
IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. X, JANUARY 200X 1

Fast Algorithms for Low-Delay SBR

Filterbanks in MPEG-4 AAC-ELD
Ravi K. Chivukula, Yuriy A. Reznik, Senior Member, IEEE, Venkat Devarajan, Senior Member, IEEE,

and Mythreya Jayendra-Lakshman

Abstract

The MPEG committee has recently finished development of a new audio coding standard “MPEG-4 Advanced

Audio Coding - Enhanced Low Delay” (AAC-ELD). AAC-ELD is targeted towards high quality, full-duplex com-

munication applications such as audio and video conferencing. AAC-ELD uses Spectral Band Replication (SBR)

technology together with a low delay AAC core encoder to achieve high coding efficiency and low algorithmic

delays. In this paper, we present fast algorithms for computation of the low delay SBR filterbanks in AAC-ELD. The

proposed fast algorithms are derived by establishing a connection between SBR filterbanks and the Discrete Cosine

Transform of type IV (DCT-IV). The proposed techniques are of particular convenience for implementations, that

already employ DCT-IV in the design of AAC-core filterbanks. Our presentation includes detailed explanation and

flow-graphs of the proposed algorithms, complexity analysis, and comparisons with alternative implementations.

Index Terms

Low delay audio coding, AAC, SBR, MPEG, DCT, DCT-IV, filterbank, factorization, fast algorithms.

I. INTRODUCTION

Traditionally, speech and audio coding paradigms evolved in different directions. Speech coding is based on

source modeling [1]. The vocal tract is modeled as a time-varying digital filter, and speech production is modeled

as an excitation of such filter by a periodic impulse train. Speech codecs perform very well for speech-only /

single-speaker material, operating at bit rates as low as 4-8 Kbps, and with round-trip algorithmic delays as low as

20ms. Such low algorithmic delays make speech codecs suitable for full-duplex communication scenarios.

On the other hand, audio coding is based on modeling the psychoacoustic characteristics of the human auditory

system [2]. The audio signal is split into several frequency bands and the masking properties of the human auditory

system are used to remove perceptually irrelevant (inaudible) parts of the signal. Most commonly, audio codecs

use transform-domain coding for compression. Such codecs are suitable for coding of a broad variety of audio

R. K. Chivukula and Y. A. Reznik are with Qualcomm Inc., San Diego, CA, 92121 USA emails: {rchivuku, yreznik}@qualcomm.com.

V. Devarajan and M. Jayendra-Lakshman are with the Department of Electrical Engineering, The University of Texas at Arlington, Arlington,

TX, 76019 USA e-mails: venkat@uta.edu, mythreya.jayendralakshman@mavs.uta.edu.

Manuscript received August 30, 2010.

2 IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. X, JANUARY 200X

AAC-ELD Decoder

AAC core
encoder

QM F
Analysis

SBR Param .
Extraction

M UX DEM UX

AAC core
decoder

QM F
Analysis

HF
generator

SBR param eters

QM F
Synthesis

PCM
audio

SBR decoderBit
stream

AAC-ELD Encoder

SBR Encoder

PCM
audio

Fig. 1. Structure of AAC-ELD encoder and decoder.

material, but their algorithmic delays are usually much larger, since long transforms are needed for good frequency

selectivity. This makes them unsuitable for full-duplex communications.

However, the need for high-quality, low bit rate, full-duplex audio communication applications is constantly

growing [3]. MPEG first attempted to address this need by developing a modification of the MPEG-4 Advanced

Audio Codec (AAC), called AAC - Low Delay (AAC-LD) [5]. The reduction in delay is obtained by reducing

the frame length, avoiding block switching and minimizing the use of bit reservoir in the encoder. While the

delay was reduced to 20ms, the coding bitrates of 64kbps and higher were needed to achieve high quality audio.

Recently, MPEG has revisited this topic, and developed a new standard, MPEG-4 AAC-Enhanced Low Delay

(AAC-ELD) [4]. Coding efficiency of AAC-ELD is increased by operating the core AAC coder at half the original

sampling rate, and using the Spectral Band Replication (SBR) tool to synthesize the upper part of the spectrum [22].

A short parametric description is used to control such synthesis. We show overall AAC-ELD processing diagram

in Figure I. To minimize algorithmic delays, special low-delay versions of analysis and synthesis SBR filterbanks

(LD-SBR) are defined. Further, a fixed time grid is employed. Delay is also reduced by using a modified AAC

core filterbank [6]. With all these improvements incorporated, AAC-ELD achieves algorithmic delay of 31.3ms

while operating at bit rates as low as 32kbps per channel [3]. This makes AAC-ELD suitable for many low-bitrate,

full-duplex communication applications.

Most commonly, low-delay speech and audio codecs are used in mobile devices, where processing power and

battery life are limited. In such environments, particular attention is paid to reducing the complexity of the codec, and

all component algorithms. From studies of earlier MPEG audio codecs, such as High-Efficiency AAC (HE-AAC),

it is known that the SBR tool may contribute between 50 and 75% to the total computational complexity of

the decoder [7]. This is why HE-AAC, as well as AAC-ELD standards define two types of SBR filterbanks

for the decoder: complex-domain filterbanks to be used to produce High-Quality (HQ) reconstruction, and real-

domain filterbanks to be used in Low Power (LP) environments. However, even when real-domain SBR is used, its

contribution to the overall complexity is significant [7]. Additional efforts towards reducing SBR complexity are

therefore much needed and appreciated in practice.

