
Fast Algorithms for Finding

Randomized Strategies in Game Trees

Daphne Koller∗

daphne@cs.berkeley.edu
Nimrod Megiddo†

megiddo@almaden.ibm.com
Bernhard von Stengel‡

i51bbvs@rz.unibw-muenchen.de

Abstract

Interactions among agents can be conveniently de-
scribed by game trees. In order to analyze a game, it
is important to derive optimal (or equilibrium) strate-
gies for the different players. The standard approach
to finding such strategies in games with imperfect in-
formation is, in general, computationally intractable.
The approach is to generate the normal form of the
game (the matrix containing the payoff for each strat-
egy combination), and then solve a linear program (LP)
or a linear complementarity problem (LCP). The size
of the normal form, however, is typically exponential
in the size of the game tree, thus making this method
impractical in all but the simplest cases. This paper
describes a new representation of strategies which re-
sults in a practical linear formulation of the problem of
two-player games with perfect recall (i.e., games where
players never forget anything, which is a standard as-
sumption). Standard LP or LCP solvers can then be
applied to find optimal randomized strategies. The re-
sulting algorithms are, in general, exponentially better
than the standard ones, both in terms of time and in
terms of space.

∗Computer Science Division, University of California, Berke-
ley, CA 94720; and IBM Almaden Research Center, 650 Harry
Road, San Jose, CA 95120

†IBM Almaden Research Center, 650 Harry Road, San Jose,
CA 95120; and School of Mathematical Sciences, Tel Aviv Uni-
versity, Tel Aviv, Israel.

‡Informatik 5, University of the Federal Armed Forces at Mu-
nich, 85577 Neubiberg, Germany.

Research supported in part by ONR Contract N00014-91-C-0026,
by the Air Force Office of Scientific Research (AFSC) under
Contract F49620-91-C-0080, and by the Volkswagen Foundation.
Some of the work was performed while the first author was at
Stanford University. The United States Government is authorized
to reproduce and distribute reprints for governmental purposes.

In: Proceedings of the 26th ACM Symposium on the Theory of
Computing, 1994, 750–759

1 Introduction

Game theory models and analyzes situations involving
conflict and cooperation among independent decision
makers. It has played a substantial role in economics [1],
and has been applied to biology [19], safeguards systems
[2] and in the military [18], among other areas.

In computer science, the idea of modeling interac-
tive situations as games is becoming more common.
The classic paper of Chandra, Kozen and Stockmeyer
[5] characterized the class PSPACE in terms of two-
player games. The later work on interactive proof sys-
tems [34, 7] is also best understood in those terms.
Reif [31] extends the paradigm of interactive proofs to
a more general class of games. Worst-case analysis of
algorithms can also be viewed naturally as a game be-
tween the solver and an adversary. For example, Yao’s
technique of proving lower bounds for randomized al-
gorithms [39] follows directly from the classical mini-
max theorem [36] from game theory. A number of re-
cent results in online computation are based on game-
theoretic techniques (most obviously [3]). Game theory
has been used in artificial intelligence to model inter-
actions among intelligent agents, for example [32]. In
the context of distributed systems, such issues as collec-
tive coin flipping [4] and privacy and security [14] have
been analyzed using games. Other interactions relevant
to computer science, such as network routing or load-
sharing in distributed systems, also seem to fit naturally
in a game-theoretic framework.

If an interactive situation is described as a game, a
formal analysis should find optimal (or payoff maximiz-
ing) strategies for the players, and determine the ex-
pected outcome of the game. This analysis must take
into account that the payoff for a player’s strategy de-
pends on the strategies of the other players. This is
inherent in game-theoretic reasoning. A solution to a
game is a certain combination of strategies, possibly
randomized, one for each player. This combination is
a Nash equilibrium if it is self-enforcing—no player can
gain by unilaterally deviating from it (see Section 3).
The Nash equilibrium is the central solution concept
of noncooperative game theory. It reflects the modern

750

paradigm that all players act individually, and coop-
erative acts (such as signing a contract) are explicitly
modeled and must be rational for each player. As shown
by Nash [30], every game has an equilibrium, possibly
requiring the use of randomized strategies. The algo-
rithmic problem is to find one.

In this paper, we investigate the problem of solv-
ing two-person games represented as game trees. We
present algorithms both for zero-sum games and gen-
eral games. (A game is zero-sum if the sum of the
payoffs to the two players is always zero, so their in-
terests are in conflict.) Our algorithms are, in general,
exponentially better than the standard approach to the
problem. They thus provide the first practical method
for solving games that are not toy problems nor have a
special structure.

The complexity of solving a game depends highly on
the form in which the game is represented. A game may
be described by its rules, by a tree or by payoff matri-
ces. The conversion from a tree to a matrix may in-
crease the size exponentially. The increase in size when
a tree is generated from rules may not even be bounded.
Thus it is not surprising that games are typically hard to
solve when represented using their rules. For example,
it is PSPACE-hard to find optimal strategies for gen-
eralized Go [27] and a variety of other games [33, 11],
and EXPTIME-complete to find optimal strategies for
generalized Chess [12] or generalized Checkers [13].

A game in extensive form is represented as a tree (a
formal definition is given in Section 2). The nodes of
the tree are game states (e.g., chess board positions to-
gether with the history of the game), the branchings re-
sult from the players’ actions. The tree structure some-
times allows us to use backward induction as a solution
method: Intuitively, backward induction computes op-
timal moves at each node of the tree, assuming that
optimal moves at all of its descendants have already
been computed. For games with perfect information,
this idea is precisely the well-known max-min algorithm,
due to Zermelo [40]. (A game has perfect information
if at each point in the game all players know the en-
tire history of the game up to that point. Thus, chess
is a game with perfect information while poker is not.)
In many situations to which game theory applies, the
game tree is explicitly given; in such cases, it is typi-
cally not too large, so that the max-min algorithm is
an effective computational approach. There has been a
great deal of work on heuristics for reducing the running
time of max-min search on larger game trees, where an
exhaustive traversal of the entire tree is infeasible.

