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ABSTRACT 

Algorithms are presented that construct the shortest con- 

necting network, or minimal spanning tree, of N points embedded 

in k-dimensional coordinate space. These algorithms take advantage 

of the geometry of such spaces to substantially reduce the com- 

putation from that required to construct minimal spanning trees 

of more general graphs. An algorithm is also presented that 

constructs a spanning tree that is very nearly minimal with com- 

putation proportional to N log N for all k. 
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I. Introduction 

A transportation or communication network is composed of a set of 

nodes (or terminals) and a set of distances between pairs of nodes (the 

edges or branches of the network). The minimal spanning tree (MST) of 

such a network is a subset of the branches that have minimum total dis- 

tance while providing a route between every pair of nodes. 

The MST problem can be formally stated in graph theoretical terms. 

Consider a connected, undirected graph, G, with vertex set, V, and edge 

set, E (E is a subset of V&. V); a spanning tree is a subset of E, 

such that there is a unique path between any two vertices in V. Suppose 

there is a cost associated with every edge in E; a minimal spanning tree 

of G is a spanning tree of G that minimizes the sum of the costs of the 

edges. 

We present algorithms for finding minimal spanning trees for 

collections of points in multidimensional coordinate spaces. Here, the 

vertices of the graph are the points, and the cost of an edge between 

two nodes is the distance in the space between them. The graph repre- 

senting such a collection of N points is a complete linear graph and has 

N(N-1)/2 edges . 

This problem arises in many applications. Building a telephone net- 

work for many cities might call for finding the MST of a set of points in 

a two-dimensional Euclidean coordinate space. (See, for example, Prim'). 

Loberman and Weinberger2 show that MSTs can be used to make optimal elec- 

tric connections between a number of terminals on a breadboard. Zahn, 394 

and Clark and Miller 5 apply MSTs to a wide variety of problems in pattern 

recognition. Arkadev and Braverman, 6 
Johnson, 7 Gower and Ross, 

8 
and 

Zahn3 apply MSTs to hierarchical clustering of points in multidimensional 

data spaces. Lee, Slagle and Blum' use the MST of points in multidimen- 

sional spaces for finding good nonlinear mappings of those points to two- 

dimensional spaces. 
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The MST problem has been extensively studied in the graph theoretic 

formulation. The classical algorithms for use with dense graphs have been 

given by Kruskal 
10 

and Prim. 
1 

Their efficient implementation on a com- 

puter was described by Dijkstra. 
11,12 

For sparse graphs (in which only 

few pairs of nodes have edges between them, or equivalently there are 

many edges of infinite cost), Yao 
13 

has given a fast MST algorithm. All 

of these algorithms can be applied to arbitrary graphs. Since the graphs 

defined by N points in a coordinate space are complete linear graphs with 

N(N-1)/2 edges, they are-as dense as possible (for graphs of multiplicity - 

one>, and Yao's algorithm does not result in better running times for these 

cases. 

Because of their generality, these algorithms, when applied to points 

in coordinate spaces, do not take advantage of the geometry of the spaces 

to reduce computation. For example, if a human (rather than a computer) 

is constructing an MST on a distance true map of the 1000 most populous 

cities in the United States, he never considers an edge from New York to 

Los Angeles; their distance is clearly too great. Prim's method was capable 

of building a planar MST "based on visual judgments of relative distances, 

perhaps augmented by a pair of dividers in a few close instances". 
1 

Since 

a human is able to use such geometric considerations to advantage when con- 

structing MSTs (at least in two and three-dimensional spaces), one might 

hope for computer algorithms that do so as well. Shamos14 describes the 

application of the Voronoi diagram (a general structure for searching the 

plane) to the MST problem. He gives a worst case O(Nlog N) algorithm for 

finding the MST of a collection of N points in the two-dimensional plane 

with a Euclidean distance measure. Unfortunatly, this method has not yet 

been generalized to higher dimensionalties or more general distance measures. 
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We present algorithms that find MSTs in k-dimensional spaces using 

arbitrary distance or dissimilarity measures. 15 The algorithm is a variant 

of Prim's 
1 that employs the fast nearest neighbor algorithm of Friedman, 

Bentley, and Finkel" to exploit the geometry of coordinate spaces. The 

performance of the algorithm is difficult to describe analytically, and 

depends somewhat upon the configuration of the points in the coordinate 

space. Monte Carlo simulations indicate that for many point configurations 

the computation is very nearly proportional to Nlog N for all dimension- 

alities and distance measures. A worst case exception occurs when the 

points are equally distributed among a few very widely separated clusters. 