In this paper, we propose fast algorithms for computing low delay SBR analysis and synthesis filterbanks in

AAC-ELD. Our algorithms are derived by establishing a mapping between SBR matrix operation in AAC-ELD and

CHIVUKULA et al.: FAST ALGORITHMS FOR LOW-DELAY SBR FILTERBANKS IN MPEG-4 AAC-ELD 3

Discrete Cosine Transform of type-IV (DCT-IV). We then further isolate leading factors in DCT-IV by converting it

to type-II DCT (DCT-II), and merge these factors with factors in a window, applied to a signal prior to computing

SBR matrix product. This way we achieve additional computational savings. Overall, our proposed algorithms are

15 times simpler than conventional implementation of such filterbanks.

Among related prior work, we must first mention the optimization framework of G.Schuller and T. Smith [10],

which was used to produce low-delay filterbanks in AAC-ELD [7]. This framework ensures that resulting filterbanks

have cosine modulation functions. Similar ideas for filterbank design were also suggested by T. Nguyen and

R. Koilpillai [11], and M. Harteneck, S. Weiss, and R. W. Stewart [12]. However, while the underlying frame-

work [10] assures the existence of mappings to DCT-type transforms, the derivation of such mappings for a given

final filterbank design is non-trivial. The technique that we’ve used to derive our fast algorithms for SBR filterbanks

in AAC-ELD is motivated by an approach of K. Konstantinides [13], who has shown how to map filterbanks in

MPEG-1 audio [14] to DCT-II. S.-W. Huang and T.-H. Tsai [20] also used Konstatinides’ technique to derive fast

algorithms for SBR filterbanks in HE-AAC [5]. However, because of an odd-number phase shift used in the low-

delay SBR filterbanks in AAC-ELD, our mappings turns LD-SBR into DCT-IV instead of DCT-II. H.-W. Hsu et

al. [21] offer a mapping of complex SBR filterbanks in HE-AAC to DCT-IV, but they don’t exploit the possibility

of eliminating multiplications by moving some factors to the window function. Many existing fast algorithms for

computing DCT-II and DCT-IV can be found in books [15], [16].

This paper is organized as follows. In Section II, we provide definitions of LD-SBR filterbanks used in the

encoder and decoder. In Sections III and IV, we present the fast algorithms for complex analysis and synthesis

filterbanks. Derivations of fast algorithms for real-domain versions of these filterbanks are very similar. We bring a

summary of all relevant results in Section V. An analysis of the computational complexity is provided in Section VI

and the conclusions are given in Section VII.

II. DEFINITIONS

Hereafter, we use the following notation. Time domain sequences are denoted by small letters such as x(n).

Frequency domain sequences are denoted by capital letters such as X(k). Vectors are denoted by bold-face small

letters such as x, matrices are denoted by bold-face capital letters such as D. An element at l-th row and m-th

column of a matrix D is denoted by D(l,m). The row and column indices start from 0. Symbol j denotes the

imaginary unit: j =
√
−1. Symbols R and C denote the set of real numbers and the set of complex numbers

respectively. Operators Re[.] and Im[.] return the real and imaginary parts, respectively, of a complex number.

A. SBR filterbanks in AAC-ELD

The SBR tool uses near-perfect-reconstruction pseudo QMF filterbanks (see e.g. [18]). A linear phase low pass

prototype filter is designed such that the stop band attenuation is minimized. The impulse responses of the analysis

and synthesis filters are cosine modulations of the prototype filter. Let h(n) be the prototype filter of length N . Let

4 IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. X, JANUARY 200X

M be the number of subbands. Then, in the general form, the subband filter impulse responses are given by:

hk(n) = h(n) exp

{
jπ
(
k + 1

2

) (
n− N−1

2

)
M

}
, 0 ≤ k < M, 0 ≤ n < N,

fk(n) = h(n) exp

{
jπ
(
k + 1

2

) (
n− N−1

2

)
M

}
, 0 ≤ k < M, 0 ≤ n < N,

where fk and hk denote responses of analysis and synthesis filters, respectively.

AAC-ELD employs a particular design of analysis QMF in the encoder and the decoder with the following

complex matrix operation [4]:

X(k) =

N−1∑
n=0

x(n) exp

{
jπ
(
k + 1

2

)
(2n− na)

N

}
, 0 ≤ k < N

2
. (1)

where, N is 1/5-th of the filter length, and

na =
3N

2
− 1. (2)

The synthesis QMF (SQMF) and down-sampled SQMF of LD-SBR in AAC-ELD decoder use the following matrix

operations [4]:

x̃(n) = Re

N
2 −1∑
k=0

X̃(k) exp

{
jπ
(
k + 1

2

)
(2n− ns)

N

} , 0 ≤ n < N. (3)

where

ns =
N

2
− 1, (4)

x(n), x̃(n) ∈ R; X(k), X̃(k) ∈ C.

