
MATHEMATICS OF COMPUTATION
Volume 67, Number 224, October 1998, Pages 1577–1590
S 0025-5718(98)00975-2

FAST ALGORITHMS FOR DISCRETE POLYNOMIAL
TRANSFORMS

DANIEL POTTS, GABRIELE STEIDL, AND MANFRED TASCHE

Dedicated to Professor G. Maess on the occasion of his 60th birthday

Abstract. Consider the Vandermonde-like matrix P := (Pk(cos jπ
N

))N
j,k=0,

where the polynomials Pk satisfy a three-term recurrence relation. If Pk are the

Chebyshev polynomials Tk , then P coincides with CN+1 := (cos jkπ
N

)N
j,k=0.

This paper presents a new fast algorithm for the computation of the matrix-
vector product Pa in O(N log2N) arithmetical operations. The algorithm
divides into a fast transform which replaces Pa with CN+1ã and a subsequent
fast cosine transform. The first and central part of the algorithm is realized by
a straightforward cascade summation based on properties of associated poly-
nomials and by fast polynomial multiplications. Numerical tests demonstrate
that our fast polynomial transform realizes Pa with almost the same precision
as the Clenshaw algorithm, but is much faster for N ≥ 128.

1. Introduction

Let w be a non-negative, integrable weight function with∫ 1

−1

w(x) dx > 0,

and let L2
w[−1, 1] denote the real Hilbert space with inner product

〈f, g〉 :=
∫ 1

−1

w(x) f(x) g(x) dx (f, g ∈ L2
w[−1, 1])

and norm ‖ · ‖. As an example we consider the weight functions

w(x) := (1− x2)λ−1/2 (λ > −1/2; x ∈ (−1, 1)) .(1.1)

Let {Pn}n∈N0 be a sequence of orthogonal polynomials Pn ∈ Πn with respect to
〈·, ·〉. Here Πn denotes the set of polynomials of degree ≤ n. Then every P ∈ ΠN

can be represented as

P =
N∑

k=0

〈P, Pk〉
‖Pk‖2 Pk ,(1.2)

Received by the editor March 15, 1996 and, in revised form, March 13, 1997.
1991 Mathematics Subject Classification. Primary 65T99, 42C10, 33C25.
Key words and phrases. Discrete polynomial transform, Vandermonde-like matrix, fast cosine

transform, fast polynomial transform, Chebyshev knots, cascade summation.

c©1998 American Mathematical Society

1577

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1578 DANIEL POTTS, GABRIELE STEIDL, AND MANFRED TASCHE

where 〈P, Pk〉 can be computed by a convenient quadrature rule; for example by

〈P, Pk〉 =
2N∑
j=0

w2N
j P (c2N

j)Pk(c2N
j),(1.3)

with the weights

w2N
j :=

∫ 1

−1

w(x)
L(x)

L′ (c2N
j)(x − c2N

j)
dx, L(x) :=

2N∏
j=0

(x− c2N
j),

and with the Chebyshev nodes

cN
j := cos

jπ

N
(j = 0, . . . , N) .

For w := 1, i.e. for Legendre polynomials Pk, the quadrature rule (1.3) coincides
with the Clenshaw-Curtis quadrature with positive weights

w2N
j :=

1
N

ε2N
j

N∑
l=0

εN
l

−2
4l2 − 1

cN
lj (j = 0, . . . , 2N).

Here εN
0 = εN

N := 1
2 and εN

j := 1 (j = 1, . . . , N − 1). Similar, but more compli-
cated expressions of w2N

j can be given for the weight functions (1.1). Notice that
such weights can be computed via fast cosine transforms.

Let M, N ∈ N with M ≥ N be given powers of 2. We are interested in an
efficient solution of the following two problems.

1. Given ak ∈ R (k = 0, . . . , N) compute the discrete polynomial transform
DPT(N + 1, M + 1): RN+1 → RM+1 defined by

âj :=
N∑

k=0

ak Pk(cM
j) (j = 0, . . . , M) .(1.4)

The transform matrix P := (Pk(cM
j))M,N

j,k=0 is called a Vandermonde-like matrix.
2. Given bj ∈ R (j = 0, . . . , M) compute the transposed discrete polynomial

transform TDPT(M + 1, N + 1): RM+1 → RN+1 defined by

b̃k :=
M∑

j=0

bj Pk(cM
j) (k = 0, . . . , N) .(1.5)

