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Abstract

There has been much progress recently on improved
approximations for problems involving submodular ob-
jective functions, and many interesting techniques have
been developed. However, the resulting algorithms are
often slow and impractical. In this paper we develop
algorithms that match the best known approximation
guarantees, but with significantly improved running
times, for maximizing a monotone submodular function
f:2[ - R, subject to various constraints. As in pre-
vious work, we measure the number of oracle calls to
the objective function which is the dominating term in
the running time.

Our first result is a simple algorithm that gives a
(1 —1/e — e)-approximation for a cardinality constraint
using O(Z2log2) queries, and a 1/(p + 20 + 1 + ¢)-
approximation for the intersection of a p-system and ¢
knapsack (linear) constraints using O(Z% log® %) queries.
This is the first approximation for a p-system combined
with linear constraints. (We also show that the factor of
p cannot be improved for maximizing over a p-system.)
The main idea behind these algorithms serves as a
building block in our more sophisticated algorithms.

Our main result is a new variant of the continu-
ous greedy algorithm, which interpolates between the
classical greedy algorithm and a truly continuous algo-
rithm. We show how this algorithm can be implemented
for matroid and knapsack constraints using O(nz) ora-
cle calls to the objective function. (Previous variants
and alternative techniques were known to use at least
O(n*) oracle calls.) This leads to an O(Z—j log? 2)-time
(1 — 1/e — €)-approximation for a matroid constraint.
For a knapsack constraint, we develop a more involved
(1—1/e —e)-approximation algorithm that runs in time
O(n?(Llogn)polv(/e),
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1 Introduction

Optimization problems involving maximization of a sub-
modular objective function have attracted a lot of at-
tention recently. This interest has been driven by sev-
eral kinds of applications in which submodular objective
functions arise naturally. Let us mention welfare maxi-
mization in combinatorial auctions, where the objective
function captures the notion of utility function with di-
minishing returns [27, 4, 6, 8, 33]. A second application
arises in the area of social networks, where the functions
characterizing the influence of a subset of nodes turn out
to be submodular [17, 18]. Another one is the problem
of intelligent gathering of information, where sensors
should be placed in order to maximize the information
that can be collected from them [14, 21, 28, 23, 20, 22].
In this case, submodularity arises due to the fact that
the entropy of a collection of random variables is a sub-
modular function. Submodular functions also provide a
unifying framework which captures optimization prob-
lems that have been studied earlier, such that Min Cut,
Max Cut, Multiway Cut, Max k-Cover, the Generalized
Assignment Problem, the Separable Assignment Prob-
lem, etc.

In these settings, the goal is to optimize a submod-
ular function subject to certain constraints. In fact,
in many cases the constraints at hand are quite sim-
ple, such as cardinality (max{f(S) : |S| < k}), or a
partition matroid (max{f(S) : |S N P;| < 1Vi}, where
P; are disjoint sets). In some applications, combina-
tions of several of such constraints can arise, such as a
combination of several matroid constraints and knap-
sack constraints (3_;.gc; < 1). For a long time, the
only work in this area had been a sequence of papers by
Fisher, Nemhauser and Wolsey [30, 12, 29]. The main
result of this work is that the greedy algorithm provides
relatively good approximation for these problems: in
particular, a (1 — 1/e)-approximation for maximizing a
monotone submodular functions subject to a cardinality
constraint, and a (k 4+ 1)-approximation for maximiza-
tion of a monotone submodular function subject to k
matroid constraints. An additional virtue of the greedy
algorithm is that it is very simple and fast (quadratic
running time in the straightforward implementation).



Recently, there has been a wave of effort to im-
prove this result and extend it to more general scenar-
ios. A (1 — 1/e)-approximation was given for the case
of 1 knapsack constraint [32]. For the case of 1 ma-
troid constraint, which is relevant particularly in the
setting of combinatorial auctions, an optimal (1 —1/e)-
approximation was found in [33, 2]. For any con-
stant number of knapsack constraints, a (1 — 1/e — €)-
approximation was given in [24]. For k matroid con-
straints, the (k + 1)-approximation has been improved
to k + € for any fixed € > 0 [26]. Extensions and gener-
alizations to nonmonotone submodular functions have
been developed in [7, 25, 34, 26, 16, 13, 9, 10, 3, 1].