For applications that require low power, real analysis and synthesis filterbanks are also defined for the AAC-ELD

decoder. They are defined as follows [4]:

XR(k) =

N−1∑
n=0

x(n) cos

{
π
(
k + 1

2

)
(2n− na)
N

}
, 0 ≤ k < N

2
, (5)

and

x̃R(n) =

N
2 −1∑
k=0

X̃R(k) cos

{
π
(
k + 1

2

)
(2n− ns)
N

}
, 0 ≤ n < N. (6)

where x(n), x̃R(n), XR(k), X̃R(k) ∈ R.

B. Cosine and Sine Transforms

In order to accelerate computation of SBR filterbanks, we map them to several standard transforms allowing fast

computation [15]. The Discrete Cosine Transforms of types II - IV over a real sequence d(n) of length N are

CHIVUKULA et al.: FAST ALGORITHMS FOR LOW-DELAY SBR FILTERBANKS IN MPEG-4 AAC-ELD 5

x (0)

x
(
N
4

)

x
(
N
4 − 1

)

x
(
N
2

)

x
(
N
2 − 1

)

x
(
3N
4

)

x
(
3N
4 − 1

)

x (N − 1)

−1

−1

−1

−1

−1

−1

−1

−1

(−1)0

(−1)
N
4

(−1)
N
4 −1

(−1)
N
2 −1

N 2
-p
oi
nt

D
C
T
-I
V

N 2
-p
oi
nt

D
C
T
-I
V

Re [X(0)]

Re [X(1)]

Re [X(2)]

Re
[
X

(
N
2 − 3

)]

Re
[
X

(
N
2 − 2

)]

Re
[
X

(
N
2 − 1

)]

Im [X(2)]

Im [X(1)]

Im [X(0)]

Im
[
X

(
N
2 − 1

)]

Im
[
X

(
N
2 − 2

)]

Im
[
X

(
N
2 − 3

)]

Fig. 2. Flowgraph of the proposed DCT-IV-based algorithm for computing AQMF.

defined as follows (0 ≤ k < N):

DC2(k) =

N−1∑
n=0

d(n) cos

{
π(2n+ 1)k

2N

}
, (7)

DC3(k) =

N−1∑
n=0

d(n) cos

{
π(2k + 1)n

2N

}
, (8)

DC4(k) =

N−1∑
n=0

d(n) cos

{
π(2k + 1)(2n+ 1)

4N

}
. (9)

For simplicity, we omit standard normalization factors in all these definitions [15].

Discrete Sine Transform of type IV (DST-IV), DS4(k), over a sequence d(n) is defined as follows [15]:

DS4(k) =

N−1∑
n=0

d(n) sin

{
π(2k + 1)(2n+ 1)

4N

}
, 0 ≤ k < N. (10)

It is known that DST-IV is connected to DCT-IV by means of sign changes and reversals of the input and output

sequences [15]:

DS4(N − 1− k) =
N−1∑
n=0

(−1)nd(n) cos
{
π(2k + 1)(2n+ 1)

4N

}
, 0 ≤ k < N. (11)

6 IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. X, JANUARY 200X

III. FAST ALGORITHM FOR COMPLEX AQMF

We first the present mapping of complex-domain AQMF (1) to DCT-IV.

Theorem 1: The AAC-ELD Complex AQMF (1) can be computed as follows:

X(k) = X1(k) + jX2

(
N

2
− 1− k

)
, 0 ≤ k < N

2
(12)

where

X1(k) =

N
2 −1∑
n=0

x1(n) cos

{
π(2k + 1)(2n+ 1)

2N

}
, 0 ≤ k < N

2
(13)

X2(k) =

N
2 −1∑
n=0

(−1)nx2(n) cos

{
π(2k + 1)(2n+ 1)

2N

}
, 0 ≤ k < N

2
. (14)

are DCT-IV transforms over the following intermediate sequences:

x1(n)=

 x
(
n+ 3N

4

)
+ x

(
3N
4 − 1− n

)
for 0 ≤ n < N

4

x
(

3N
4 − 1− n

)
− x

(
n− N

4

)
for N

4 ≤ n <
N
2 .

(15)

and

x2(n)
∆
=

 x(n+ 3N
4)− x(3N

4 − 1− n) for 0 ≤ n < N
4

−x(3N
4 − 1− n)− x(n− N

4) for N
4 ≤ n <

N
2 .

(16)

The proof of this statement can be found in Appendix A. It can be observed that only additions, sign changes,

and reordering operations are needed to reduce this filterbank to computing 2 N/2-point DCT-IV transforms. We

show the flowgraph of this process in Figure III.

A. Mapping to DCT-II and Further Optimization

In this section, we show how to map the aforementioned DCT-IV-based fast algorithm to the DCT-II. We also

show how some of the multiplications can be absorbed into the windowing operation that precedes the AQMF.

We start with the matrix formulation of the algorithm from Theorem 1. Define the following vectors:

x1 =
[
x1(0) . . . x1

(
N
2 − 1

)]T
, x2 =

[
x2(0) . . . x2

(
N
2 − 1

)]T
,

x =
[
x(0) . . . x (N − 1)

]T
, X =

[
X(0) . . . X

(
N
2 − 1

)]T
.