The first problem addresses the evaluation of polynomials P ∈ ΠN given in the
form (1.2) at Chebyshev nodes cM

j . The second problem is concerned with the
approximation of the Fourier coefficients of P ∈ ΠN by a quadrature rule. Clearly,
by (1.2) and (1.3), the problems (1.4) and (1.5) with M = 2N , ak = ‖Pk‖−2 〈P, Pk〉
and bj = w2N

j P (c2N
j) are “inverse” in the sense that the corresponding transform

matrices P and PT satisfy

P diag (‖Pk‖−2)N
k=0 PT diag (w2N

j)2N
j=0 = I2N+1 ,

PT diag (w2N
j)2N

j=0 P diag (‖Pk‖−2)N
k=0 = IN+1

with the (N + 1, N + 1)-identity matrix IN+1.
In general the realization of (1.4) or (1.5) requires O(NM) arithmetical oper-

ations, too much for practical purposes with large N . Hence we look for a fast
algorithm to solve our problems with only O(N log2N) + O(M log M) arithmetical

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

FAST ALGORITHMS FOR DISCRETE POLYNOMIAL TRANSFORMS 1579

operations. A fast algorithm for (1.4) implies the factorization of the transform
matrix P into a product of sparse matrices. Consequently, once a fast algorithm
for (1.4) is known, a fast algorithm for the “transposed” problem (1.5) with the
transform matrix PT is also available by transposing the sparse matrix product.
Therefore, we restrict our attention to the fast computation of (1.4).

There are several papers addressing the problems above (see [7], [6], [9], [11],
[12], [15], [16]). If the orthogonal polynomials are the Chebyshev polynomials of
first kind

Tn(x) := cos(n arccosx) (x ∈ [−1, 1]) ,

which are orthogonal with respect to w(x) := (1 − x2)−1/2 (x ∈ (−1, 1)), prob-
lem (1.4) can be computed via fast cosine transforms (see [17], [18], [19], [2]) in
O(M log M) arithmetical operations. Hence, a straightforward idea for the fast
solution of (1.4) with arbitrary orthogonal polynomials Pn is to realize a basis
exchange from {Pn}Nn=0 to {Tn}Nn=0 followed by a fast cosine transform.

In the case of Legendre polynomials Pn, Alpert and Rokhlin [1] have proposed an
O(N log 1/ε) basis exchange algorithm based on the approximation of the elements
in the basis transform matrix. Here ε denotes the desired precision.

Our direct approach computes the basis exchange with O(N log2N) arithmetical
operations by a divide-and-conquer technique combined with fast polynomial multi-
plications. The algorithm can be designed for arbitrary polynomials Pn satisfying a
three-term recurrence relation. It requires multiplications with precomputed values
of associated polynomials of Pn occupying O(N log N) elements of storage. Numer-
ical tests for various orthogonal polynomials, especially ultraspherical polynomials,
result in small relative errors between the “exact” solution calculated in high pre-
cision arithmetic and the solution obtained by our algorithm in double precision
arithmetic.

It is interesting that the “transposed” version of our (slightly modified) algorithm
for the solution of the “transposed” problem (1.5) can be considered a modified
Driscoll-Healy algorithm ([6], [7], [10]) in which the original fast Fourier transforms
are replaced by fast cosine transforms. It is our feeling that the following approach
to fast polynomial transforms is simpler and more straightforward than the original
Driscoll-Healy algorithm for the problem (1.4) and (1.5).

This paper is organized as follows. Taking into account that our whole polyno-
mial transform algorithm is based on fast realizations of different discrete cosine
transforms, Section 2 deals with discrete cosine transforms. Section 3 describes our
fast polynomial transform. A modified Driscoll-Healy algorithm and the relation
with our algorithm is sketched in Section 4. Numerical results are presented in
Section 5. Finally, Section 6 contains some concluding remarks.

2. Discrete cosine transforms

The heart of our fast polynomial transform consists in the fast polynomial mul-
tiplication via fast cosine transforms. Let

CN+1 := (cN
jk)N

j,k=0 , DN+1 := diag (εN
j)N

j=0 ,

C̃N := (c2N
j(2k+1))

N−1
j,k=0 , D̃N := diag (εN

j)N−1
j=0 .

Then the following transforms are referred to as discrete cosine transforms (DCT)
of type I–III, respectively:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1580 DANIEL POTTS, GABRIELE STEIDL, AND MANFRED TASCHE

DCT–I (N + 1) : RN+1 → RN+1 with

â := CN+1 DN+1a ,

a := (ak)N
k=0, â := (âj)N

j=0 ∈ RN+1, i.e.

âj :=
N∑

k=0

εN
k ak cN

jk =
N∑

k=0

εN
k ak Tk(cN

j) ,

DCT–II (N) : RN → RN with

b̂ := C̃Nb ,

b := (bk)N−1
k=0 , b̂ := (b̂j)N−1

j=0 ∈ RN , i.e.

b̂j :=
N−1∑
k=0

bk c2N
j(2k+1) =

N−1∑
k=0

bk Tj(c2N
2k+1) ,

DCT–III (N) : RN → RN with

b̂ := C̃T
N D̃Nb ,

i.e.

b̂j :=
N−1∑
k=0

εN
k bk c2N

k(2j+1) =
N−1∑
k=0

εN
k bk Tk(c2N

2j+1) .