For these cases, the rate of growth of the computation with number of nodes 

is slightly faster. In all cases, however, this algorithm is much faster 

than the general MST algorithms, except for very small data sets. A var- 

iant of the algorithm is presented that constructs spanning trees that are 

very nearly minimal with computation proport 

configurations. 

2. Single Fragment Algorithm 

ional to N log N for all point 

Prim- suggested several definitions and proposed two principles for 

constructing minimal spanning trees. An isolated node is a node to which, 

at a given stage of construction, no connections have yet been made. A 

fragment is a node subset connected by edges between members of the subset. 

(A fragment is called a subtree in graph theory.) The distance of a node 

from a fragment, of which it is not an element, is the minimum of its dis- 

tances from the individual nodes comprising the fragment. A nearest neigh- 

bor of a node is a node whose distance from the specified node is at least -_-- 

as small as that of any other. A nearest neighbor of a fragment is a node -- 

whose distance from the specified fragment is at least as small as that 

of any other. 

With these definitions, Prim' enunciates two construction principles 

for minimal spanning trees: 
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Principle 1 - Any isolated node can be connected to a nearest 

neighbor. 

Principle 2 - Any fragment can be connected to a nearest neighbor 

by a shortest available link. 

Prim shows that if N-l links are added in accordance with these 

principles, those links will form an MST for the nodes. A great many 

different algorithms are possible by combining these two principles in 

different ways. A human constructing an MST on a distance true map will 

generally choose the particular combination that tends to be relatively 

efficient for the particular configuration of points. 

Both Prim1 
11,12 

and Dijkstra suggest that a single fragment algo- 

rithm is most efficiently implemented on a digital computer. This algo- 

rithm uses Principle 1 only once to produce a single fragment, which is 

then extended by N-2 applications of Principle 2. 

The computation involved in selecting the nearest neighbor to the 

fragment can be reduced in two alternate ways. The first is to store for each 

node in the fragment, at a particular stage of construction, the identity of 
I 

and distance to its closest isolated node. The second is to store for each 

isolated node the identity of and distance to its nearest neighbor within 

the fragment. These potential MST edges are called links. When a new 

node is added to the fragment, these links must be updated. 

For the second alternative, this updating consists of calculating 

the distance from each isolated node to the new fragment node and seeing 

if it is smaller than the previous distance of the point to the fragment. 

If there are M nodes in the fragment, this updating requires computation 

proportional to N-M, for M going from 1 to N-l. Thus, the total compu- 

tation is proportionalto N(N-1)/2. With the first alternative, the up- 
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dating involves finding the nearest neighbor to the new fragment node 

among the isolated nodes. It also involves finding the nearest neighbors 

among the isolated nodes to those fragment nodes that previously had the 

new fragment node as their nearest isolated neighbor. If the nearest 

neighbors are found by calculating the distances to each isolated node 

and taking the smallest, the computation for each updating is proportional 

to m(N-M), for l,< m< M,and M going from 1 to N-l. Here m is the number 

of nearest neighbor calculations required- Its average value depends 

upon the configuration of the points in the coordinate space. The total 

computation required for the first alternative ranges from a best case 

of N(N-1)/2 (m=l for all cases) to a worst case of N2(N-1)/6 (m=M for all 

cases). Under these premises, then, the second alternative (as suggested 

by Prim and Dijkstra) is clearly preferred. 

There can be situations, however, where the first strategy is best. 

This would be the case if the nearest neighbor calculations did not re- 

quire the examination of all isolated nodes, and if all m nearest neigh- 

bor calculations were not required when a new node is added to the frag- 

_ment. Friedman, Bentley and Finkel 
16 

present an algorithm and data struc- 

ture, called the k-d tree (see Appendix), for finding nearest neighbors 

to points in coordinate spaces, with computation proportional to log N 

after a pre-process (building the k-d tree) requiring NlogN. In most 

cases, this algorithm examines only a small fraction of the point set 

when finding nearest neighbors. 

Nearest neighbor searches, themselves, can be avoided by arranging 

the nodes of the fragment in a priority queue. A priority queue is de- 

fined18 to be a largest in, first out list. The priority of a fragment 

node is inversely related to the distance of its nearest isolated neigh- 

-5- 



bor. Therefore, the fragment node with the closest nearest isolated 

neighbor has highest priority. According to Prim's second MST construc- 

tion principle, the link corresponding to the front of this queue is the 

one to be added to the fragment, as well as the node that is connected 

to the fragment by this link. The nearest isolated neighbor to this 

newly added fragment node must be found and entered into the priority 

queue. However, it may not be necessary to find new nearest neighbors 

for all those fragment nodes that previously had this new one as their 

nearest isolated neighbor. This is because the current priority of each 

of these nodes (the priority before the new one was added) serves as an 

upper bound on its real priority (the priority after the new one was 

added). The real priority of a fragment node need only be found when its 

upper bound (current priority) is highest in the queue. In this manner, 

a great many nearest neighbor searches can be avoided. Priority queues 

implemented either as heaps 17 or leftist trees 
18 

can be manipulated with 

computation proportional to the logarithm of their size. 