A common trait of these algorithms is that they pro-
vide good approximations, often close to optimal, but
their running time is typically far from practical. (With
two exceptions: [16] gives a fast algorithm for maximiz-
ing a submodular function subject to a p-system, gener-
alizing the monotone case from [12]; [1] gives an optimal
1/2-approximation for maximizing a submodular func-
tion without any constraints, and runs in linear time.)
Let us mention some other recent advances and their
limitations in terms of running time:

e The notion of multilinear relaxation has been used to
achieve an optimal (1—1/e)-approximation for submod-
ular maximization subject to a matroid constraint [2],
as well as improved approximations for more general
variants [24, 34, 9, 13, 3]. Nevertheless, the continuous
greedy algorithm, the primary algorithmic tool here, has
been quoted to run in time ©(n®) [11].

e Recently, an alternative way to derive a (1 — 1/e)-
approximation for 1 matroid constraint, which does not
require the multilinear relaxation, was given in [11]. It
gives a (1 — 1/e — €)-approximation in time O(nre=3),
where r is the rank of the matroid. The authors show
that the continuous greedy algorithm would have a sim-
ilar performance if adapted to give a (1 — 1/e — €)-
approximation.

e For combined constraints such as multiple knapsacks,
known algorithms rely on enumeration of poly(1/e)
items [24, 3] or a reduction to partition matroids [15],
both of which lead to Q(nP°¥(1/€)) running times. The
dependence in the exponent is bad enough that these
algorithms do not seem practical even for e = %

Due to these issues, it appears that few of these new
algorithms are fast enough to be applied in practice.
In fact, it turns out that even the original greedy
algorithm, which takes O(rn) running time, is too slow
for many applications, and researchers have sought ways
to speed up the greedy algorithm as well [28, 23]. Our
goal in this paper is to remedy this situation and develop
algorithms that have both theoretical approximation
guarantees, and a more practical running time.

Our results. In the following, n denotes the total num-
ber of elements, and r denotes the maximum cardinality
of a feasible solution. We measure the complexity of an
algorithm in terms of the number of oracle calls. We
note that the total running time of our algorithms is
not worse than O(n)x the number of oracle calls, and
typically this would be the actual running time, since
an oracle call involves processing a set of up to n ele-
ments. Since the earlier algorithms have been typically
analyzed in terms of the number of oracle calls, we use
the same benchmark.

Simple thresholding algorithms. First, we present a
simple algorithm for the case of a cardinality constraint,
which is faster then the classical greedy algorithm and
performs at least as well. A greedy algorithm for
selecting r elements uses O(rn) queries. An often used
version of greedy known as lazy greedy [28, 23] seems
to perform much better in practice. Our algorithm
can be viewed as an alternative implementation of lazy
greedy which provides the same approximation and a
guaranteed faster running time.

THEOREM 1.1. There is a (1 — 1/e — €)-approximation
algorithm for mazximizing a monotone submodular
function subject to a cardinality constraint, wusing
O(%log %) queries.

An extension of this algorithm gives the following
result for a combination of a p-system and ¢ linear
constraints.

THEOREM 1.2. There is a 1/(p + 20 + 1 + ¢)-
approximation algorithm for mazimizing a monotone
submodular function subject to an intersection of a
p-system and € knapsack (linear) constraints, using
O(e%log2 %) queries.

To our knowledge, this is the first known approx-
imation for the combination of a p-system and knap-
sack constraints. It was known that the greedy algo-
rithm gives a 1/p-approximation for maximizing a lin-
ear function subject to a p-system, and a 1/(p + 1)-
approximation for maximizing a monotone submodular
function subject to a p-system [12]. We also give a sim-
ple proof that the factor of p is optimal for p-systems;
see Section 7.

Our algorithm uses a combination of two ideas: a
fast implementation of a greedy algorithm, using a de-
creasing value threshold, and a fixed density threshold,
to deal with the knapsack constraints. The ideas used
in the above two algorithm also serve as building blocks
in the following result.