In the following, let N = 2t (t ∈ N). There exist various fast algorithms per-
forming the above discrete cosine transforms with O(N log N) instead of O(N2)
arithmetical operations. For DCT–III and DCT–II we prefer the fast algorithms in
[18] because of their low arithmetical complexity and since the corresponding data
permutations allow a simple, efficient implementation (see [13]). Fast algorithms
for DCT–I based on [18] can be found in [2] (see also [19]). Concerning the inverse
DCT’s, it is easy to check (see [2]):

Lemma 2.1. It holds that

CN+1 DN+1 CN+1 DN+1 =
N

2
IN+1 ,

C̃T
N D̃N C̃N = C̃N C̃T

N D̃N =
N

2
IN .

Hence (CN+1DN+1)−1 = 2
N CN+1DN+1 and (C̃N)−1 = 2

N C̃T
ND̃N such that

the inverse DCT’s can be computed by the same fast cosine transforms.
Let P ∈ Πn (n ∈ N) be given with respect to the basis of Chebyshev polynomials,

i.e.

P =
n∑

k=0

ak Tk

with known real coefficients ak. Further, let Q ∈ Πm (m ∈ N) be a fixed polynomial
with known values Q(c2M

2j+1) for j = 0, . . . , M − 1, where M = 2s (s ∈ N) with

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

FAST ALGORITHMS FOR DISCRETE POLYNOMIAL TRANSFORMS 1581

M/2 ≤ m+n < M is chosen. Then the Chebyshev coefficients bk (k = 0, . . . , m+n)
in

R := P Q =
n+m∑
k=0

bk Tk

can be computed in a fast way by the following procedure:

Algorithm 2.2 (Fast polynomial multiplication).
Input: M = 2s (s ∈ N) with M/2 ≤ m + n < M ,

Q(c2M
2j+1) ∈ R (j = 0, . . . , M − 1) with Q ∈ Πm,

ak ∈ R (k = 0, . . . , n).
1. Compute

(P (c2M
2j+1))

M−1
j=0 := C̃T

M (ak)M−1
k=0

by fast DCT–III (M) of (ak)M−1
k=0 with ak := 0 (k = n + 1, . . . , M − 1).

2. Evaluate the M products

R(c2M
2j+1) := P (c2M

2j+1)Q(c2M
2j+1) (j = 0, . . . , M − 1) .

3. Compute

(bk)M−1
k=0 :=

2
M

D̃M C̃M (R(c2M
2j+1))

M−1
j=0

by fast DCT–II (M) of (R(c2M
2j+1))

M−1
j=0 .

Output: bk (k = 0, . . . , m + n).

The fast DCT–III (2s) computed by [18] requires 2s−1 s multiplications and
2s−1 (3s− 2) + 1 additions. Hence, Algorithm 2.2 realizes the polynomial multipli-
cation of P ∈ Πn and Q ∈ Πm with respect to the basis of Chebyshev polynomials
in 2s(s + 2) + 2 multiplications and 2s(3s− 2) + 2 additions.

Remark 2.3. A similar algorithm for the fast polynomial multiplication can be
derived involving DCT–I instead of DCT–II and DCT–III, if the values Q(cM

j)
(j = 0, . . . , M) are known (see [2]).

3. Fast polynomial transform

Let {Pn}n∈N0 be a sequence of polynomials defined by the three-term recurrence
relation

P−1(x) := 0 , P0(x) := 1 ,

Pn(x) = (αnx + βn)Pn−1(x) + γnPn−2(x) (n = 1, 2, . . .)(3.1)

with αn, βn, γn ∈ R and αn > 0 , γn 6= 0 (n ∈ N). By Favard’s theorem, {Pn}∞n=0

is an orthogonal polynomial sequence with respect to some quasi-definite moment
functional (see [4], Theorem 4.4). In particular, we consider the Chebyshev poly-
nomials Tn with

T0(x) := 1 , T1(x) := x ,

Tn(x) = 2xTn−1(x) − Tn−2(x) (n = 2, 3, . . .) .

Shifting the index n in (3.1) by c ∈ N0, we obtain the associated polynomials
Pn(· , c) of Pn defined by

P−1(x, c) := 0 , P0(x, c) := 1 ,

Pn(x, c) := (αn+cx + βn+c) Pn−1(x, c) + γn+cPn−2(x, c) (n = 1, 2, . . .) .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1582 DANIEL POTTS, GABRIELE STEIDL, AND MANFRED TASCHE

Now induction yields (see [3])

Lemma 3.1. For c, n ∈ N0, it holds

Pc+n(x) = Pn(x, c)Pc(x) + γc+1Pn−1(x, c + 1)Pc−1(x) .