A single fragment algorithm for constructing an MST for a collection 

of points in a coordinate space would proceed as follows: 
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Single Fragment Fast MST Algorithm 

Build k-d tree for the point set; 

Pick an arbitrary point as first node; 

Find its nearest neighbor; 

Establish link to nearest neighbor; 

Enter node and its (real) priority into priority queue; 

Loop until MST completed (N-l nodes added to fragment); 

Loop until highest priority in queue is real; 

X ttop node in queue; 

Y tnearest isolated neighbor to X; 

Establish link from X to Y; 

Replace X's upper bound with real priority; 

Re-insert X into priority queue with real priority; 

Repeat; 

X +-top node 

Y +-isolated 

Insert (X,Y> 

Find nearest 

of queue; 

node linked to X; 

link as edge in MST; 

isolated neighbor to Y; 

Establish link to Y's nearest isolated neighbor; 

Enter Y and its (real) priority into queue; 

Repeat; 
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Since the nearest neighbor searches and priority queue insertions 

can be performed in O(log N)time, this algorithm requires computation pro- 

portional to m log N for each link insertion. Here m is the number ofnear- 

est neighbor searches required to add the link (that is, the number of 

executions of the inner loop plus one). The total computation is pro- 

portional to (N-l)m log N, where 6 is the average of m over all the links 

added to the MST. Thus, if m is small compared to N/(2log N), one might 

expect this algorithm to have computational advantage over the more general 

MST algorithm of Prim and Dijkstra. .~ 

3. Multifragment Algorithm 

The speed of the single fragment algorithm depends directly on the 

value of m, which depends upon the configuration 

of the points in the coordinate space. It also depends upon the way the 

fragment grows; that is, the order in which the links are added to form 

the complete MST. Zahn3 has pointed out that the MST tends to follow 

density gradients of the point set. Prim's construction principles en- 

sure that once a fragment is started, its growth will follow the local 

density gradients "uphill" until it reaches a local density maximum. 

Once it reaches that maximum, it will tend to add links in directions 

of minimum decreasing density, slowly growing downhill. 

The number of nearest neighbor searches for each link added to the 

fragment depends strongly on whether the fragment is growing toward in- 

creasing or decreasing density. If the fragment is growing toward in- 

creasing density, then each new node added to the fragment tends to have a 

shorter nearest neighbor link than those already in the fragment, and its 

priority will be at or near the top of the fragment priority queue. Since 

the priority of a newly added node is always real (rather than an upper 

bound), it will quickly 
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become a candidate for a new fragment edge without the necessity of up- 

dating the upper bounds for those nodes lower in the queue. It is this 

updating that is performed by the inner loop of the algorithm and con- 

tributes all but one of the m nearest neighbor searches required to add 

the link. 

The situation is completely reversed when the fragment is growing 

toward decreasing density. Then each new link added to the fragment 

tends to be longer than those previously added,and its corresponding low 

priority sinks it to a low position in the priority queue. As a result, -- 

it is more likely that a node with only an upper bound for its priority 

is at the top of the queue. Thus, several near neighbor searches could 

be required before a node with a real priority reaches the top of the 

queue. 

Many Point distributions encountered in practice tend to have small, 

localized regions of high density and broad, diverse regions of low 

density. Even if a fragment happens to start in a low density region 

(which is unlikely with a random choice since most of the points are in 

regions of high density), it will quickly reach the maximum in a few 

steps. It will then add most of its links while going downhill, thereby 

incurring large values of m with each added link. 

It is possible to greatly increase the speed of the algorithm by em- 

ploying Prim's construction principles in a multiple fragment strategy. 

The first fragment is started with the lowest density point (the point for 

which the local density is lowest). It then grows uphill following den- 

sity gradients until it reaches a local density maximum. At that time, its 

growth is terminated. A new fragment is then started at the isolated node 

with the lowest local density. This fragment grows uphill until it either 
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joins with an already existing fragment (at which time it is merged with 

that fragment) or until it reaches a density maximum. This procedure 

continues until there are no isolated nodes remaining. At that point, 

there exist one fragment or several unconnected fragments. Since each 

of these fragments were constructed using Prim's construction principles 

(single fragment fast MST algorithm), they are all subtrees of the com- 

plete MST. 