Accelerated continuous greedy algorithm. Our
main result is a new accelerated continuous greedy



H Constraint H Approximation ‘ Running time ‘ Prior running time H
Cardinality 1—1/e—c¢ O(%log?) O(nr)[30]
1 matroid 1—1/e—e¢ O(%1og” L) O(nr3e=3logr)[11]
1 knapsack 1—1/e—e€ | O(n?(Llog2)rotv(/9) O(n®)[32]
p-system + £ knapsacks | p+20+1+¢ O(% log? ) - ——

Figure 1: Overview of results.

algorithm for maximization of a monotone submodular
function subject to a matroid constraint. The original
continuous greedy algorithm [33, 2] was not optimized
for running time and required roughly O(nS) oracle calls
to the objective function. Recently, Filmus and Ward
[11] developed a new algorithm, as well as a tighter
analysis of the continuous greedy algorithm, which gives
O~(7’3ne’3 ) running time. Hence any improvement to the
running time should come by introducing new ideas.

We present three modifications to the continuous
greedy algorithm that lead to a faster running time.
We remark that the continuous greedy algorithm yields
a fractional solution that still needs to be rounded. For
the rounding stage we appeal to the swap rounding ap-
proach of [3]; although we do not develop a new round-
ing algorithm, the fractional solution that we produce
in the optimization stage has additional structure which
speeds up the swap rounding algorithm as well.

THEOREM 1.3. There is an algorithm that achieves a
(1—1/e—€)-approximation for mazimizing a monotone
submodular function subject to a matroid constraint,
and requires O(rne=* log? n) oracle calls to the objective
Sfunction.

As a different application of the accelerated continu-
ous greedy algorithm, we show an asymptotically faster
algorithm for a single knapsack constraint.

THEOREM 1.4. There is an algorithm that achieves a
(1—1/e—€)-approximation for mazimizing a monotone
submodular function subject to a knapsack constraint,
and requires O(n?(Llog 2)PeW(1/€)) oracle calls to the
objective function.

Our techniques. The main ideas involved in acceler-
ating the algorithms are the following.

Smooth interpolation between greedy and continuous
greedy: While the classical greedy algorithm [12] gives
a 1/2-approximation, continuous greedy [33] gives a
(1 — 1/e)-approximation. Continuous greedy works by
reducing the problem to maximizing linear functions.
This requires it to move in steps of size § = O(e/n).
We give an algorithm which is a smooth interpola-
tion between greedy and continuous greedy and gives

a (1 — 1/(1 + 6)'/9)-approximation for any constant
step size 6 € (0,1]. We achieve this by sequential
updates instead of parallel updates in the continuous
greedy algorithm. This allows us to get a (1 —1/e —¢)-
approximation with 6 = O(e). When § = 1, we recover
the classical greedy 1/2 approximation.
Geometrically decreasing thresholds: This idea comes
from the lazy greedy heuristic, which we also use in our
algorithm for a cardinality constraint. Lazy greedy can
be thought of as an algorithm which maintains a con-
tinuously decreasing threshold and takes elements when
their marginal value is above the threshold. We show
that decreasing the threshold multiplicatively by 1 — e,
and including any element with a marginal value above
the threshold, we avoid the need to search for the max-
imal marginal value and save roughly a factor of n.
Enumeration in value space instead of subsets: The
above two ideas are enough for getting our result for
the matroid constraint. However, this is not enough
for a knapsack constraint since we cannot round a frac-
tional solution to a feasible solution without loss in the
approximation ratio. The algorithm of [32] takes care of
this by enumerating over subsets of size 3 while [24, 3]
enumerates over subsets of size poly(1/e). We develop
an alternate way of enumerating over values of the sub-
modular function instead of subsets of the ground set.
Figure 1 shows a summary of our results, including a
comparison with previous best known algorithms giving
the same approximation.