CHIVUKULA et al.: FAST ALGORITHMS FOR LOW-DELAY SBR FILTERBANKS IN MPEG-4 AAC-ELD 7

Let BI
N and BII

N be N
2 ×N matrices that split x into x1 and x2 respectively (cf. (15) and (16)):

BI
N

(
n, n+

3N

4

)
= 1 for 0 ≤ n < N

4
(17)

BI
N

(
n,

3N

4
− 1− n

)
= 1 for 0 ≤ n < N

2
(18)

BI
N

(
n, n− N

4

)
= −1 for

N

4
≤ n < N

2
(19)

BI
N(n, k) = 0 for all other combinations of n and k (20)

BII
N

(
n, n+

3N

4

)
= 1 for 0 ≤ n < N

4
(21)

BII
N

(
n,

3N

4
− 1− n

)
= −1 for 0 ≤ n < N

2
(22)

BII
N

(
n, n− N

4

)
= −1 for

N

4
≤ n < N

2
(23)

BII
N(n, k) = 0 for all other combinations of n and k (24)

Let CIV
N
2

be the N
2 ×

N
2 DCT-IV transform matrix:

CIV
N
2
(k, n) = cos

{
π(2k + 1)(2n+ 1)

2N

}
, 0 ≤ n < N

2
, 0 ≤ k < N

2
, (25)

AN
2

denote an N
2 ×

N
2 diagonal matrix that inverts signs of odd-indexed elements:

AN
2
(n, n) = (−1)n, 0 ≤ n < N

2
, (26)

and JN
2

denote an N
2 ×

N
2 order reversal matrix

JN
2

(
n,
N

2
− 1− n

)
= 1, 0 ≤ n < N

2
, (27)

JN
2
(n, k) = 0, for all other combinations of n, k

respectively.

Using the above notation, our algorithm (12) can be formulated as

X =
(
CIV

N
2
BI

N + jJN
2
CIV

N
2
AN

2
BII

N

)
x. (28)

We now note that vector x in SBR matrix operation is usually derived from input data sequence

u =
[
u(0) . . . u (5N − 1)

]T
using the following operation (cf. [4], [5]):

x = SNC5N u, (29)

where, C5N is a 5N × 5N diagonal matrix of constants (window factors) and SN is a N × 5N overlap-add matrix

SN(n, n+Nk) = 1, 0 ≤ n < N ; 0 ≤ k < 5 (30)

SN(n, k) = 0, for all other combinations of 0 ≤ n < N ; 0 ≤ k < 5N. (31)

8 IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. X, JANUARY 200X

From [19], it is known that the DCT-IV matrix CIV
N
2

can be factorized as

CIV
N
2

= LN
2
CII

N
2
DN

2
(32)

where, CII
N
2

is the N
2 ×

N
2 DCT-II matrix defined as follows:

CII
N
2
(k, n) = cos

{
π(2n+ 1)k

N

}
, 0 ≤ n < N

2
, 0 ≤ k < N

2
, (33)

LN
2

is a N
2 ×

N
2 recursive addition matrix defined as follows (assuming N

2 is even):

LN
2
=



1
2 0 0 0 . . . 0

− 1
2 1 0 0 . . . 0

1
2 −1 1 0 . . . 0

. .

− 1
2 1 −1 1 . . . 1


N
2 ×

N
2

(34)

and DN
2

is a N
2 ×

N
2 diagonal matrix of factors

DN
2
(n, n) = 2 cos

{
π(2n+ 1)

2N

}
, 0 ≤ n < N

2
. (35)

It is known that the computational complexity (in terms of number of multiplications) of this factorization is equal

to the theoretical minimum for DCT-IV [17]. It is also known that recursive additions defined by matrix LN
2

may

cause an increase in the dynamic range. This is usually a concern for the design of large transforms. However,

since AAC-ELD employs small SBR matrices (N/2 = 32 or 64), we felt that it can be used in this case.

Using (29) and (32) in (28), we obtain:

X =
(
LN

2
CII

N
2
DN

2
BI

N + jJN
2
LN

2
CII

N
2
DN

2
AN

2
BII

N

)
SNC5Nu (36)

Since DN
2

and AN
2

are diagonal matrices DN
2
AN

2
= AN

2
DN

2
. Hence

X =
(
LN

2
CII

N
2
DN

2
BI

N + jJN
2
LN

2
CII

N
2
AN

2
DN

2
BII

N

)
SNC5Nu (37)

We notice from (17) - (24) that each column of BI
N and BII

N has exactly one non-zero element. Also, for every

column, the non-zero element is at the same position for both BI
N and BII

N. Further, the magnitude of every non-zero

element is the same (in this case, 1). Hence, it can be shown that

DN
2
BI

N = BI
ND′N (38)

DN
2
BII

N = BII
ND′N (39)

where, D′N is a N ×N diagonal matrix defined as:

if BI
N(n, k) = 1 or − 1, then D′N(k, k) = DN

2
(n, n), 0 ≤ n < N

2
, 0 ≤ k < N. (40)

By plugging these results in (37), we obtain:

X =
(
LN

2
CII

N
2
BI

N + jJN
2
LN

2
CII

N
2
AN

2
BII

N

)
D′NSNC5Nu (41)

CHIVUKULA et al.: FAST ALGORITHMS FOR LOW-DELAY SBR FILTERBANKS IN MPEG-4 AAC-ELD 9

Again, we notice from (30) - (31) that each column of SN has exactly one non-zero element, and that all non-zero

elements in this matrix are equal to 1. Hence,

D′NSN = SND′′5N (42)

where, D′′5N is a 5N × 5N diagonal matrix defined as:

if SN(n, k) = 1, then D′′5N(k, k) = D′N(n, n), 0 ≤ n < N ; 0 ≤ k < 5N (43)

By using (42) in (41), we finally arrive at

X =
(
LN

2
CII

N
2
BI

N + jJN
2
LN

2
CII

N
2
AN

2
BII

N

)
SNC′5Nu (44)

where, C′5N is a 5N × 5N diagonal matrix of modified window factors:

C′5N = D′′5NC5N (45)

The central idea of this section can be grasped by comparing (44) with (37). The merging of the transform factors

(contributed by DN
2

) with the SBR window coefficients (contributed by C5N) saves N
2 + N

2 = N multiplications.