The fragments must be connected to form the complete MST. If there 

are L unconnected fragments, then there are L-l links remaining to com- 

plete the MST. These links can be found by resuming the growth of the 

smallest fragment at that point where it was previously terminated. The 

first link that it adds will be the MST edge connecting it to another 

fragment. These two fragments are merged and the process is repeated with 

the smallest fragment 19 that now remains (after the merge). This merging 

procedure is repeated until all fragments are connected and the MST is 

complete. 

Implementation of this multifragment strategy requires a density 

estimation for each point in the coordinate space and a criterion for 

stopping fragment growth in dense areas. The purpose of the density es- 

timation is simply to start fragments in regions of relatively low density 

and need not be very accurate. This density estimation is provided by the 

k-d tree data structure (see Appendix) used for the fast nearest neighbor 

searches. This data structure partitions the coordinate space into cells 

that each contain very nearly the same number of points. The number of 

points in a cell, divided by its volume, can serve as a local density es- 

timate for the points in the cell. Each point will then have an associ- 

ated density estimate. 
20 

The purpose of stopping fragment growth is to prevent the number of 
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nearest neighbor calculations, m, per added link, from becoming large. 

The most straightforward way to accomplish this is to terminate when the 

value of m for a given link exceeds some pre-specified maximum, m 
0’ 

For 

the reasons described above, this will tend to happen when the fragment 

has reached a density maximum and starts to grow toward decreasing density. 

The full multifragment algorithm for constructing an MST for a col- 

lection of points in a coordinate space is as follows: 

Multiple Fragment Fast MST Algorithm 

Set value for parameter mo; 

Build k-d tree for point set, and calculate density estimates; 

Sort points in ascending order of density estimates; 

'a until no isolated points are left; 

Pick isolated point of lowest density to start a new fragment; 

Find its nearest neighbor; 

Establish link to nearest neighbor; 

Enter node and its (real) priority into queue for this fragment; 

m Loop until 191 > o foradd&lg- a'liClt"~'i%GT -finished 

~-'~ (N-l links added); 

mt0 

Loop until highest priority in queue is real 01 m > mo; 

X ttop node in queue; 

Y +-nearest non-fragment neighbor to X; 

Establish link from X to Y; 

Repace X's upper bound with real priority; 

Re-insert X into priority queue with real priority; 

mtm+l; 

Repeat; 
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If (m > mo) then EXIT LOOP; - 

X t-top node of queue; 

Y tnode linked to X; 

Insert (X,Y) link as edge in fragment; 

If (Y belongs to another fragment) then - 

Merge the two fragments; 

EXIT LOOP; 
End if; 

Insert Y into fragment; 

Find nearest non-fragment neighbor to Y; -. 

Establish link to Y's nearest non-fragment neighbor; 

Enter Y and its (real) priority into fragment queue; 

Repeat; 

Repeat; 

Loop until one fragment remains; 

Find fragment of lowest cardinality; 

Loop until highest priority in fragment queue is real; -- 

X ttop node in queue; 

Y +-nearest non-fragment neighbor to X; 

Establish link from X to Y; 

Replace X's upper bound with real priority; 

Re-insert X into queue with real priority; 

Repeat; 

X +-top node of queue; 

Y tnode linked to X; 

Insert (X,Y) link as edge in fragment; 

Merge the two fragments connected by the link; 

Repeat; 
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The sort of the N points (on the basis of their density estimates) 

18 
can be accomplished in O(N log N) time. As with the single fragment al- 

gorithm, the nearest neighbor searches and priority queue insertions can 

be performed in O(log N) time. Implementing the priority queues as leftist 

trees allows them to be merged in O(log N) time. 
18 

Therefore, the total 

computation with this multifragment algorithm is proportional to (N-l)6 

log N. However, because most of the linkL q have been added while fragments 

were growing toward increasing density, the value of m will be consider- 

ably smaller than that for the single fragment algorithm. 

The rate of increase of & with increasing number of nodes N deter- -~ 

mines the rate of growth of computation time for the algorithm. During 

the fragment growing stage of the algorithm, m is independent of N since 

it is bounded by mo, so the time required to build the fragments is pro- 

portional to Nlog N. 