Game trees also allow us to represent situations where
players have imperfect information about the present
state of the game. In general, the solution to an
imperfect-information game typically involves random-
ized strategies, a complication which is clearly unneces-

sary in the case of perfect information. Unfortunately,
backward induction does not suffice for solving such
games. The typical algorithms for solving extensive-
form games with imperfect information operate by con-
verting the game tree into normal form.

A game in normal form is represented by a matrix
which describes the payoffs to the players under each
possible strategy combination. A two-player zero-sum
game in normal form can be solved in polynomial time
in the size of the matrix using linear programming. In
fact, solving such games is easily shown to be equivalent
to general linear programming, so that the problem is
P-complete. A Nash equilibrium of a general two-player
game in normal form can be found by solving a linear
complementarity problem (LCP). The associated LCP
can be solved by Lemke’s [25] or the related Lemke-
Howson algorithm [26], whose running time is in the
worst case exponential in the size of the normal form,
but which seems to work better in practice. The prob-
lem of finding an equilibrium is known neither to belong
to P nor to be NP-hard. The complexity of various as-
sociated problems has been studied in [16, 20, 15].

Applied to extensive-form games, these normal-form
algorithms are typically impractical for any but toy
problems. The reason is that the size of the normal
form is, in general, exponential in the size of the game
tree: each possible combination of moves determines a
strategy and thus generates a row or column of the ma-
trix. Even for game trees with a few dozen nodes, the
resulting normal form is huge, so that it is infeasible
to solve the resulting LP or LCP. This computational
difficulty has often forced analysts to find solution tech-
niques tailored to specific games [24] or even to abandon
the game-theoretical approach altogether [28].

There has been some work on the problem of solv-
ing extensive form games directly. Thereby, backward
induction is used to generate strategies for LP or LCP
solvers dynamically from the game tree. Wilson [38]
presented an algorithm that directly solves two-person
games with perfect recall, where the players do not for-
get facts they once knew. While Wilson conjectured
that his algorithm is efficient, he was not able to prove
this fact (see Section 4). Koller and Megiddo [21] pre-
sented the first polynomial time algorithm for solving
zero-sum games with perfect recall. Their algorithm,
however, is based on the ellipsoid algorithm for linear
programming [17], and is therefore not very practical.
They also showed that, in games with imperfect recall ,
the problem of solving such games is NP-hard.

In this paper, we present a method that avoids the
exponential blowup of the normal-form transformation.
The basic idea is that the outcome of the game de-
pends only on the distribution of probability weights
that a randomized strategy induces on the leaves of the
tree. We represent a strategy compactly in terms of

751

these realization weights, as introduced in [21]. These
are defined directly in terms of the game tree, so their
total size is linear rather than exponential in its size.
As we show, this compact representation has a number
of advantages. It can be used to construct a simple
exponential-time algorithm for solving arbitrary two-
person games (even with imperfect recall). It can also be
used to provide a proof that Wilson’s algorithm [38] is
efficient. Also under the assumption of perfect recall, we
can obtain further results. Then, the realization weights
can be defined by a small system of linear constraints
[21, 37]. In fact, the matrix representing this system is
sparse and of linear size in the size of the game tree if
stored sparsely. In [37], von Stengel noted that the same
holds for the payoff matrices if the players are treated
symmetrically. Using realization weights and LP dual-
ity, equilibrium strategies can then be found by solving
a corresponding LP or LCP. We obtain the following
two major results:

Theorem 1.1 The optimal strategies of a two-player
zero-sum perfect-recall game in extensive form are the
solutions of a linear program whose size, in sparse rep-
resentation, is linear in the size of the game tree.

Theorem 1.2 The Nash equilibria of a general two-
player perfect-recall game in extensive form are the so-
lutions of a linear complementarity problem whose size,
in sparse representation, is linear in the size of the game
tree. The problem of finding an equilibrium can be solved
by Lemke’s algorithm.

We therefore obtain an efficient polynomial-time al-
gorithm in the zero-sum case, and an often efficient
exponential-time algorithm in the general case. In both
cases, the complexity is measured in terms of the size
of the game tree. Our algorithms are therefore expo-
nentially better than the standard ones both in terms
of time and in terms of space.

2 Extensive-Form Games

This section recalls the standard definition of a game in
extensive form [23]. The basic structure of the game is a
finite directed tree whose nodes denote game states. A
play of the game starts at the root, proceeds according
to the players’ actions, and ends at a leaf. Extensive-
form games can have any finite number of players, but
we will concentrate on the two-player case. We will
use the pronouns “she” for the first player and “he” for
the second one. The internal nodes of the tree are of
three types: decision nodes of player 1, decision nodes
of player 2, and nodes for chance moves. The outgoing
edges at a decision node represent possible actions at
that node, and have distinct labels called choices. A

play denotes the path from the root to some leaf. A
move is a choice taken on that path. The payoff func-
tion h determines a payoff vector h(a) ∈ IR2 for each
leaf a. The kth component hk(a) of h(a) is the payoff
at a to player k. The relation between the payoffs to the
two players is, in general, arbitrary. Thus, the interests
of the players may coincide in some circumstances, and
conflict in others. A zero-sum game models a situation
where the interests of the players are strictly opposed
in the sense that h2 = −h1 ; such a game is shown in
Fig. 1. In the zero-sum case, the payoffs to the first
player suffice to describe the game.