Lemma 3.1 implies (
Pc+n

Pc+n+1

)
= Un(·, c)T

(
Pc−1

Pc

)
(3.2)

with

Un(x, c) :=
(

γc+1Pn−1(x, c + 1) γc+1Pn(x, c + 1)
Pn(x, c) Pn+1(x, c)

)
.

Let N = 2t and M = 2s (s, t ∈ N; s ≥ t) be given. Consider

P :=
N∑

k=0

ak Pk ∈ ΠN

with known real coefficients ak. Our concern is the fast evaluation of P (cM
j)

(j = 0, . . . , M) with O(N log2N) + O(M log M) instead of O(MN) arithmeti-
cal operations. The main part of our algorithm realizes the basis exchange from
{Pk}Nk=0 to {Tk}Nk=0 in ΠN and produces the Chebyshev coefficients ãk in

P =
N∑

k=0

ãk Tk .(3.3)

Knowing these Chebyshev coefficients ãk, the values P (cM
j) (j = 0, . . . , M) can be

computed via fast DCT–I (M +1) in O(M log M) arithmetical operations in a final
step (see [19], [2])

(P (cM
j))M

j=0 = CM (ãk)M
k=0 ,(3.4)

where we have to set ãk := 0 for k = N + 1, . . . , M .
Let us turn to the basis exchange. In the initial step we use (3.1) and the fact

that T1(x) = x to obtain

P =
N−1∑
k=0

a
(0)
k Pk =

N/4−1∑
k=0

(
3∑

l=0

a
(0)
4k+l P4k+l

)
with

a
(0)
k (x) := ak (k = 0, . . . , N − 3) ,

a
(0)
N−2(x) := aN−2 + γN−1aN ,(3.5)

a
(0)
N−1(x) := aN−1 + βN−1aN + αN−1aN T1(x) .

Now we proceed by cascade summation as shown in Figure 1. By (3.2) with n = 1
and c = 4k + 1 (k = 0, . . . , N/4− 1) it follows that

(a(0)
4k+2, a

(0)
4k+3)

(
P4k+2

P4k+3

)
= (a(0)

4k+2, a
(0)
4k+3) U1(· , 4k + 1)T

(
P4k

P4k+1

)
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

FAST ALGORITHMS FOR DISCRETE POLYNOMIAL TRANSFORMS 1583

Thus

P =
N/4−1∑

k=0

(a
(1)
4k P4k + a

(1)
4k+1 P4k+1)

with (
a
(1)
4k

a
(1)
4k+1

)
:=

(
a
(0)
4k

a
(0)
4k+1

)
+ U1(· , 4k + 1)

(
a
(0)
4k+2

a
(0)
4k+3

)
.(3.6)

The degree of the polynomial products in (3.6) is at most 3 such that their
computation with respect to the Chebyshev polynomials can be realized via Algo-
rithm 2.2 with M = 4. Consequently, the evaluation of the Chebyshev coefficients
of the polynomials a

(1)
4k , a

(1)
4k+1 ∈ Π3 (k = 0, . . . , N/4 − 1) in step 1 requires 11N

multiplications and 12N additions.
We continue in the obvious manner. In step τ (1 < τ < t) we compute by (3.2)

with n = 2τ − 1 the Chebyshev coefficients of the polynomials a
(τ)
2τ+1k, a

(τ)
2τ+1k+1 ∈

Π2τ+1−1 (k = 0, . . . , N/2τ+1 − 1) defined by

 a
(τ)
2τ+1k

a
(τ)
2τ+1k+1

 :=

 a
(τ−1)
2τ+1k

a
(τ−1)
2τ+1k+1

 + U2τ−1(· , 2τ+1k + 1)

 a
(τ−1)
2τ+1k+2τ

a
(τ−1)
2τ+1k+2τ +1

 ,

(3.7)

where we apply Algorithm 2.2 (with M = 2τ+1) for the polynomial products.
Assume that the 4N values U2τ−1(c2τ+2

2l+1 , 2τ+1k +1) for k = 0, . . . , N/2τ+1 and l =
0, . . . , 2τ+1−1 were precomputed by the Clenshaw algorithm (see [5] or [20], pp. 165
– 172). Then step τ requires (2τ +8+21−τ)N multiplications and (6τ +5+21−τ)N
additions, and results in

P =
N/2τ+1−1∑

k=0

(a
(τ)
2τ+1kP2τ+1k + a

(τ)
2τ+1k+1P2τ+1k+1) .

After the step t− 1, our cascade summation arrives at

P = a
(t−1)
0 P0 + a

(t−1)
1 P1 .

Now P0(x) = 1, P1(x) = α1 x + β1 and

xT0(x) = T1(x) , x Tn(x) =
1
2

(Tn+1(x) + Tn−1(x)) (n = 1, 2, . . .) .