Since fragment growth is terminated in high density regions and these 

regions tend to be highly localized in the coordinate space, the links that 

connect fragments are usually small compared to most links within the 

fragments. The real priorities corresponding to these links will be high 

in the fragment queue so that generally few nearest neighbor searches are 

required to link the fragments. Thus, the computation required to con- 

struct the MST for this multifragment algorithm is usually dominated by 

the slog N time required to build the fragments. 

There is a special worst case situation where connecting the frag- 

ments can dominate the computation for the multifragment algorithm. This 

occurs when the distribution of points in the coordinate space is com- 

prised of a very few compact clusters separated by large distances, with 

each cluster containing a substantial fraction of the total number of 

points. 
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A basic assumption of the logarithmic time nearest neighbor search 

algorithm is proximity; that is, that the distance to the resulting near- 

est neighbor is relatively small. Specifically, the volume of a ball 

with that distance as its radius must be small compared to the total 

volume occupied by all the points in the coordinate space. For an un- 

restricted nearest neighbor search, this is always true. However, the 

nearest neighbor searches performed here are restricted to those points 

outside the particular fragment under consideration. If the fragment to 

be linked is a large distance from all of the other points, then the dis- 

tance to the closest point outside the fragment will not be small,and 

the time required to find it will grow more rapidly with N than log N. 

Therefore, the time required to link the final unconnected fragments for 

this case can grow faster than N log N. 

4. Simulation Studies 

In order to help quantify the above discussions and obtain a feeling 

for the performance of the multifragment algorithm, the results of several 

simulation experiments are presented. Figures 1 and 2 compare the running 

times, under identical conditions, of this special algorithm (multifragment) 

to the more general algorithm of Dijkstra (as published in FORTRAN by 

Whitney) 
21 

for several situations. 
22 

Although these relative running times 

may be somewhat installation dependent, they can give at least a general 

idea of the comparative properties. These figures show the running time 

per node as a function of total number of nodes on a logarithmic scale. 

The solid squares in Figure 1 show results for spherically symmetric, 

normally distributed points in a two'-dimensional coordinate space with 

a Euclidean distance measure. The running time per node is clearly 

logarithmic for this case; thus, the total running time is proportional 

to N log N The open circles are the results for a point distribution 
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comprised of two spherical normals with unit covariance matrix where 

the centers are separated by a distance of ten. Here, the running time 

per node is seen to rise somewhat faster than logarithmic for large num- 

bers of nodes. The open squares represent the corresponding running 

timfs under the same conditions for the general MST algorithm of Dijkstra. 23 

This general MST algorithm is seen to be considerably slower than the one 

presented here (multi-fragment), except for very small node sets. 

Figure 2 presents results for a spherical normal distribution in five 

dimensions, with Euclidean distance measure. The running time per node 

is seen to be clearly logarithmic for this case as well. 

As discussed above, the value of m for a particular situation de- 

pends upon the distribution of the points in the coordinate space. In 

the simulations presented here, the value of 6 ranged from 1.3 to 3. 

Comparison of Figures 1 and 2 indicates that the point at which 

the special MST algorithm obtains computational advantage over the gen- 

eral algorithm. depends upon dimensionality of the coordinate space. 

This is a consequence of the fact that the relative time required to 

find nearest neighbors increases with dimensionality of the coordinate 

space. Table 1 lists the total number of nodes at which the special MST 

24 
algorithm becomes faster than the general algorithm. 

5. A Fast Almost Minimal Spanning Tree (AMST) Algorithm 

For the worst case situation, where the nodes are concentrated in a 

few well separated clusters, the multifragment algorithm spends most of 

its computation finding the few MST links that connect these clusters. 

In many applications, these precise links are not required. In cluster- 

ing applications, for example, the lengths of these links are used to 

establish the existence of the clusters, and then the links are deleted. 
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Since the multifragment algorithm has established the existence of these 

clusters before it adds these final connecting links, it is unnecessary 

to add them. In all statistical applications, and in most geometrical 

applications, the precise minimal spanning tree is not required. A 

spanning tree that is very nearly minimal will serve just as well. 

It is possible to avoid the increased computation for the worst case 

situation by detecting when it is occurring and then shifting to a faster 

approximate strategy. 

Prim's second construction principle, which is used to connect the 

fragments, insures that they will be connected by a link that represents 

the smallest interpoint distance between the fragments. This insurance 

can be quite costly in worst case situations. For these situations, the 

intercluster links tend to be longer than most (if not all) intracluster 

links. The priorities in the fragment queue will be mostly upper bounds, 

and these upper bounds will be higher in the queue than the interfragment 

links representing real priorities. Thus, a great many nearest neighbor 

searches are required before a real priority reaches the top of the queue. 