In order to represent situations where players may not
know everything that occurs in the game (for example,
in the game of poker one player’s hand is not known to
other players), the set of decision nodes is partitioned
into information sets. Each information set u belongs
to exactly one player k. Intuitively, the player cannot
differentiate between different nodes in the same infor-
mation set. This implies that at each node a in u, the
player must have the same set Cu of choices (labels for
the outgoing edges) at u. For simplicity, it is assumed
that the choice sets Cu and Cu′ of any two information
sets u and u′ are disjoint. The set of all information
sets of player k is denoted by Uk . The set

⋃
u∈Uk Cu

of all choices of player k is denoted by Dk . We make
the standard assumption that an information set is not
visited more than once during one play. Finally, the be-
havior at the chance nodes is specified by a function β
which defines a probability distribution over the possi-
ble choices at each chance node.

The players plan their actions according to strate-
gies. The basic strategy in an extensive-form game is
a pure (or deterministic) strategy. A pure strategy πk

of player k specifies a choice at each information set
u ∈ Uk . (Note that since the player knows only which
information set he or she is at, a strategy must dictate
the same move at all nodes in an information set.) Let
P k denote the set of player k’s pure strategies. Clearly,
this set is the cartesian product

∏
u∈Uk Cu . A mixed

strategy µk of player k is a probability distribution on
the set P k of his or her pure strategies. We can define
the expected payoff H(µ) for each pair of mixed strate-
gies µ = (µ1, µ2). A strategy pair µ, together with β ,
induces a probability distribution on the leaves of the
tree. We denote the probability for reaching a leaf a by
Prµ(a). The expected payoff H(µ) is then defined to
be

H(µ) =
∑

a

Prµ(a)h(a). (1)

3 Solving Games

A solution to a game is a pair of strategies, one for each
player. It should satisfy the minimal requirement of

752

•

©©©©©©©©©©©©

•

.2

¢
¢
¢
¢
¢
¢

•

.2

@
@

@
@

@
@

•

.2

HHHHHHHHHHH
5

.4

¯
¯
¯
¯
¯

5

l

L
L

L
L

L
L

•

r

¤
¤
¤
¤
¤

10

c

C
C
C
C
C

20

d

¢
¢
¢
¢
¢
¢

•

c

A
A

A
A

A
A

•

d

¢
¢
¢
¢
¢
¢

•

p

A
A

A
A

A
A

•

q

¤
¤
¤
¤
¤

20

s

C
C
C
C
C

50

t

¤
¤
¤
¤
¤

30

s

C
C
C
C
C

15

t

¤
¤
¤
¤
¤

10

L

C
C
C
C
C

15

R

¤
¤
¤
¤
¤

20

L

C
C
C
C
C

−5

R

chance

º

¹

·

¸
1

º

¹

·

¸
1

º

¹

·

¸
2

º

¹

·

¸
2

º

¹

·

¸
1

(p, s) (p, t) (q, s) (q, t)

(l, L, c) 9 15 9 15
(l, L, d) 13 10 13 10
(l, R, c) 9 15 9 15
(l, R, d) 13 10 13 10

Note: the payoffs for the bottom 4 rows (r, ∗, ∗) are
corrected, which were wrong in the original STOC
paper, as pointed out to us by Brian Sheppard.

(r, L, c) 10 16 12 18
(r, L, d) 14 11 16 13
(r,R, c) 11 17 7 13
(r,R, d) 15 12 11 8

Figure 1. A zero-sum game in extensive form. From the root
of the game tree, there is a chance move with the indicated prob-
abilities. The ovals denote information sets, with the player to
move written as a number inside. The leaves show the payoffs to
player 1.

Figure 2. Normal form of the game in Fig. 1. The
rows and columns denote the pure strategies of player
1 and 2. The matrix entries are the expected payoffs
to player 1. One of the first two pairs of rows is
redundant because pure strategies with the choices
l, L and l, R have the same effect. They are identified
in the reduced normal form.

equilibrium: having been given the solution, no player
should be able to gain by unilaterally deviating from it.
Technically, a strategy pair (µ1, µ2) is an equilibrium if
µ1 is a best response to µ2 and µ2 is a best response to
µ1 , where a strategy µ1 is a best response to the strategy
µ2 of player 2 if it yields the maximum possible payoff
H1(µ1, µ2) to player 1 against µ2 (a best response of
player 2 is defined analogously). Nash [30] proved that
every game has such an equilibrium.

For zero-sum games, the equilibrium is a particu-
larly strong solution concept. There, it is equivalent
to a pair of max-min strategies, where each player opti-
mizes his or her worst-case expected payoff. A max-min
strategy for player 1 is a strategy µ1 that maximizes
minµ2 H1(µ1, µ2). A max-min strategy for player 2 is
defined similarly. Hence, in a zero-sum game, the best
worst case payoff is also the best payoff that a player
can expect against a rational opponent. Furthermore,
a player can choose to play his or her max-min strat-
egy independently of the actions of the other player. In
general two-player games, equilibrium strategies do not
have these properties.