Hence, if

a
(t−1)
1 =

N−1∑
n=0

a
(t−1)
1,n Tn ,

then

a
(t)
1 := a

(t−1)
1 P1 =

N∑
n=0

a
(t)
1,n Tn

with

(a(t)
1,n)N

n=0 = (α1 TT
N+1 + β1 IN+1)(a

(t−1)
1,n)N

n=0 ,(3.8)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1584 DANIEL POTTS, GABRIELE STEIDL, AND MANFRED TASCHE

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

a
(0)
0 a

(0)
1 a

(0)
2 a

(0)
3 a

(0)
4 a

(0)
5 a

(0)
6 a

(0)
7 a

(0)
8 a

(0)
9 a

(0)
10 a

(0)
11 a

(0)
12 a

(0)
13 a

(0)
14 a

(0)
15

U1(· , 1) U1(· , 5) U1(· , 9) U1(· , 13)

a
(1)
0 a

(1)
1 a

(1)
4 a

(1)
5 a

(1)
8 a

(1)
9 a

(1)
12 a

(1)
13

U3(· , 1) U3(· , 9)

a
(2)
0 a

(2)
1 a

(2)
8 a

(2)
9

U7(· , 1)

a
(3)
0 a

(3)
1

(ãk)16k=0

Figure 1. Cascade summation for the computation of the basis
exchange in the case N = 16

where we set a
(t−1)
1,N := 0 and where TN+1 is the tridiagonal (N + 1, N + 1)-matrix

TN+1 :=

0 1

1/2 0 1/2
.

1/2 0 1/2
1 0

 .(3.9)

This leads to

P = a
(t−1)
0 + a

(t)
1 ,

and the final addition of the Chebyshev coefficients of a
(t−1)
0 and a

(t)
1 yields the

desired Chebyshev coefficients of P , i.e.

(ãn)N
n=0 = (a(t−1)

0,n)N
n=0 + (a(t)

1,n)N
n=0 .(3.10)

We summarize:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

FAST ALGORITHMS FOR DISCRETE POLYNOMIAL TRANSFORMS 1585

Algorithm 3.2 (Fast polynomial transform).
Input: N = 2t, M = 2s (s, t ∈ N; s ≥ t),

ak ∈ R (k = 0, . . . , N),
U2τ−1(c2τ+2

2l+1 , 2τ+1k + 1) (τ = 1, . . . , t− 1; k = 0, . . . , 2t−τ−1;
l = 0, . . . , 2τ+1 − 1).

Step 0. Compute a
(0)
k (x) (k = 0, . . . , 2t − 1) by (3.5).

For τ = 1, . . . , t− 1 do
Step τ . For every k = 0, . . . , 2t−τ−1 − 1 form (3.7) by Algorithm 2.2
for the fast polynomial multiplications.
Step t. Compute ãn (n = 0, . . . , N) by (3.8) and (3.10).
Compute (3.4) by fast DCT–I (M + 1).

Output: P (cM
j) (j = 0, . . . , M).

In summary, we have to store the 4N(log N − 1) precomputed elements of the
matrices U. Counting the arithmetical operations in each step, we verify that the
whole basis exchange algorithm requires N log2N+7N log N+O(N) multiplications
and 3N log2N+2N log N+O(N) additions. Finally, the computation of (3.4) by the
fast DCT–I (M+1) takes 1

2 M log M+O(M) multiplications and 3
2 M log M+O(M)

additions. The whole fast polynomial transform becomes more efficient than the
Clenshaw algorithm for N ≥ 128.

A fast algorithm for (1.5), i.e., for the multiplication with PT, can be obtained
immediately by “reversing” Algorithm 3.2. In other words, we simply have to
reverse the direction of the arrows in the flowgraph of Algorithm 3.2.

There already exists an O(N log2N) algorithm for the problem (1.4) as well as
(1.5), which was originally formulated by Driscoll and Healy [6] with respect to
Legendre polynomials and was generalized to arbitrary polynomials satisfying a
three-term recurrence relation in [7], [10]. The following section briefly describes
the relation between our algorithm and the Driscoll–Healy algorithm.

4. Modified Driscoll–Healy algorithm

In the following, we modify the Driscoll–Healy algorithm by replacing the original
fast Fourier transforms by fast cosine transforms which seem to be more natural in
the context of the algorithm. As a consequence, the modified algorithm is simpler,
requires fewer arithmetical operations, and avoids the arithmetic with complex
numbers.