In the very worst case, near neighbor searches are required for all points 

in the fragment. As described above, these searches do not obey the 

proximity principle required by the fast near neighbor algorithm so that 

the time required for them is slower than logarithmic. 

This problem can be sidestepped by pursuing a different strategy for 

finding smallest interpoint distances between fragments. Since this 

strategy does not guarantee that the link it finds will be absolutely 

the smallest, Prim's construction principles may be violated. It can 

guarantee, however, that if the link it finds is not the smallest, its 

length is nearly the same as the smallest one. Thus, the resulting 

spanning tree is very nearly minimal. 
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This strategy proceeds as follows: the fragment priority queue is 

scanned for its smallest interfragment link. The endpoint of this link 

in the other fragment becomes a focal point and the endpoint in the 

current fragment becomes its corresponding point. The nearest non-frag- 

ment neighbor to the focal point is found. 

If this neighbor is not its corresponding point, the neighbor becomes 

the focal point and the former focal point becomes its corresponding 

point. This procedure is iterated until the nearest neighbor to the 

focal point becomes its corresponding point. The link between these two - 

points is then taken as the edge connecting the two fragments in the 

spanning tree. 

The decision to invoke this approximate strategy should be taken 

only when a worst case situation (clustering) is detected. A signature 

for clustering is that the MST edge from one fragment to another has 

not been found after more than a few nearest neighbor searches. The 

approximate strategy is thus invoked when the number of nearest neighbor 

searches, n, required to connect the fragment to another fragment, exceeds 

some prespecified cutoff, no. 

An almost minimal spanning tree algorithm proceeds as follows: 
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Multifragment Almost Minimal Spanning Tree Algorithm 

Set value for parameter no; 

Construct fragments as with multifragment MST algorithm; 

Loop until one fragment left; 

Find smallest fragment; 

n to; 

Loop until highest priority in queue is real or n > n * -- 0’ 

X ttop node in queue; 

Y tnearest non-fragment neighbor to X; 

Establish link from X to Y; 

Replace X's upper bound with real priority; 

Re-insert-X into queue with real priority; 

ntn+l; 

Repeat; 

If(highest priority in queue is real) then 

X ttop node of queue; 

Y +-node linked to X; 

Insert (X,Y) link as edge in fragment; 

Merge two fragments connected by the link; 

Else 
Find closest existing link in queue to another fragment; 

X tassociated node in fragment; 

Y +-associated node in other fragment; 

Loop; 

Z +-nearest non-fragment neighbor to Y; 

If (Z = X) then EXIT; - 

x tY; 

Y tz; 

Repeat; 

Establish link from X to Y; 

Insert (X,Y> link as edge betweenl,fragments; 

Merge two fragments connected by the link; 

End if 

Repeat; 
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The AMST algorithm constructs the true minimal spanning tree in all 

but the worst case situations. In those situations, it tries to find 

the shortest connecting link by means of the heuristic strategy described 

above. 

Since many points in one cluster have in common the same closest 

point in the other, the rate of convergence 

the heuristic strategy is quite fast and is 

ber of nodes, N. 25 Each iteration requires 

which, at worst, requires time proportional 

of the iterative search in 

independent of the total num- 

a nearest neighbor calculation 

to N. Therefore, the time re- 

quired to link fragments with the approximate strategy is proportionalto 

N. The total time to construct the AMST is then dominated by the frag- 

ment building which requires computation proportional to Nlog N. 

In order to obtain a feeling for the performance of the AMST algo- 

rithm in worst case situations, Table 2 gives the results of several Monte 

Carlo simulation experiments. Here 1000 points were sampled from five 

four-dimensional spherical normal distributions with unit covariance matrix, 

each centered at a different vertex of a four-dimensional simplex with 

edge length ten. Table 2 compares the total length of the AMST to the 

length of the true MST, as well as the running time for each. Five inde- 

pendent samplings are presented. It is seen that for these experiments, 

the length of the AMST was, at most, o .16$ longer than the true MST, but 

took less than half as much running time to construct. 

6. Storage Requirements 

This section discusses the memory requirements for the MST algorithms 

presented here and compares them to the requirements of the general algo- 

rithm of Prim and Dijkstra. For all MST algorithms, the coordinates of 

each point must be stored for input, and the resulting MST must be stored 
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for output. The coordinates of the points require k-N real numbers 

where k is the dimensionality of the coordinate space. The MST requires 

N-l real numbers to store the edge lengths and 2.(N-1) integers to store 

the node identities defining the edges. The Prim-Dijkstra algorithm re- 

quires, in addition, N real numbers and 2-N integers. Thus, the Prim- 

Dijkstra algorithm requires storage for (k+2)*N real numbers and 4-N in- 

tegers. 