The standard method for solving any extensive-form
game calls for constructing the normal form (also known
as strategic form). In this form, all possible pure strat-
egy pairs of the players are tabulated, along with the ex-
pected payoff for each player when such a strategy pair

is played. More precisely, assume that |P 1| = n and
|P 2| = m. In the case of general two-player games, also
called bimatrix games, the normal form is a pair of m×n
matrices A and B . A row represents a pure strategy
π1 ∈ P 1 of player 1, a column represents a simultane-
ously chosen pure strategy π2 ∈ P 2 of player 2, and the
corresponding entries in A and B are H1(π1, π2) and
H2(π1, π2), respectively. In zero-sum games, B = −A,
so the normal form of the game is completely specified
by A. Figure 2 shows such a matrix game. The normal
form representation loses all of the structure encoded in
a game tree. On the other hand, games in this form are
quite simple to solve. The methods are well known. The
following exposition, however, will allow us to apply the
same principles to a much smaller strategic represention,
described in Section 5 below.

Consider a mixed strategy µ1 and recall that, by def-
inition, it is a probability distribution on P 1 . We can
represent µ1 as a vector x with m components repre-
senting the probabilities µ1(π1) assigned by µ1 to the
pure strategies π1 in P 1 . In fact, any nonnegative m-
vector x = (x1, . . . , xm)T with

∑m
i=1 xi = 1 describes

a mixed strategy. Similarly, a mixed strategy µ2 can
be represented by an n-vector y . It is easy to see that
the expected payoff H1(µ1, µ2) is equal to the matrix
product xT Ay , and similarly H2(µ1, µ2) = xT By .

753

In order to derive algorithms for computing an equi-
librium, we consider first the problem of finding a best-
response strategy for one player against a given mixed
strategy of the other player. For example, player 1
wishes to maximize her payoff against a given strat-
egy y by choosing her decision variables xi suitably.
We have seen that the vector x defines a mixed strat-
egy µ1 iff it satisfies certain linear constraints. Besides
the inequality x ≥ 0, this is just a single equation:
Ex = e, where E is a 1 × m matrix of 1’s, and e is
the scalar 1. We write this constraint in a general fash-
ion, since later we will use a different representation to
characterize mixed strategies: one with fewer decision
variables xi but more than a single equation. The subse-
quent reasoning will be valid for an arbitrary matrix E
and right-hand side e. Similarly, y represents a mixed
strategy µ2 of player 2 iff y ≥ 0 and Fy = f , where the
F is a 1× n matrix of 1’s and the right-hand side f is
the scalar 1. Again, F and f will later be generalized.

We consider the problem of finding a best response y
to player 1’s strategy x. This is a linear program:

maximize
y

(xT B)y

subject to Fy = f ,

y ≥ 0 .

(2)

In the dual problem of (2), a new unconstrained variable
is introduced for each equation, yielding a vector q with
the same dimension as F and f (so q is in the present
case just a scalar), and the roles of objective function
and right-hand side are exchanged:

minimize
q

qT f

subject to qT F ≥ xT B .
(3)

Any pair y, q of feasible solutions of the primal (2)
and its dual (3) obviously satisfies qT f = qT Fy ≥
(xT B)y . This is known as the weak duality theorem,
stating that feasible primal and dual objective function
values comprise mutual bounds. By the strong duality
theorem [10], they are equal at optimality; that is, y, q
is an optimal pair iff

qT f = qT Fy = xT By. (4)

Analogously, a best response x to the strategy y of
player 2 is a solution to the following problem:

maximize
x

xT (Ay)

subject to xT ET = eT ,

x ≥ 0 .

(5)

The dual problem (6) uses the unconstrained vector p,
in the present case again just a scalar:

minimize
p

eT p

subject to ET p ≥ Ay .
(6)

Again, a pair x, p of feasible solutions to (5) and (6)
satisfies eT p ≥ xT Ay , and is optimal iff

eT p = xT ET p = xT Ay . (7)

Note that in both cases, the primal and dual programs
have the same value. In the case of (5) and (6) this is
the best payoff player 1 can achieve if player 2 plays y .

In order to find an equilibrium, we need to find x and
y such that each is a best response to the other. For a
zero-sum game, this can be computed with the following
LP which is essentially (6) but with variables p and y :

minimize
y,p

eT p

subject to −Ay + ET p ≥ 0

− Fy = −f ,

y ≥ 0 .

(8)

The intuition used in deriving this LP is as follows.
Since the game is zero-sum, the optimal value eT p of
(6) is the payoff that player 2, if he plays y , has to give
to player 1. The system (8) reflects player 2’s wish to
minimize this payoff. Hence, the result of (8) is a max-
min strategy for him and thus part of an equilibrium
because the game is zero-sum. The dual of (8) is

maximize
x,q

− qT f

subject to xT (−A) − qT F ≤ 0

xT ET = eT ,

x ≥ 0 .

(9)

In a zero-sum game, −A = B , so (9) is just (3) but with
variables q and x. Optimal solutions (y, p) and (x, q)
to (8) and (9) fulfill eT p = −qT f by strong duality.
Since eT p ≥ xT Ay = −xT By ≥ −qT f , (7) and (4)
must hold, so that these solutions are also optimal for
(2), (3), (5), and (6).

An equilibrium of the zero-sum game, that is, a pair
of optimal solutions to (8) and (9), is simultaneously
computed by the simplex algorithm [10]. The problem
can of course be solved in polynomial time (in the size
of the matrix) by any polynomial linear programming
algorithm.

In the case of a non-zero-sum game, the problem of
finding equilibrium strategies for the players defines the
following problem: find x ≥ 0, y ≥ 0, p, q so that

−Ay + ET p ≥ 0

−BT x + F T q ≥ 0

−Ex = −e

− Fy = −f ,

(10)

and so that

xT (−Ay + ET p) = 0,

yT (−BT x + F T q) = 0 .
(11)

754

The orthogonality conditions (11) are equivalent to (7)
and (4), and are known as complementary slackness con-
ditions in linear programming.