Organization. First we present our simple algorithm
for a cardinality constraint in Section 3. Our algorithm
for the matroid constraint appears in Section 4, and for
the knapsack constraint in Section 5. The algorithm for
a p-system and ¢ knapsack contraints appears in Sec-
tion 6 and the lower bound for p-systems in Section 7.
We state some basic definitions and facts in Section 2.

2 Preliminaries

Set notation. For compactness, we denote A + i

AU{i} and A —i= A\ {i}.

Submodular functions. A set function f:2¥ — Ris
submodular, if f(A)+ f(B) > f(AUB)+ f(AN B) for
all A, B C E. It is monotone, if f(A) C f(B) whenever



A C B. In this paper, we consider only nonnegative set
functions, f : 2F — R,.

Matroids. A matroid is a pair M = (E,Z) where
Z C 2F is a collection of independent sets, satisfying:
(i) ACB,BeI=AecZ and (ii) A,B € Z,|4] <
|Bl|=3ie B\A;A+iel.

p-systems. For a family Z C 2F and a set S C E, we
call B a base of S, if B is an inclusion-wise maximal
subset of S such that B € Z. A p-system is a family
I C 2F such that for every S C E and any two bases
Bl,BQ of S7 |BQ| S p‘Bl|.

It is known that for any p matroids M; =
(E,Th),..., M, = (E,I,), the intersection (;_, Z; is
a p-system. More generally, p-systems include “p-
extendible families”, “p-uniform matchoids” and “p-
uniform matroid matching”; see [2, 26] for more details.

Knapsack constraints. By a knapsack constraint
K C 2F, we mean a family of sets defined by a linear
constraint K = {I C E : Y, ;c; < 1} for some
collection of weights (¢; : j € E). (We can assume that
the capacity is 1 without loss of generality.) Thus the
classical knapsack problem is max{}_ ;. w; : I € K}.

The multilinear extension. For a function f : 28 —
R, we define F(x) = E[f(R(x))], where R(x) is a
random set where element ¢ appears independently with
probability x;.

Shorthand notation. We will use the following two
shorthand notation.

e For any S, T C E let fo(T) = f(SUT) — f(95).

e Let £ and E5 be two duplicate copies of ground
set E. For any S C E;UE, define contract(S) C E
as the set which contains e € E iff S contains at
least one copy of e. Then define the extension of the
monotone submodular function f : 2F1VF2 R
as VS C Ey U Ey, f(S) = f(contract(5)).

We will use the following facts.

LEMMA 2.1. (COROLLARY 39.12A [31]) Let M =
(N,Z) be a matroid, and By, By € B be two bases. Then
there is a bijection ¢ : By — By such that for every
b € By we have By — b+ ¢(b) € B.

LEMMA 2.2. (THEOREM 1.1 [5]) Let Xi,...,X, be
independent random variables such that for each i, X; €
[0,1]. Let X =>"" | X;. Then

Pr[X > (14 ) E[X]] <e~ 5B,
Pr[X < (1 — ) E[X]] <e~ TBIX],

LEMMA 2.3. (RELATIVE+ADDITIVE CHERNOFF BOUND)

Let Xq,...,X,, be independent random variables such
that for each i, X; € [0,1]. Let X = L3> X; and

w=E[X]. Then
Pr{X > (1+a)u+ ] <e” "5,
PriX <(1—a)u—pg] <e~ 3"

Proof. Using Lemma 2.2,

Pr[X > (1+a)p+ S
< min(Pr[X > (1+ a)u], Pr[X > p+ 5])

o2 52 a2, B2
<min (e T T mE ) = g7 M US s
— )

_ (2 ﬁ) [a2p2 8
<e <5m”+6“m <e ™ T < e

Pr(X < (1 —a)u— ]
< min(Pr[X < (1 —a)u], Pr[X < p—pg])

a2 —ﬁm 7max(ﬁm,u ﬁm)
< min e—Tmu)e 22 M) e 2 2
(Rt Bm) o fBE __mad
<e \ * A <e 1 <e Tz .,

LEMMA 2.4. (LEMMA 3.7 [2]) Let X = X1 U...UX},
let f:2%X — R, be a monotone submodular function,
and for all i # j we have X; N X; = 0. Let y € R¥
such that for each X; we have Zier v < 1. If Tis a
random set where we sample independently from each X;
at most one random element, element j with probability
y;, then

E[f(T)] = F(y).