The additional storage required by the single fragment fast MST al- 

gorithm includes N/l6 real numbers and (1+1/16)*N integers to store the -.. 

k-d tree, N real numbers and N integers to store and manage the priority 

queue, and N integers to store temporary pointers to isolated nodes. 

Thus, the single fragment algorithm requires a total storage of 

(k+2+1/16).N real numbers and (5+1/16)-N integers. 

The multiple fragment fast MST algorithms require additional storage 

beyond that for the single fragment algorithm. This includes 4-N integers 

to implement the priority queues as leftist trees and 2-N integers to 

handle the fragment bookkeeping. Thus, the multiple fragment algorithms 

require a total storage of (k+2+1/16).N real numbers and (11+1/16)-N in- 

tegers. 

In all cases, the storage requirement is linear in the number of 

nodes. The increase in storage for the fast MST algorithms over that of 

the Prim-Dijkstra algorithm is not severe. If an integer requires half 

as much storage as a real number, then in a two-dimensional space the in- 

crease is ten percent for the single fragment algorithm and sixty percent 

for the multiple fragment algorithms. In eight dimensions, the corres- 

ponding numbers are five percent and thirty percent. 
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7. Discussion 

Three algorithms have been presented for constructing MSTs in co- 

ordinate spaces. The single fragment algorithm has the advantage of 

simplicity, smaller memory requirement, and it requires no external pa- 

rameters to be specified. It is also slightly faster than the other al- 

gorithms for point distributions that are nearly uniform. 26 It has the 

disadvantage that the number of nearest neighbor searches required to 

add each MST edge can be quite large. In fact, a worst case situation 

could arise where a near.est neighbor search is required for every node 

currently in the fragment. For this worst case, the time to build the 

MST with this algorithm is O(N2 log N), which is worse than O(N2) re- 

quired by the general MST algorithm of Prim and Dijkstra. 

The multifragment algorithm is considerably faster than the single 

fragment algorithm for non-uniform distributions. It requires the speci- 

fication of a single external parameter, mo; this is the maximum number 

of nearest neighbor searches permitted for adding a link to a fragment. 

If this number is exceeded, fragment growth is terminated-and a new fragment 

started. Experience has shown that the running time of the algorithm is 

insensitive to the value chosen for m 

well. 

0’ 
Values of m. from 5 to 15 work 

The AMST algorithm is identical to the multifragment WT algorithm 

except for the special worst case clustering situations. For these sit- 

uations, the AMST algorithm is considerably faster than the true MST al- 

gorithms, but it may not yield the exact IC3T. The spanning tree that it 

does yield, however, will be almost minimal. The AMST algorithm requires 

the specification of an additional parameter. This is the maximum number 

of nearest neighbor searches, no, allowed while trying to link a fragment 
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to another one, before the fast heuristic strategy is invoked. A choice 

for its value involves a trade-off between running time and the degree 

to which the AMST is required to match an exact MST. Values of no from 

5 m. to 10 m. are reasonable. 

The worst case behavior of the multifragment &ET and AMST algorithms 

is not clear. It is surely much better than the O(N2 log N) of the sin- 

gle fragment algorithm. A necessary (but not sufficient) condition for 

worst case behavior with the single fragment algorithm is that every 

edge added to the fragment must be longer than all those currently in 

the fragment. This means that the fragment is always growing towards 

decreasing density of points. This situation cannot occur with the multi- 

fragment algorithms since they start fragments in regions of low density 

and add links mainly in directions of increasing density. 

8. Conclusion 

Algorithms have been presented for constructing minimal spanning 

trees for complete graphs, where the nodes are points in k-dimensional 

coordinate spaces and the edge weights are general distances between 

them. The algorithms employ Prim's' construction principles in a way 

that allows theNuse of the fast (logarithmic) near neighbor algorithm of 

Friedman, Bentley, and Finkel 
16 

to reduce computation in finding nearest 

neighbors, and the use of logarithmic priority queues 17, ~3 to reduce the 

number of nearest neighbor searches. A multifragment strategy is pre- 

sented that takes advantage of density gradients in the distribution of 

points to achieve a much greater reduction in nearest neighbor searches. 
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For N points embedded in a k-dimensional coordinate space, this algorithm 

will usually construct the MST in time proportional to Nlog N. Special 

worst case situations exist for which the time spent in connecting frag- 

ments dominates the computation, and although the algorithm is still 

much faster than earlier algorithms, it can require computation in ex- 

cess of Nlog N. A method for detecting this situation and shifting to 

a fast heuristic strategy for connecting the fragments in this special 

case is presented. Although this heuristic strategy cannot guarantee 

that the links it finds are of minimum total length, they are always -. 

quite close, Thus, the resulting spanning tree that it constructs is 

almost minimal. This AMST algorithm constructs minimal or very nearly 

minimal spanning trees with average computation proportional to Nlog N. 