Remark 4.1. The original Driscoll–Healy algorithm uses properties of circulant ma-
trices. Our modified algorithm utilizes the fact that “circulant matrices related to
the DCT–I” possess similar properties (see [2]). The matrix TN+1 defined by (3.9)
is called the basic circulant matrix related to DCT–I (N + 1) since

N

2
CI

N+1 TN+1 CI
N+1 = ΓN+1

with CI
N+1 := CN+1 DN+1 and ΓN+1 := diag(cN

j)N
j=0. Let TN+1,0 := IN+1,

TN+1,1 := TN+1 and

TN+1,n = 2TN+1TN+1,n−1 −TN+1,n−2 (n = 2, 3, . . . , N) .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1586 DANIEL POTTS, GABRIELE STEIDL, AND MANFRED TASCHE

Then TN+1,N = (δj,N−k)N
j,k=0 and

TN+1,n = Tn(TN+1) =

1/2

1/2
1

1/2

1/2

1/2
1

1/2

···

···

···············

···············

n→

← N − n

↑
N − n

n
↓

for n = 1, . . . , N − 1. The matrices diagonalizable by CI
N+1 can be written as

P =
N∑

j=0

εN
j ajTN+1,j (aj ∈ R)

and form a commutative algebra P over R with respect to the ordinary matrix
operations. It holds

N

2
CI

N+1 PCI
N+1 = P (ΓN+1) ,(4.1)

where

P :=
N∑

j=0

εN
j aj Tj

denotes the polynomial associated with P. Based on the fact that the Chebyshev
knots cN

k (k = 0, . . . , N) are the zeros of (1 − x2)UN−1(x), the relation between
circulant matrices related to DCT–I and polynomials is determined by the isomor-
phism of the algebras

P ' R[x]/
(
(1− x2)UN−1(x)

)
.

Here UN−1 is the (N − 1)–th Chebyshev polynomial of second kind.

Let the polynomials Pl satisfy the three-term recurrence relation (3.1). Consider
(1.5) with M = N = 2t (t ∈ N), i.e.

b̃l :=
N∑

j=0

εN
j dj Pl(cN

j) (l = 0, . . . , N)

with given dj := (εN
j)−1bj ∈ R. Following the lines of [6], we define

z(k, l) :=
N∑

j=0

εN
j dj cN

jk Pl(cN
j) (k, l = 0, . . . , N)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

FAST ALGORITHMS FOR DISCRETE POLYNOMIAL TRANSFORMS 1587

and zl := (z(k, l))N
k=0. We are interested in the efficient computation of z(0, l) = b̃l

(l = 0, . . . , N). By Lemma 2.1 we observe that

z0 = CI
N+1(dj)N

j=0 ,

zl = CI
N+1

(
(Pl(cN

j))N
j=0 ◦ (dj)N

j=0

)
(4.2)

=
2
N

CI
N+1 Pl(ΓN+1)CI

N+1 z0,(4.3)

where ◦ denotes the componentwise multiplication. Especially, we obtain with
P1(x) = α1 x + β1 by (4.1) and (4.3) that

z1 =
2
N

CI
N+1 (α1 ΓN+1 + β1 IN+1)CI

N+1 z0

= (α1 TN+1 + β1 IN+1) z0

(compare with (3.8)). Using (4.2) and (3.2), we compute zN/2 and zN/2+1 by(
zN/2

zN/2+1

)
=

2
N

(CI
N+1 ⊕CI

N+1)UN/2−1(ΓN+1, 1)T(CI
N+1 ⊕CI

N+1)

(
z0

z1

)
and form the truncated vectors

z(1)
l := (z(k, l))N/2

k=0 (l = 0, 1, N/2, N/2 + 1) .

This is the result of step 1 of our modified Driscoll–Healy algorithm. Compare
with step t − 1 of Algorithm 3.2. Note that UN/2−1(ΓN+1, 1) is a block-diagonal
(2N + 2, 2N + 2)-matrix.

Now we continue in a similar manner as in [6], [7] but with respect to circu-
lant matrices related to the DCT–I. Take into consideration that the description of
the following steps involves some more ideas than step 1. The resulting modified
Driscoll–Healy algorithm does not agree with the “transposed” version of Algo-
rithm 3.2, but it can be considered as a “transposed” version of a modified Algo-
rithm 3.2 in which the fast polynomial multiplications are realized by DCT–I instead
of DCT–II and DCT–III, as mentioned in Remark 2.3. However, in our opinion the
derivation of the (modified) Driscoll–Healy algorithm is less straightforward than
the development of Algorithm 3.2.

5. Numerical tests

Algorithm 3.2 was implemented in C and tested on a Sun SPARCstation 20 for
various ultraspherical polynomials. The corresponding fast cosine transforms were
described in detail in [18], [2].

Example 5.1. We consider the ultraspherical polynomials Pλ
n (λ > −1/2) given

by

P λ
−1(x) := 0 , P λ

0 (x) := 1 ,

P λ
n (x) :=

2(n + λ− 1)
n

xPλ
n−1(x) − n + 2λ− 2

n
Pλ

n−2(x) (n = 1, 2, . . .) .