The system (10) and (11) is a linear complementar-
ity problem (LCP) [8]. All solutions to this system can
be found with a simple complete enumeration scheme
whose running time is exponential in the size of the ma-
trix. Lemke’s algorithm [25] finds one solution to this
system, i.e., one equilibrium, without the complete enu-
meration; it is known that certain equilibria are “elu-
sive” to this method. A closely related algorithm by
Lemke and Howson [26] uses a slightly different LCP
involving only A and B ; for a nice exposition see [35].
Termination of Lemke’s algorithm for the LCP (10) is
not proved in [25]. This is a special case of our Theo-
rem 1.2 (see Section 5).

While Lemke’s algorithm typically avoids complete
enumeration, its worst-case running time is still expo-
nential. Deciding if a general LCP has a solution is
NP-complete [6], but the present LCP always has one.
As we mentioned in the introduction, it is not known
whether an equilibrium of a bimatrix game can be found
in polynomial time; the problem is also not known to be
NP-hard. The related NP-hardness results of Gilboa
and Zemel [16] concern questions that essentially require
consideration of all equilibria. The complexity of find-
ing a single equilibrium of such a game is an important
open question that remains unresolved.

Unfortunately, for a game in extensive form, even if it
is zero-sum, the algorithms described in this section are
typically impractical. The reason is that the algorithms
are based on the normal form of the game, which can be
very large. By definition, the normal form lists all pure
strategies of both players. This number is exponential,
since each combination of choices defines a pure strat-
egy. It is sometimes possible to reduce the size of the
normal form by eliminating redundant rows or columns
in the matrix [9]. These are caused by certain informa-
tion sets that are unreachable due to an earlier choice
of the player. Unfortunately, this reduced normal form
may still have exponential size. This is also observed
in practice [28, 38]. A further reduction of bimatrix
games, based on elimination of payoff-dominated rows
or columns has been studied in [20, 15].

4 Realization Weights

Mixed strategies assign a probability to each of the ex-
ponentially many pure strategies. It turns out that some
of this information is redundant. Intuitively, the effect
of a mixed strategy µk in a game is determined by its
behavior at the leaves of the game tree. However, a
strategy µk for a single player does not define a proba-
bility distribution on the leaves: the probability Prµ(a)

also depends on the other player’s strategy. We there-
fore need an alternative notion: realization weights.

Let k be a player, k = 1, 2, and let a be a node of
the game tree. There is a unique path from the root
to a. On this path, certain edges correspond to moves
of player k. The string of labels of these edges is de-
noted by σk(a) and is called the sequence of choices of
player k leading to a. It may be the empty sequence ∅,
for example if a is the root.

For the moment, we consider the leaves a. The se-
quence σk(a) describes the choices that player k has to
make so that a can be reached in the game. A pure
strategy πk can only reach a if it chooses to make every
move in σk(a) at the appropriate information sets. For
a mixed strategy µk , we define the realization weight
of a under µk , denoted by µk(σk(a)), to be the sum of
the probabilities µk(πk) over all those πk whose choices
match those required by σk(a). Let β(a) denote the
product of the chance probabilities on the path to a, and
consider a pair µ = (µ1, µ2) of mixed strategies. When
these strategies are used, then a is obviously reached
with probability

Prµ(a) = µ1(σ1(a)) µ2(σ2(a))β(a). (12)

Now, consider two mixed strategies µ1 and µ̃1 that
generate the same realization weights. Then for any
strategy µ2 , the probabilities of reaching the leaves of
the tree are the same. Therefore, by (1), the expected
payoffs H(µ1, µ2) and H(µ̃1, µ2) are also equal. This
justifies our intuition that the set {µk(σk(a))}a of re-
alization weights of the leaves a captures all the rele-
vant information about µk . We call such strategies µ1

and µ̃1 equivalent . (This corresponds to a standard no-
tion of equivalence of strategies [9].) A set of realization
weights therefore describes an equivalence class of mixed
strategies. Using techniques of [22], we can prove that
this equivalence class contains a member that can be
represented compactly. More precisely, define the sup-
port of µk to be the set of pure strategies to which it
assigns positive probability.

Theorem 4.1 For any strategy µk there exists an
equivalent strategy µ̃k such that the support of µ̃k con-
tains at most ` pure strategies, where ` is the number
of leaves in the tree.

Therefore, although mixed strategies often use an ex-
ponential number of pure strategies, this is unnecessary.
Mixed strategies need never be “too large”: we need at
most a linear number of pure strategies in the size of the
game tree. There are several benefits to using a mixed
strategy whose support is small: (i) we need less space
to store it; (ii) it is easier to use while playing the game;
(iii) algorithms that use the strategy (for example, in or-
der to compute a best response to it) are more efficient;

755

(iv) it is easier to reason about and understand the be-
havior of the strategy in the game. But there is yet
another important benefit we can derive from the exis-
tence of strategies with small supports. When comput-
ing a solution, certain algorithms traverse all possible
supports for a potential solution strategy. In general,
the number of possible supports is exponential in the
size of normal form, and therefore doubly exponential
in the size of the tree. However, we only need to look
for strategies over small supports, and the number of
small supports is exponential in the size of tree. For
example, the complete enumeration algorithm for solv-
ing LCP’s, mentioned in Section 3, can be transformed
to run in exponential time in the size of the game tree
rather than in the size of the normal form. This allows
us to prove the following theorem:

Theorem 4.2 All the Nash equilibria of a general two-
player game in extensive form can be found in exponen-
tial time in the size of the game tree.