IV. FAST ALGORITHM FOR COMPLEX SQMF

We now turn our attention to complex-domain SQMF in AAC-ELD (3).

Theorem 2: The matrix operation of complex SQMF (3) can be computed as follows:

x̃(n) = x̃1(n)− x̃2(n), 0 ≤ n < N. (46)

where, intermediate sequences x̃1(n) and x̃2(n) are obtained as

x̃1

(
n+

N

4

)
=

N
2 −1∑
k=0

Re
[
X̃(k)

]
cos

{
π(2k + 1)(2n+ 1)

2N

}
0 ≤ n < N

2
, (47)

x̃1

(
n+

3N

4

)
= −x̃1

(
3N

4
− 1− n

)
0 ≤ n < N

4
, (48)

x̃1

(
n− N

4

)
= x̃1

(
3N

4
− 1− n

)
N

4
≤ n < N

2
, (49)

and

x̃2

(
n+

N

4

)
= (−1)n

N
2 −1∑
k=0

Im

[
X̃

(
N

2
− 1− k

)]
cos

{
π(2k + 1)(2n+ 1)

2N

}
0 ≤ n < N

2
, (50)

x̃2

(
n+

3N

4

)
= x̃2

(
3N

4
− 1− n

)
0 ≤ n < N

4
, (51)

x̃2

(
n− N

4

)
= −x̃2

(
3N

4
− 1− n

)
N

4
≤ n < N

2
. (52)

The proof of this statement is obtained by using essentially the same technique described in Appendix A. It

can be seen that only additions, sign changes and reordering operations are needed to reduce this filterbank to

computing 2 N/2-point DCT-IV transforms. We show the flowgraph of this process in Figure IV.

10 IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. X, JANUARY 200XCHIVUKULA et al.: FAST ALGORITHMS FOR LOW-DELAY SBR FILTERBANKS IN MPEG-4 AAC-ELD 17

Re
[
X̃(0)

]

Re
[
X̃(1)

]

Re
[
X̃(2)

]

Re
[
X̃

(
N
2 − 3

)]

Re
[
X̃

(
N
2 − 2

)]

Re
[
X̃

(
N
2 − 1

)]

Im
[
X̃

(
N
2 − 1

)]

Im
[
X̃

(
N
2 − 2

)]

Im
[
X̃

(
N
2 − 3

)]

Im
[
X̃(2)

]

Im
[
X̃(1)

]

Im
[
X̃(0)

]

N 2
-p

oi
nt

D
C

T-
IV

N 2
-p

oi
nt

D
C

T-
IV

(−1)0

(−1)
N
4 −1

(−1)
N
4

(−1)
N
2 −1

−1

−1

−1

−1
−1

−1

−1

−1

x̃ (0)

x̃
(
N
4 − 1

)

x̃
(
N
4

)

x̃
(
N
2 − 1

)

x̃
(
N
2

)

x̃
(
3N
4 − 1

)

x̃
(
3N
4

)

x̃ (N − 1)

Fig.2. Flowgraph for SQMF

Fig. 3. Flowgraph of the proposed DCT-IV-based algorithm for computing SQMF.

A. Mapping to DCT-II and Further Optimization

Similar to Section III-A, we develop a matrix description of the synthesis filterbank involving the matrix operation,

followed by the windowing and overlap-addition operations. In the process, we can merge the multiplications

in the post-processing stage of DCT-IV implementation with the windowing stage, thereby, further reducing the

computational complexity.

Define the following vectors:

x̃1 =
[
x̃1(0) . . . x̃1 (N − 1)

]T
, x̃2 =

[
x̃2(0) . . . x̃2 (N − 1)

]T
, x̃ =

[
x̃(0) . . . x̃ (N − 1)

]T
,

X̃ =
[
X̃(0) . . . X̃

(
N
2 − 1

)]T
, X̃r = Re

[
X̃
]
, X̃i = Im

[
X̃
]

Then

x̃ = x̃1 − x̃2 = Br
NCIV

N
2
X̃r −Bi

NAN
2
CIV

N
2
JN

2
X̃i (53)

CHIVUKULA et al.: FAST ALGORITHMS FOR LOW-DELAY SBR FILTERBANKS IN MPEG-4 AAC-ELD 11

where, Br
N and Bi

N denote N × N
2 matrices establishing relation between x̃1, x̃2 and x̃ (cf. (47) - (52)):

Br
N

(
n,
N

4
− 1− n

)
= 1 for 0 ≤ n < N

4
(54)

Br
N

(
n+

N

4
, n

)
= 1 for 0 ≤ n < N

2
(55)