These polynomials are orthogonal with respect to the weight function (1.1). For
λ = n−2

2 , the ultraspherical polynomials are the zonal spherical polynomials of
Sn−1 with respect to SO(n)/SO(n − 1). For the 2–sphere S2, i.e. for λ = 1/2,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1588 DANIEL POTTS, GABRIELE STEIDL, AND MANFRED TASCHE

Table 1

N λ ak ε(CA) ε(FPT)
256 0.5 1/(k + 1) 3.88E − 16 3.77E − 13
512 0.5 1/(k + 1) 1.59E − 14 5.73E − 12
1024 0.5 1/(k + 1) 4.21E − 13 8.98E − 12
2048 0.5 1/(k + 1) 2.11E − 12 3.19E − 11
256 1.5 1/(k + 1) 1.88E − 13 8.36E − 13
512 1.5 1/(k + 1) 6.12E − 13 1.29E − 11
1024 1.5 1/(k + 1) 1.26E − 12 8.00E − 11
256 5 1/(k + 1) 1.15E − 13 2.72E − 13
512 5 1/(k + 1) 5.15E − 13 4.37E − 12
1024 5 1/(k + 1) 1.04E − 12 5.18E − 12
256 2 1 2.44E − 13 7.52E − 13
512 2 1 8.61E − 13 6.61E − 12
1024 2 1 1.71E − 12 4.82E − 12

the ultraspherical polynomials are the Legendre polynomials. For given ak ∈ R
(k = 0, . . . , N) we compute

âj =
N∑

k=0

ak Pλ
k (cN

j) (j = 0, . . . , N)(5.1)

by the Clenshaw algorithm (CA) in double precision arithmetic, the Clenshaw al-
gorithm realized in Maple with high precision arithmetic of 64 digits (CA64), and
by our fast polynomial transform (FPT) in double precision arithmetic. Table 1
compares the results for different transform lengths N ranging between 256 and
2048 and various parameters λ. The third column of the table contains the given
coefficients ak, while the fourth and last columns contain the relative error ε(CA)
of the Clenshaw algorithm defined by

ε(CA) := max
0≤j≤N

|âj(CA)− âj(CA64)|/ max
0≤j≤N

|âj(CA64)|

and the relative error of Algorithm 3.2 given by

ε(FPT) := max
0≤j≤N

|âj(FPT)− âj(CA64)|/ max
0≤j≤N

|âj(CA64)| .

Here âj(CA), âj(CA64) and âj(FPT) denote the corresponding results of (5.1) using
CA, CA64 and FPT, respectively.

Note that both the Clenshaw algorithm and fast polynomial transform realize
the problem (5.1) with almost the same precision, but our method is much faster
than the Clenshaw algorithm as shown in Example 5.2.

Example 5.2. As in Example 5.1 we use ultraspherical polynomials. It is well–
known that the Clenshaw algorithm requires N2 multiplications and 3N2 additions.
Algorithm 3.2 is significantly faster for large N ≥ 128. The third and fourth
columns of Table 2 list the CPU-times t(CA) and t(FPT) (in seconds) for the
Clenshaw algorithm and for Algorithm 3.2. The last column contains the relative
error

ε̃(FPT) := max
0≤j≤N

|âj(FPT)− âj(CA)|/ max
0≤j≤N

|âj(CA)|.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

FAST ALGORITHMS FOR DISCRETE POLYNOMIAL TRANSFORMS 1589

Table 2

N λ t(CA) t(FPT) ε̃(FPT)
128 0.5 0.05 0.04 3.59E − 14
256 0.5 0.21 0.07 4.35E − 12
512 0.5 0.82 0.19 4.93E − 12
1024 0.5 3.27 0.39 5.78E − 11
2048 0.5 13.70 0.85 2.09E − 10
4096 0.5 55.41 1.92 1.04E − 09
8192 0.5 220.05 4.26 5.04E − 08
4096 2.5 55.43 1.91 1.72E − 09
4096 4.0 55.42 1.91 6.41E − 10
4096 5.0 55.42 1.92 3.35E − 10

Here the original coefficients ak (k = 0, . . . , N) are randomly distributed in the
interval [−0.5, 0.5].

6. Conclusions

A motivation to consider the discrete polynomial transforms (1.4) and (1.5)
with respect to the 2N + 1 Chebyshev nodes c2N

j (j = 0, . . . , 2N) arises from the
Clenshaw–Curtis quadrature which seems to be very useful for the computation of
the Fourier coefficients in (1.2) in the case of Legendre polynomials Pn, i.e. w = 1.
However, other quadrature rules may be of interest. Gaussian quadrature reduces
the number of required nodes in (1.3) from 2N + 1 to N + 1. Hence a natural
question is how to compute

N∑
k=0

ak Pk(xM
j) (j = 0, . . . , M ; M ≥ N)

for arbitrary xM
j ∈ [−1, 1] and ak ∈ R in an efficient way. The heart of our method,

the basis exchange in Algorithm 3.2 is independent of the choice of knots xM
j . So

it remains to perform the final step of our algorithm, the computation of

N∑
k=0

ãk Tk(xM
j) (j = 0, . . . , M) ,(6.1)

in a fast way. One possibility for realizing (6.1) in O(M log2M) arithmetical op-
erations based on a (heuristic) stabilization of the Borodin–Munro algorithm was
suggested in [14]. We prefer the application of the fast adaptive multipole method
(see [8]), which computes (6.1) in O(M log 1/ε) arithmetical operations, where ε
denotes the desired precision. This approach seems to be interesting in connection
with fast Fourier transforms on spheres and on distance transitive graphs, too (see
[7]). The results will be presented in a forthcoming paper.