Currently, this is the only exponential-time algorithm
for computing equilibria in general two-player games
with imperfect recall. Player k is said to have perfect
recall if for any information set u ∈ Uk , any two nodes a
and b in u define the same sequence for player k, that is,
σk(a) = σk(b). Intuitively, if the player makes different
choices on the paths to a and b, and does not forget,
then he or she must be able to distinguish between a
and b, so these nodes belong to different information
sets.

As we mentioned in the introduction, Wilson [38]
presented an algorithm for solving general two-player
games with perfect recall. We can also use this idea
to provide a formal analysis for this algorithm. Wil-
son’s algorithm does not use the entire normal form.
Instead, only pure strategies actually used in a mixed
strategy are generated as needed from the game tree.
(The technique for generating pure strategies from the
game tree uses backward induction and hence requires
the assumption of perfect recall.) Wilson justified this
by the observation “commonly verified in computational
experience on practical problems” that “the frequency
of equilibria using only a very few of the available pure
strategies is very high.” Our results show that Wilson’s
assumption is provably true, rather than being an exper-
imental observation. We can thus prove that Wilson’s
algorithm is indeed efficient (exponential in the size of
the game tree).

5 Sequences Instead of Strategies

As we showed in the previous section, the concept of re-
alization weights can be used to improve algorithms that
use mixed strategies as well as the analysis of such algo-
rithms. We can go further by computing directly with

realization weights instead of mixed strategy probabili-
ties. More precisely, in previous sections we considered
algorithms that compute with vectors x, y represent-
ing mixed strategies. We now present algorithms that
compute with vectors that directly represent realization
weights.

For our construction, we consider realization weights
for sequences in general rather than for sequences asso-
ciated with nodes. Let Sk be the set of sequences for
player k. We introduce a variable xσ for each σ ∈ S1

and a variable yσ for each σ ∈ S2 , and denote the vec-
tors with these components by x and y . Intuitively, a
component of x represents µ1(σ) for some σ ∈ S1 in
the same way as it represented µ1(π1) for some π1 ∈ P 1

in Section 3. The major problem in this context is in
deciding whether a particular vector x = (xσ) repre-
sents some mixed strategy µ1 . In general, this prob-
lem is NP-hard [22]. However, if the players have per-
fect recall, we can characterize realization weights by
a small set of linear constraints [21]. As in Section 3,
these constraints can be used to find equilibria as solu-
tions to an LP or LCP, but of small size. Essentially,
this corresponds to a strategic description of the game
(called sequence form in [37]) where sequences replace
pure strategies.1

For the remainder of this section, assume that both
players have perfect recall. In this case, every sequence
is either the empty sequence ∅ or the concatenation σuc
of a sequence σu = σk(a) for some node a ∈ u (for
some u ∈ Uk) and of c ∈ Cu . (The sequence σu is
unique by perfect recall, and needs no superscript k
since we know u ∈ Uk .) In the latter case, the sequence
is uniquely determined by the last choice c. The number
of sequences in Sk is therefore 1 + |Dk|. Given this
description of Sk , the following lemma and its analogue
for player 2 are easy to prove:

Lemma 5.1 The weights xσ for σ ∈ S1 are induced by
a mixed strategy µ1 iff they are nonnegative, x∅ = 1,
and xσu =

∑
c∈Cu

xσuc for all information sets u ∈ U1 .

This lemma allows us to use the LP approach of Sec-
tion 3. The vector x represents a mixed strategy iff
it satisfies the 1 + |U1| linear equations described in
Lemma 5.1. Mixed strategies of player 1 can thus be
represented by a small number, namely 1+|D1|, of vari-
ables, characterized by a small number, namely 1+|U1|,

1For games with perfect recall, realization weights are closely
related to behavior strategies. These use local randomization, by
describing a probability distribution over the choices at each infor-
mation set. In games with perfect recall, for every mixed strategy
there is an equivalent behavior strategy [23], so that we could
use behavior strategies as a compact representation of a mixed
strategy. However, behavior strategies are not suitable for the
purposes of computing equilibria, since the payoff cannot be de-
scribed as a linear function in the variables defining a behavior
strategy.

756

of linear constraints. We can therefore define a con-
straint matrix E and a right-hand-side e such that the
weights in x represent some mixed strategy iff Ex = e
and x ≥ 0 hold. The dimensions of E are linear in the
size of the tree because E is of size (1+|U1|)×(1+|D1|).
Furthermore, the matrix is sparse since there is one en-
try 1 for each column and one entry −1 for each row
except the first, and all other entries are zero. A similar
construction of y , F , and f goes through for player 2.
Such a construction for both players is illustrated in
Fig. 3.

The (1 + |D1|)× (1 + |D2|) payoff matrices A and B
for the two players are also easy to define. The payoff
contribution of a pair of sequences σ1 and σ2 is de-
termined by those leaves a such that σ1(a) = σ1 and
σ2(a) = σ2 . More than one leaf a may define the same
pair of sequences due to chance moves. The entries of
A and B are thus the sum over all such leaves a of
β(a)h1(a) and β(a)h2(a), respectively; as above, β(a) is
the product of chance probabilities along the path to a.
Entries of A and B for which the sequences do not
correspond to leaves are zero. Then, by (1) and (12),
players playing according to x and y receive the ex-
pected payoffs xT Ay and xT By . An example for A
(where B = −A) is shown in Fig. 3. Note that these
matrices have much smaller dimension and are easier to
construct than the normal form matrices. They are also
sparse, since there are at most linearly (as opposed to
quadratically) many nonzero entries, at most one per
leaf. In contrast, normal form matrices are full (com-
pare Fig. 2). When solving a large LP or LCP, sparsity
can be exploited successfully.