Br
N

(
n+

3N

4
,
N

2
− 1− n

)
= −1 for 0 ≤ n < N

4
(56)

Br
N(n, k) = 0 for all other combinations of n and k (57)

Bi
N

(
n,
N

4
− 1− n

)
= −1 for 0 ≤ n < N

4
(58)

Bi
N

(
n+

N

4
, n

)
= 1 for 0 ≤ n < N

2
(59)

Bi
N

(
n+

3N

4
,
N

2
− 1− n

)
= 1 for 0 ≤ n < N

4
(60)

Bi
N(n, k) = 0 for all other combinations of n and k. (61)

Using the relationship between DCT-IV and DCT-II (32) (cf. [19]), we obtain

x̃ = Br
NDN

2
CIII

N
2
LN

2

T X̃r −Bi
NAN

2
DN

2
CIII

N
2
LN

2

TJN
2
X̃i (62)

where, CIII
N
2

= CII
N
2

T is matrix of DCT-III.

We note that Br
N and Bi

N have non-zero elements in the same row and column positions. We also note that every

row has exactly one non-zero element. Further AN
2

and DN
2

commute. Hence,

x̃ = DI
N

(
Br

NCIII
N
2
LN

2

T X̃r −Bi
NAN

2
CIII

N
2
LN

2

TJN
2
X̃i

)
(63)

where, DI
N is a N ×N diagonal matrix

if Br
N(n, k) = 1 or − 1, then DI

N(n, n) = DN
2
(k, k), 0 ≤ n < N, 0 ≤ k < N

2
. (64)

In the decoder, this operation of computing x̃ is repeated 10 times to form a vector of length 10N , from which, a

vector of length 5N is formed. Essentially, this operation is equivalent to applying the matrix S5N
T to the vector

x̃. That is,

g = S5N
T x̃ (65)

Vector g is multiplied by a diagonal matrix of constants CS
5N to form a vector w:

w = CS
5N g (66)

The output audio sample vector y of length N
2 is formed by applying an addition matrix E of dimensions N

2 × 5N

to the vector w:

y = Ew (67)

12 IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. X, JANUARY 200X

where,

E

(
n, n+

N

2
k

)
= 1, 0 ≤ n < N

2
, 0 ≤ k < 10 (68)

E(n, k) = 0, for all other combinations of 0 ≤ n < N

2
, 0 ≤ k < 5N. (69)

Hence, based on (63), (65), (66) and (67):

y = ECS
5NS5N

TDI
N

(
Br

NCIII
N
2
LN

2

T X̃r −Bi
NAN

2
CIII

N
2
LN

2

TJN
2
X̃i

)
. (70)

As in the case of the analysis filterbank, we can change the order of the matrix multiplication and obtain the

following result:

y = ECS
5NDII

5NS5N
T
(
Br

NCIII
N
2
LN

2

T X̃r −Bi
NAN

2
CIII

N
2
LN

2

TJN
2
X̃i

)
(71)

where, DII
5N is a 5N × 5N diagonal matrix of modified window factors

DII
5N (nN + k, nN + k) = DI

N(k, k) 0 ≤ n < 5, 0 ≤ k < N. (72)

V. FAST ALGORITHMS FOR OTHER SBR FILTERBANKS

The derivations for the other filterbanks introduced in section IV closely follow the previous two sections. Hence,

we present the results without proofs.

A. Real Analysis QMF

XR(k) =

N
2 −1∑
n=0

x1(n) cos

{
π(2k + 1)(2n+ 1)

2N

}
, for 0 ≤ k < N

2
, (73)

where,

x1(n) =

 x
(
n+ 3N

4

)
+ x

(
3N
4 − 1− n

)
, 0 ≤ n < N

4

x
(

3N
4 − 1− n

)
− x

(
n− N

4

)
, N

4 ≤ n <
N
2 .

(74)

B. Real Synthesis QMF

x̃R

(
n+

N

4

)
=

N
2 −1∑
k=0

X̃R(k) cos

{
π(2k + 1)(2n+ 1)

2N

}
, 0 ≤ n < N

2
, (75)

x̃R

(
n+

3N

4

)
= −x̃R

(
3N

4
− 1− n

)
, 0 ≤ n < N

4
, (76)

x̃R

(
n− N

4

)
= x̃R

(
3N

4
− 1− n

)
,

N

4
≤ n < N

2
. (77)

CHIVUKULA et al.: FAST ALGORITHMS FOR LOW-DELAY SBR FILTERBANKS IN MPEG-4 AAC-ELD 13

VI. COMPUTATIONAL COMPLEXITY

In this section, we analyze the computational complexity of the proposed algorithms by computing the required

number of additions and multiplications. Note that when the lengths of analysis and synthesis filterbanks are

equal, the required number of additions and multiplications for their computation will be the same. This can be

observed from the almost tranpose-like relationship between the flowgraphs of the analysis and synthesis filterbanks.

Therefore, the presented formulas for the number of additions and multiplications are valid for both analysis and

synthesis filterbanks.