Acknowledgement

The authors thank the referee for helpful comments and for pointing out the
references [10] and [12].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1590 DANIEL POTTS, GABRIELE STEIDL, AND MANFRED TASCHE

References

[1] B. K. Alpert and V. Rokhlin, A fast algorithm for the evaluation of Legendre expansions,
SIAM J. Sci. Statist. Comput. 12 (1991), 158 – 179. MR 91i:65042

[2] G. Baszenski and M. Tasche, Fast polynomial multiplication and convolutions related to the
discrete cosine transform, Linear Algebra Appl. 252 (1997), 1 – 25. CMP 97:06

[3] S. Belmehdi, On the associated orthogonal polynomials, J. Comput. Appl. Math. 32 (1991),
311 – 319. MR 92e:33007

[4] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York,
1978. MR 58:1979

[5] C. W. Clenshaw, A note on the summation of Chebyshev series, Math. Comp. 9 (1955), 118
– 120. MR 17:194e

[6] J. R. Driscoll and D.M. Healy, Computing Fourier transforms and convolutions on the 2–
sphere, Adv. in Appl. Math. 15 (1994), 202 – 240. MR 95h:65108

[7] J. R. Driscoll, D. M. Healy and D. Rockmore, Fast discrete polynomial transforms with
applications to data analysis for distance transitive graphs, SIAM J. Sci. Comput. 26 (1997),
1066–1099. CMP 97:15

[8] A. Dutt, M. Gu and V. Rokhlin, Fast algorithms for polynomial interpolation, integration
and differentiation, SIAM J. Numer. Anal. 33 (1996), 1689–1711. MR 97h:65015

[9] W. Gautschi, The condition of Vandermonde-like matrices involving orthogonal polynomials,
Linear Algebra Appl. 52/53 (1983), 293 – 300. MR 84i:65043

[10] D. M. Healy, S. Moore and D. Rockmore, Efficiency and stability issues in the numerical
convolution of Fourier transforms and convolutions on the 2–sphere, Technical Report, Dart-
mouth College, 1994.

[11] N. J. Higham, Fast solution of Vandermonde–like systems involving orthogonal polynomials,
IMA J. Numer. Anal. 8 (1988), 473 – 486. MR 89k:65067

[12] D. Maslen, A polynomial approach to orthogonal polynomial transforms, Research Report,
Max–Planck–Institute of Mathematics, Bonn, 1994.

[13] S. S. B. Moore, Efficient stabilization methods for fast polynomial transforms, Thesis, Dart-
mouth College, 1994.

[14] S. S. B. Moore, D.M. Healy and D.N. Rockmore, Symmetry stabilization for fast discrete
monomial transforms and polynomial evaluation, Linear Algebra Appl. 192 (1993), 249 –
299. MR 94g:65148

[15] S. A. Orszag, Fast eigenfunction transforms, in: Science and Computers (G.C. Rota, ed.),
Academic Press, New York, 1986, 23 – 30.

[16] V. Pan, Fast evaluation and interpolation at the Chebyshev sets of points, Appl. Math. Lett.
34 (1989), 255 – 258. CMP 21:17

[17] K. R. Rao and P. Yip, Discrete Cosine Transform, Academic Press, Boston, 1990. MR
92b:94003

[18] G. Steidl, Fast radix–p discrete cosine transform, Appl. Algebra in Engrg. Comm. Comput.
3 (1992), 39 – 46. MR 95m:65221

[19] G. Steidl and M. Tasche, A polynomial approach to fast algorithms for discrete Fourier–cosine
and Fourier–sine transforms, Math. Comp. 56 (1991), 281 – 296. MR 91h:65225

[20] J. Wimp, Computation with Recurrence Relations, Pitman Press, Boston, 1984. MR
85f:65001

Fachbereich Mathematik, Universität Rostock, D–18051 Rostock

E-mail address: daniel.potts@stud.uni-rostock.de

Fakultät für Mathematik und Informatik, Universität Mannheim, D–68131 Mannheim

E-mail address: steidl@kiwi.math.uni-mannheim.de

Fachbereich Mathematik, Universität Rostock, D–18051 Rostock

E-mail address: manfred.tasche@mathematik.uni-rostock.de

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