The argument of Section 3 can now be carried through
without change. As a result, a zero-sum game in exten-
sive form with perfect recall can be solved by an LP,
namely (8), of small size, which shows Theorem 1.1. If
the game has general payoffs, its equilibria are the solu-
tions to the LCP (10). This shows Theorem 1.2, except
for the claim that this LCP can be solved by Lemke’s
algorithm, which we will show in the remainder of this
paper.

Lemke’s algorithm [25] is a pivoting scheme similar
to the simplex algorithm for linear programming, but
with a different “complementarity” rule for the enter-
ing and leaving variables, and no objective function; for
expositions see [29, 8]. Under certain conditions, the
algorithm finds a solution z ∈ IRN to the LCP specified
by an N ×N matrix M and a vector b ∈ IRN :

z ≥ 0

b + Mz ≥ 0

zT (b + Mz) = 0 .

(13)

The LCP (10), (11) can be brought to this standard
form with z = (x,y, p′,p′′, q′, q′′)T , where p and q are

represented as differences p′−p′′ and q′−q′′ of nonneg-
ative vectors of the same dimension, respectively. Cor-
respondingly, each of the equations in (10) is replaced
by two inequalities, so that the constraints (10) have
the form b + Mz ≥ 0 with b = (0,0,e,−e,f ,−f)T .

It may happen that Lemke’s algorithm does not ter-
minate with a solution to the LCP (13). (The analogous
phenomenon occurs with the simplex algorithm in case
of an unbounded objective function.) One condition
that prevents this possibility is asserted in the following
Theorem 4.4.13 of [8].

Theorem 5.2 If (i) zT Mz ≥ 0 for all z ≥ 0, (ii)
z ≥ 0, Mz ≥ 0 and zT Mz = 0 imply bT z ≥ 0,
and (iii) the problem is nondegenerate, then Lemke’s
algorithm computes a solution of the LCP (13).

Nondegeneracy means that for each row i = 1, . . . , N ,
either zi or (b + Mz)i is nonzero for any solution z to
(13) and to a certain generalized system used in the
algorithm. This can always be achieved by slightly per-
turbing b, replacing it by b + (ε, ε2, . . . , εN)T for any
sufficiently small positive ε. Thereby, the solution is not
changed by performing the pivoting operations as if ε is
“just vanishing”, which is implemented by certain lex-
icographic comparisons only involving b and M (and
no ε); see [8, p. 340]. A similar technique for prevention
of cycling given a degenerate problem is known for the
simplex algorithm. With degeneracy thus taken care of,
Theorem 5.2 is employed using the following two lem-
mas, where the first is immediate from the structure of
the constraint matrices (see Fig. 3 for an example).

Lemma 5.3 The only nonnegative solutions x and y
to Ex = 0 and Fy = 0 are x = 0 and y = 0.

Lemma 5.4 Let p and q be unconstrained. Then
ET p ≥ 0 and F T q ≥ 0 imply eT p ≥ 0 and fT q ≥ 0.

Proof. Consider the following LP: maximize 0 subject
to Ex = e, x ≥ 0. It is feasible, so the value 0 of
its objective function is a lower bound for the objec-
tive function of the dual LP: minimize eT p subject to
ET p ≥ 0; hence eT p ≥ 0. Similarly, F T q ≥ 0 implies
fT q ≥ 0.

To show that the assumptions of Theorem 5.2 are
met, let z ≥ 0. By (10), zT Mz = xT (−A − B)y ,
which is nonnegative if A and B have no positive
entries. This can be assumed without loss of gener-
ality, by subtracting a constant from the payoffs to
the players at the leaves of the tree so that these be-
come nonpositive (this transformation does not change
the game). Furthermore, Mz ≥ 0 is equivalent to
−Ay + ET p ≥ 0, −BT x + F T q ≥ 0, Ex = 0 and
Fy = 0. Thus, by Lemma 5.3, x = 0 and y = 0, and

757

∅ p q s t

∅2
l1
r

rL2 4A =
rR3 −1
c2 4 10
d4 6 3

∅ p q s t

1
F = −1 1 1

−1 1 1

∅ l r rL rR c d

1
−1 1 1

E = −1 1 1
−1 1 1

1
0
0
0

e =

1
0
0

f =

Figure 3. Constraint matrices and payoff matrix for the realization weights of the
sequences in the game in Fig. 1. The matrices are sparse, zero entries are omitted.

therefore ET p ≥ 0 and F T q ≥ 0, and by Lemma 5.4,
bT z = eT p + fT q ≥ 0. This shows that an equilibrium
of the game is found by Lemke’s algorithm.

References

[1] R. J. Aumann and S. Hart, editors. Handbook of
Game Theory, Vol. 1. North-Holland, Amsterdam,
1992.

[2] R. Avenhaus. Safeguards Systems Analysis.
Plenum Press, New York, 1986.

[3] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and
A. Wigderson. On the power of randomization in
online algorithms. In Proc. 22nd STOC, pages 379–
386, 1990.

[4] M. Ben-Or and N. Linial. Collective coin flipping,
robust voting games and minima of Banzhaf values.
In Proc. 26th FOCS, pages 408–416, 1985.

[5] A. K. Chandra, D. C. Kozen, and L. J. Stock-
meyer. Alternation. Journal of the ACM, 28:114–
133, 1981.

[6] S. J. Chung. NP-completeness of the linear comple-
mentarity problem. Journal of Optimization The-
ory and Applications, 60:393–399, 1989.

