained in the case of space
homogeneous two-dimensional Maxwellian molecules using as a comparison the
exact analytic solution (see [43]). The results for the relative L1 norm of the error
at time t = 0.01 are reported in Table 1.

Although further extensive testing is necessary, the results are very promising
and seem to indicate a very low influence of the number of directions over the
accuracy of the scheme. For M = 2 the angle error dominates, but as soon as
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Table 1. Relative L1 norm of the error for different values of N
and M for the fast spectral method.

N M =2 M = 4 M = 8 M = 16
32 2.129E − 4 1.993E − 05 2.153E − 05 2.262E − 5
64 2.109E − 4 7.122E − 10 6.830E − 10 6.843E − 10
128 2.112E − 4 3.116E − 12 3.117E − 12 3.117E − 12

M = 4 the error in N is dominating. Note that the number of angle directions will
indirectly influence the aliasing effect through the slight change in the relaxation
times. This may explain the slight error variations that we observe taking M ≥ 4.

Finally, in view of space nonhomogeneous computations, we will have the ad-
ditional advantage of taking a larger number of gridpoints without increasing too
much the computational cost, thus allowing the computations of flows at larger
Mach number compared to conventional deterministic schemes. Further numerical
results are under development and will be presented in [21].

4. Conclusions

We have presented a deterministic way for computing the Boltzmann collision
operator with fast algorithms, for a class of interactions which includes the case of
hard spheres in dimension three. The method is based on a Carleman-like represen-
tation of the operator that allows us to express it as a combination of convolutions
(this is trivially true for the loss part but it is not trivial for the gain part). A
suitable periodized truncation of the operator is then used to derive new spectral
methods computable with a high speed up in computation times. This brings the
overall cost in dimension d to O(Md−1Nd log2 N), where N is the number of veloc-
ity parameters and M the number of angular directions in each angular coordinate.
Consistency and accuracy of the proposed schemes are also presented, and it is
shown to be spectrally accurate. Moreover the error on the momentum and en-
ergy is spectrally small and independent of the value of the speed-up parameter
M . The first numerical results seem to indicate the validity and flexibility of the
present approach that, in our opinion, will make deterministic schemes much more
competitive with Monte Carlo methods in several situations.

In a related work [32] we will extend the fast algorithms described here to the
case of discrete velocity methods.

Appendix: Remarks on admissible collision kernels

and an extension to the “nondecoupled” case

Let us study the cases where assumption (3.2) is satisfied. For hard spheres in
dimension three, or Maxwellian molecules in dimension two, one has equation (3.2)
with a = b = 1. Formally for the Coulomb potential in dimension three, we have

B(θ, |u|) = |u|−3 sin−4(θ/2),

and thus, thanks to formula (2.2)

B̃(x, y) = 2d−1 |x|−4.
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This suggests, in dimension three, that we consider the following family of “variable
hard sphere” collision kernels

(0.4) Bγ(θ, |u|) = sinγ−1(θ/2) |u|γ .

Indeed simple computations give

B̃γ(x, y) = 2d−1 |x|γ−1,

and thus they satisfy the decoupling assumption (3.2). In the case where γ ∈ (−1, 1],
the angular part of the collision kernel remains integrable. On the contrary, for θ ∼
0, the equivalent derived from the physical nonexplicit formula in [14] for inverse-
power laws kernels (for a potential 1/|d|n−1 with n such that γ = (n − 5)/(n − 1))
is of the form

Bexact
γ (θ, |u|) ∼θ∼0 sin

γ−5
2 (θ/2) |u|γ

with γ ∈ [−3, 1). It is therefore always nonintegrable at θ ∼ 0.
The model (0.4) coincides with the hard spheres model for γ = 1 and, formally,

coincides with the kernel of the Coulomb potential for γ = −3. Moreover for
γ ∈ (−1, 1] (i.e., for hard potentials and the so-called moderately soft potentials) it
remains integrable for θ ∼ 0. Thus it seems quite reasonable to consider it to be a
model for cutoff hard and moderately soft potentials, as well as hard spheres.

In dimension two the same arguments and computations lead to the following
cutoff hard and moderately soft potentials model:

Bγ(θ, |u|) = sinγ(θ/2) |u|γ ,

valid for γ ∈ (−1, 1], which coincides with the case of Maxwellian molecules for
γ = 0.

For the spectral method the other situation where one obtains naturally a fast
algorithm is the case where collisions concentrate on the grazing part; see [45]
and [41] for a fast algorithm to compute the Fokker–Planck–Landau collision oper-
ator, which is the limit of the Boltzmann collision operator in the grazing collision
limit. Indeed in this case one of the two variables x or y of the representation (2.4)
disappears in the limit process, which “decouples” the kernel modes. Thus it may
be possible to construct fast algorithms for noncutoff models by splitting the colli-
sion operator into a cutoff part treated by the method presented in this paper, and
a noncutoff part restricted to very small deviation angles, which would be close to
the grazing collision limit and thus could be computed by the fast algorithm of [45]
and [41].

Acknowledgments

Both authors would like to thank Francis Filbet for the numerical results of
Table 1.

References

1. L. Arkeryd, On the Boltzmann equation, Arch. Rational Mech. Anal. 45 (1972), 1–34.
MR0339665 (49:4423); MR0339666 (49:4424)

2. Dario Benedetto, Emanuele Caglioti, and Mario Pulvirenti, A kinetic equation for granular
media, M2AN Math. Model. Numer. Anal. 31 (1997), 615–641. MR1471181 (98k:82145)

3. , Erratum: “A kinetic equation for granular media”, M2AN Math. Model. Numer.
Anal. 33 (1999), no. 2, 439–441. MR1700043 (2000f:82070)

4. G. A. Bird, Molecular gas dynamics and the direct simulation of gas flows, Oxford Engineering
Science Series, vol. 42, The Clarendon Press Oxford University Press, New York, 1994, 1994.
MR1352466 (97e:76078)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=0339665
http://www.ams.org/mathscinet-getitem?mr=0339665
http://www.ams.org/mathscinet-getitem?mr=0339666
http://www.ams.org/mathscinet-getitem?mr=0339666
http://www.ams.org/mathscinet-getitem?mr=1471181
http://www.ams.org/mathscinet-getitem?mr=1471181
http://www.ams.org/mathscinet-getitem?mr=1700043
http://www.ams.org/mathscinet-getitem?mr=1700043
http://www.ams.org/mathscinet-getitem?mr=1352466
http://www.ams.org/mathscinet-getitem?mr=1352466


COMPUTING THE BOLTZMANN COLLISION OPERATOR 1851

5. A. Bobylev and S. Rjasanow, Difference scheme for the Boltzmann equation based on the
fast Fourier transform, European J. Mech. B Fluids 16 (1997), no. 2, 293–306. MR1439069
(98c:82057)
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