All of these algorithms are considerably faster than earlier algorithms 

that construct MSTs for general graphs, except when the graphs are small. 
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APPENDIX 

k-d Trees 

For completeness, this appendix provides a brief description of the 

k-d tree data structure and the fast near neighbor search algorithm. 16 

The general discussion presented here is quite limited and details can be 

found in Reference 16. 

The k-d tree is a generalization of the simple binary tree for sort- 

ing and searching. The k-d tree is a binary tree in which each node nep- 

resents a sub-collection--of the points and a geometrical partitioning of 

that sub-collection. The root of the tree represents the entire collec- 

tion. Each nonterminal node has two successors. These successor nodes 

represent the two sub-collections defined by the partitioning. The 

terminal nodes represent mutually exclusive small subsets of the points, 

which collectively form a geometric partition of the k-dimensional co- 

ordinate space. 

At each nonterminal node, the geometrical partitioning is accomplished 

by dividing the sub-collection at the median value of one of the coordin- 

ates. The particular coordinate chosen to make the partition is the one 

which exhibits the greatest range or spread in values. 

Associated with each node and the sub-collection which the node rep- 

resents is a set of geometric bounds within which all points in that sub- 

collection must lie. These geometric bounds can be represented by two 

linear arrays LOWER and UPPER. For a given sub-collection, S, it must be 

true for every point x" e S and each coordinate i (1 Ci Sk) that LOWER(i) 

iX (i) <UPPER(i). The values contained in these two arrays at any node 

in the k-d tree are determined by the partitions defined at its ancestors 

in the tree. Associated with each such ancestor nodes is a partitioning 

coordinate j and a partition value p. UPPER (j) is replaced by 
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p if the descent goes to the left son; otherwise LOWER (j) is replaced 

by p. (The bounds for the root node are initially set to plus and minus 

infinity, respectively.) These bounds jointly form a rectilinearly 

oriented hyper-rectangle in the k-dimensional coordinate space within 

which all of the points in any sub-collection must lie. 

A nearest neighbor search employing the k-d tree can be easily des- 

cribed recursively. At each node visited in the search, the subtree 

representing the sub-collection of points on the same side of the par- 

tition as the test point--is searched for its nearest neighbor in that 

sub-collection. When control returns, a test is made to see if the sub- 

tree representing the sub-collection on the opposite side of the parti- 

tion must be searched. It must be searched only if the geometric bounds 

associated with that sub-collection overlap a ball centered at the test 

point, with radius equal to the current nearest neighbor distance. If 

the bounds do overlap the ball, then the opposite subtree is searched. 

In either case, a ball-within-bounds test is made before returning. This 

determines whether the nearest neighbor ball is completely- within the 

geometric bounds of the node. If so, then the current nearest neighbor 

is correct for the entire collection of points and the search terminates. 

It is shown in Reference 16 that the time required to build the k-d 

tree is O(Nlog N). The expected nearest neighbor search time is shown to 

be O(log N), These results are shown to be valid for arbitrary distri- 

butions of the points in the coordinate space and for a wide range of dis- 

similarity measures. In particular, it is not necessary that the dissimi- 

larity measure be a metric distance and satisfy the triangle inequality. 
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TABLE 1 

Number of nodes, as a function of coordinate space dimensionality, 

beyond which the multifragment algorithm presented here is faster 

than Whitney's pub&ication of Dijkstra's algorithm. 22 

Dimensionality 

2 

3 

4 

5 

6 

Crossover 
Point 

250 

260 

340 

445 

@+:, 

7 920 

8 1400 
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TABLF: 2 

Comparison of multifragment MST algorithm with AMST algorithm 

for a worst case situation. 

Run MST 
Number Length 

AMST 
Length 

AMST/MST-1 AMST/MST 
Length Running Time 

1 1022.1 1022.1 0 0.47 

2 1045.0 1046.5 0.14s 0.44 

3 1057.4 1059.1 0.16% 0.43 

4 1022.9 1023.8 0.0% 0.48 

5 1026.4 1027.5 0.11% 0.45 
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