[7] A. Condon, J. Feigenbaum, C. Lund, and P. Shor.
Probabilistically checkable debate systems and ap-
proximation algorithms for PSPACE-hard func-
tions (extended abstract). In Proc. 25th STOC,
pages 305–314, 1993.

[8] R. W. Cottle, J.-S. Pang, and R. E. Stone. The
Linear Complementarity Problem. Academic Press,
San Diego, 1992.

[9] N. Dalkey. Equivalence of information patterns and
essentially indeterminate games. In H. W. Kuhn
and A. W. Tucker, editors, Contributions to the
Theory of Games II, pages 217–243. Princeton Uni-
versity Press, Princeton, 1953.

[10] G. B. Dantzig. Linear Programming and Exten-
sions. Princeton University Press, Princeton, 1963.

[11] S. Even and R. E. Tarjan. A combinatorial problem
which is complete in polynomial space. Journal of
the ACM, 23:710–719, 1976.

758

[12] A. S. Fraenkel and D. Lichtenstein. Computing
a perfect strategy for n × n Chess requires time
exponential in n. Journal of Combinatorial Theory,
Series A, 31:199–214, 1981.

[13] A. S. Fraenkel and D. Lichtenstein. n by n Check-
ers is EXPTIME complete. SIAM Journal on Com-
puting, 13(2):252–267, 1984.

[14] M. Franklin, Z. Galil, and M. Yung. Eavesdropping
games: A graph-theoretic approach to privacy in
distributed systems. In Proc. 34th FOCS, pages
670–679, 1993.

[15] I. Gilboa, E. Kalai, and E. Zemel. The complexity
of eliminating dominated strategies. Mathematics
of Operations Research, 18(3):553–565, 1993.

[16] I. Gilboa and E. Zemel. Nash and correlated equi-
libria: Some complexity considerations. Games and
Economic Behavior, 1:80–93, 1989.

[17] M. Grötschel, L. Lovasz, and A. Schrijver. Ge-
ometric Algorithms and Combinatorial Optimiza-
tion. Springer-Verlag, 1988.

[18] O. Hájek. Pursuit Games. Academic Press, New
York, 1975.

[19] J. Hofbauer and K. Sigmund. The Theory of Evo-
lution and Dynamical Systems. Cambridge Univer-
sity Press, Cambridge, 1988.

[20] D. E. Knuth, C. H. Papadimitriou, and J. N. Tsit-
siklis. A note on strategy elimination in bimatrix
games. Operations Research Letters, 7:103–107,
1988.

[21] D. Koller and N. Megiddo. The complexity of two-
person zero-sum games in extensive form. Games
and Economic Behavior, 4:528–552, 1992.

[22] D. Koller and N. Megiddo. Finding small sample
spaces satisfying given constraints. SIAM Journal
on Discrete Mathematics, 1993. To appear.

[23] H. W. Kuhn. Extensive games and the problem of
information. In H. W. Kuhn and A. W. Tucker,
editors, Contributions to the Theory of Games II,
pages 193–216. Princeton University Press, Prince-
ton, 1953.

[24] Z. F. Lansdowne, G. B. Dantzig, R. P. Harvey, and
R. D. McKnight. Development of an algorithm to
solve multi-stage games. Technical report, Control
Analysis Corporation, Palo Alto, CA, 1973.

[25] C. E. Lemke. Bimatrix equilibrium points and
mathematical programming. Management Science,
11:681–689, 1965.

[26] C. E. Lemke and J. T. Howson, Jr. Equilibrium
points in bimatrix games. Journal of the Society
for Industrial and Applied Mathematics, 12:413–
423, 1964.

[27] D. Lichtenstein and M. Sipser. Go is polynomial-
space hard. Journal of the ACM, 27:393–401, 1980.

[28] W. F. Lucas. An overview of the mathematical
theory of games. Management Science, 15, Ap-
pendix P:3–19, 1972.

[29] K. G. Murty. Linear Complementarity, Linear
and Nonlinear Programming. Heldermann Verlag,
Berlin, 1988.

[30] J. F. Nash. Non-cooperative games. Annals of
Mathematics, 54:286–295, 1951.

[31] J. H. Reif. The complexity of two-player games of
incomplete information. Journal of Computer and
Systems Sciences, 29:274–301, 1984.

[32] J. S. Rosenschein. Consenting agents: Negotiation
mechanisms for multi-agent systems. In Proc. 13th
IJCAI, pages 792–799, 1993.

[33] T. J. Schaefer. On the complexity of some two-
person perfect-information games. Journal of Com-
puter and Systems Sciences, 16:185–225, 1978.

[34] A. Shamir. IP = PSPACE. Journal of the ACM,
39:869–877, 1992.

[35] L. S. Shapley. A note on the Lemke-Howson algo-
rithm. Mathematical Programming Study, 1:175–
189, 1974.

[36] J. von Neumann and O. Morgenstern. The The-
ory of Games and Economic Behavior. Princeton
University Press, Princeton, 2nd edition, 1947.

[37] B. von Stengel. LP representation and efficient
computation of behavior strategies. Technical
Report S-9301, University of the Federal Armed
Forces at Munich, 1993.

[38] R. Wilson. Computing equilibria of two-person
games from the extensive form. Management Sci-
ence, 18:448–460, 1972.

[39] A. C. Yao. Probabilistic computation: Towards a
unified measure of complexity. In Proc. 18th FOCS,
pages 222–227, 1977.

[40] E. Zermelo. Über eine Anwendung der Mengen-
lehre auf die Theorie des Schachspiels. In E. W.
Hobson and A. E. H. Love, editors, Proc. 5th In-
ternational Congress of Mathematicians II, pages
501–504. Cambridge University Press, Cambridge,
1913.

759