A. Complex Filterbanks

In this case, multiplications are contributed by the two DCT-II blocks and by the diagonal matrix C′5N defined

in (45). In LD-SBR filterbanks, N is a power of 2. So, if we use one of the several fast algorithms available

for DCT-II, such as [19], the number of multiplications contributed by each DCT-II block in the figure would be
N
4 (log2N − 1). See [19] for details. The matrix C′5N contributes 5N multiplications. Therefore, the total number

of multiplications is given by

M (N) =
9N

2
+
N

2
log2N. (78)

Additions are contributed by the DCT-II blocks and the matrices LN
2

, BI
N, BII

N and SN. Matrix LN
2

contributes(
N
2 − 1

)
additions. BI

N and BII
N each contribute N

2 additions. SN contributes 4N additions. Each DCT-II block

contributes
(

3N
4 log2

(
N
2

)
− N

2 + 1
)

additions. See [19] for details. The total number of additions is given by

A (N) =
7N

2
+

3N

2
log2N. (79)

B. Real Filterbanks

The real-valued filterbanks have lesser computational complexity because of the absence of the imaginary

component. Following the previous subsection, we have:

M (N) =
19N

4
+
N

4
log2N, (80)

A (N) =
15N

4
+

3N

4
log2N. (81)

The numbers of required additions and multiplications for the computation of LD-SBR filterbanks in AAC-ELD is

summarized in Table 1. The first column shows the complexity of straightforward computation of these filterbanks.

The second column shows the complexity of algorithms utilizing mappings to DCT-IV. The last column shows the

numbers for the proposed DCT-II-based algorithms, absorbing factors in the windowing stage.

14 IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. X, JANUARY 200X

TABLE I

COMPUTATIONAL COMPLEXITY OF PROPOSED ALGORITHMS

No Optimizations Algorithms using DCT-IV Algorithm using DCT-II

Filterbank N Multiplications Additions Multiplications Additions Multiplications Additions

Complex AQMF in Encoder 128 17024 16832 1152 1792 1024 1792

Complex AQMF in Decoder 64 4416 4320 544 800 480 800

Real AQMF in Decoder 64 2368 2272 432 528 400 528

Complex SQMF in Decoder 128 17024 16832 1152 1792 1024 1792

Complex Downsampled SQMF in Decoder 64 4416 4320 544 800 480 800

Real SQMF in Decoder 128 8832 8640 896 1152 832 1152

Real Downsampled SQMF in Decoder 64 2368 2272 432 528 400 528

VII. CONCLUSIONS

In this paper, we derived fast algorithms for low-delay SBR filterbanks used in MPEG-4 AAC-ELD. The fast

algorithms are based on the mapping of the analysis and synthesis SBR filterbanks to DCT-IV. Since several fast

algorithms exist for DCT-IV, this mapping provides us with a fast algorithm for the filterbanks. We have also shown

that by mapping DCT-IV to DCT-II, the multiplications in pre/post processing can be absorbed into the windowing

stage that precedes/succeeds the SBR filterbank, thereby further reducing the number of multiplications. Finally, we

have presented a complexity analysis of our algorithms, showing that they are appreciably faster than other possible

implementations.

APPENDIX A

PROOF FOR THEOREM 1

Let p = n− 3N
4 in (1). Then AQMF matrix operation (1) can be written as

X(k) =

−1∑
p=− 3N

4

x

(
p+

3N

4

)
exp

{
jπ(2k + 1)(2p+ 1)

2N

}
+

N
4 −1∑
p=0

x

(
p+

3N

4

)
exp

{
jπ(2k + 1)(2p+ 1)

2N

}

Let n = p+N in the first sum and also replace p by n in the second. Then

X(k) =

N−1∑
n= N

4

−x
(
n− N

4

)
exp

{
jπ(2k + 1)(2n+ 1)

2N

}
+

N
4 −1∑
n=0

x

(
n+

3N

4

)
exp

{
jπ(2k + 1)(2n+ 1)

2N

}
(82)

Define a new sequence x′(n) as follows:

x′(n)
∆
=

 x
(
n+ 3N

4

)
for 0 ≤ n < N

4

−x
(
n− N

4

)
for N

4 ≤ n < N.
(83)

CHIVUKULA et al.: FAST ALGORITHMS FOR LOW-DELAY SBR FILTERBANKS IN MPEG-4 AAC-ELD 15

Then (82) becomes

X(k) =

N−1∑
n=0

x′(n) exp

{
jπ(2k + 1)(2n+ 1)

2N

}

=

N
2 −1∑
n=0

x′(n) exp

{
jπ(2k + 1)(2n+ 1)

2N

}
+

N−1∑
n= N

2

x′(n) exp

{
jπ(2k + 1)(2n+ 1)

2N

}
Replacing n by N − 1− n in the second sum, we obtain

X(k) =

N
2 −1∑
n=0

x′(n) exp

{
jπ(2k + 1)(2n+ 1)

2N

}
+

N
2 −1∑
n=0

−x′(N − 1− n) exp
{
−jπ(2k + 1)(2n+ 1)

2N

}

=

N
2 −1∑
n=0

{x′(n)− x′(N − 1− n)} cos
{
π(2k + 1)(2n+ 1)

2N

}

+ j

N
2 −1∑
n=0

{x′(n) + x′(N − 1− n)} sin
{
π(2k + 1)(2n+ 1)

2N

}
(84)

From (15), (16), (83) we see that for 0 ≤ n < N
2 ,

x′(n)− x′(N − 1− n) = x1(n)

x′(n) + x′(N − 1− n) = x2(n)

Hence, (84) becomes

X(k) =

N
2 −1∑
n=0

x1(n) cos

{
π(2k + 1)(2n+ 1)

2N

}
+ j

N
2 −1∑
n=0

x2(n) sin

{
π(2k + 1)(2n+ 1)

2N

}
, 0 ≤ k < N

2
. (85)

We note that the first sum is a N
2 -point DCT-IV and the second sum is a N

2 -point DST-IV. Further, DST-IV can

be mapped to DCT-IV using (11). This completes the proof of the theorem.

REFERENCES

[1] A. M. Kondoz, Digital Speech: Coding for Low Bit Rate Communication Systems, 2nd ed. Wiley, 2004.

[2] T. Painter and A. Spanias, “Perceptual Coding of Digital Audio”, Proc. IEEE, vol. 88, pp. 451-515, Apr. 2000.

[3] R. Geiger, J. Herre, M. Jander, M. Multrus, M. Schmidt, M. Schnell, G. Schuller, “Enhanced MPEG-4 Low Delay AAC - Low Bitrate

High Quality Communication”, 122nd Convention of the AES, Vienna, Austria, May 2007.

[4] ISO/IEC 14496-3:2005/FDAM9, Information Technology - Generic Coding of Moving Pictures and Associated Audio Information - Part

3: Advanced Audio Coding (AAC), Amendment 9: Enhanced Low Delay AAC, Oct. 2007.

[5] ISO/IEC 14496-3:2005, Information Tecnology - Generic Coding of Moving Pictures and Associated Audio Information - Part 3: Advanced

Audio Coding (AAC), Subpart 4: General Audio Coding (GA) - AAC, TwinVQ, BSAC, 2005.

[6] M. Schnell, R. Geiger, M. Schmidt, M. Multrus, M. Mellar, J. Herre, G. Schuller, “Low Delay Filterbanks for Enhanced Low-Delay Audio

Coding,” Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 235–238, Oct. 21-24, 2007.

[7] M. Wolters, K. Kjorling, D. Homm, and H. Purnhagen, “A closer look into MPEG-4 High Efficiency AAC,” 115th Convention of the AES,

New York, NY, October 10-13 2003.

[8] R. K. Chivukula, and Y. A. Reznik, “Efficient Implementation of a Class of MDCT/IMDCT Filterbanks for Speech and Audio Coding

Applications,” Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, pp. 213–216, 2008.

[9] R. K. Chivukula, Y. A. Reznik, and V. Devarajan, “Efficient Algorithms for MPEG-4 AAC-ELD, AAC-LD and AAC-LC Filterbanks,”

Proc. Int. Conf. Audio, Language, Image Processing, pp. 1629–1634, 7-9 July 2008.

16 IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. X, JANUARY 200X

[10] G. Schuller and M. Smith, “New Framework for Modulated Perfect Reconstruction Filter Banks,” IEEE Trans. Signal Processing, vol. 44,

no. 8, August 1996, pp. 1941–1954.

[11] T. Q. Nguyen, and R. D. Koilpillai, “The Theory and Design of Arbitrary-Length Cosine-Modulated Filter Banks and Wavelets, Satisfying

Perfect Reconstruction,” IEEE Trans. Signal Processing, vol. 44, no. 3, March 1996, pp. 473–483.

[12] M. Harteneck, S. Weiss, and R. W. Stewart, “Design of near perfect reconstruction oversampled filter banks for subband adaptive filters,”

IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol.46, no.8, pp.1081-1085, Aug 1999.

[13] K. Konstantinides, “Fast Subband Filtering in MPEG Audio Coding,” IEEE Signal Processing Letters, vol. 1, no. 2, pp. 26–28, Feb. 1994.

[14] ISO/IEC 11172-3:1993, Information technology – Coding of moving pictures and associated audio for digital storage media at up to about

1,5 Mbit/s – Part 3: Audio, 1993.

[15] K. R. Rao, The Transform and Data Compression Handbook, CRC Press, Boca Raton, 2001.

[16] V. Britanak, P. Yip, and K. R. Rao, Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations,

Academic Press, Oxford, 2007.

[17] H. S. Malvar, Signal Processing with Lapped Transforms, Artech House, Boston, 1992.

[18] J. H. Rothweiler, “Polyphase Quadrature Filters - A New Subband Coding Technique”, Proc. IEEE Int. Conf. Acoustics, Speech and Signal

Processing, pp. 1280–1283, 1983.

[19] C. W. Kok, “Fast Algorithm for Computing Discrete Cosine Transform,” IEEE Trans. Signal Processing, vol. 45, no. 3, pp. 757–760,

Mar. 1997.

[20] S. -W. Huang and T. -H. Tsai, “Fast Decomposition of Filterbanks for the State-of-the-Art Audio Coding,” IEEE Signal Processing Letters,

vol. 12, no. 10, pp. 693–696, Oct. 2005.

[21] H. -W. Hsu, C. -M. Liu and W. -C. Lee, “Fast Complex Quadrature Mirror Filterbanks for MPEG-4 HE-AAC,” 121st Convention of the

AES, San Francisco, CA, Oct. 2006.

[22] M. Dietz, L. Liljeryd, K. Kjorling, and O. Kunz, “Spectral Band Replication, a Novel Approach in Audio Coding,” 12th Convention of

the AES, Munich, Germany, Apr. 2002.