3 Cardinality constraint

First we present a simple near-linear time algorithm
for the problem max{f(S) : |S| < r}, where f is
a monotone submodular function. Observe that a
straightforward implementation of the greedy algorithm
runs in time O(rn), and a factor of n is necessary just
to find the most valuable element (if » = 1). Our goal
here is to eliminate the dependence on 7, while still
preserving the approximation properties of the greedy
algorithm. Our algorithm works as follows.

Here we prove Theorem 1.1. The running time of
the algorithm is easy to check. For the approximation
ratio, it is enough to prove the following claim.

CLAM 3.1. Let O be an optimal solution. Given a
current solution S, the gain of Algorithm 1 in one step

1s at least % Zaeo\s [s(a).

Proof. Due to submodularity the marginal values can
only decrease as we add elements. Hence if the next



Algorithm 1 Cardinality Constraint
Input: f:2F =R, re{l,...,n}.
Output: A set S C F satisfying |S| < r.
S« 0.
d <+ max;cp f(j)
for (w=d;w > Sdyw <+ w(l —¢€)) do
for all e € E do
if |[SU{e}| <r and fs({e}) > w then
S« Su{e}
end if
end for
end for
return S.

=
=

element chosen is a and the current threshold value is
w, then it implies the following inequalities

ifz=a

<w/(l-¢€) ifzeO\(SU{a})

> w

fs(x) = {
The above inequalities imply that fs(a) > (1 —
€)fs(x) for each x € O\ S. Taking an average over
these equations we get fs(a) > ‘éﬁ 2aco\s fs(a) =

1 Y aeons fs(a).

Now it is straightforward to finish the proof of
Theorem 1.1.

Proof. Condition on a solution S; = {ai,...,a;}
after 4 steps. By Claim 3.1, we have
fsi(aiv1) > l—fzaeo\si fs:(a). By submodu-
larity, > ,cons, fs.(a) =2 [fs.(0) = [f(O) = f(Si).

Therefore

1—c¢

f(Siv1) = f(Si) = fs(aiy1) >

sz (1 (1- 1‘6))

> (1-¢179) £(0) = (1 = 1/e = 9 £(0)

(f(O) = f(Si))-

We remark that the idea of decreasing thresholds,
with additional complications, also gives an approxima-
tion algorithm for the much more general constraint of
a p-system combined with ¢ knapsack constraints. The
details are given in Section 6. In addition, this idea
will play a role as a building block in the algorithms for
a matroid or a knapsack constraint, which we turn to
next.

4 Matroid constraint

Here we give a (1—1/e—¢)-approximation algorithm for
maximizing a monotone submodular function subject to
a matroid constraint, using O (rne_4 log? n) oracle calls
to the objective function and the matroid independence
oracle. The general outline of our algorithm follows
the continuous greedy algorithm from [33, 2], with a
fractional solution being built up gradually from x = 0,
and finally using randomized rounding to convert the
fractional solution into an integer one (here we use the
improved swap rounding procedure from [3]). We are
able to achieve a significant improvement in the running
time based on the following insights.

While the greedy algorithm is fast, it gives only a
1/2-approximation for a matroid constraint. The con-
tinuous greedy algorithm gives (1 — 1/e)-approximation
but inherently it is more complicated. Here, we show
how one can interpolate between the two via a parame-
ter § € [0,1] such that § = 1 corresponds to the greedy
algorithm, and 0 < § < 1 corresponds to a discretized
version of the continuous greedy algorithm providing a
(1 —1/(1 4 6)"/%)-approximation.

Let us describe this idea in a bit more detail.
The greedy algorithm iteratively adds elements to the
solution such that you add element e to set S if it
maximizes fg(e) and S U {e} is a feasible solution.
The continuous greedy algorithm from [33, 2] runs
in continuous time from 0 to 1. Its implementation
discretizes time and increments it in steps of size § =
O(1/n). In each time step it takes a feasible solution
to end up with a convex combination of solutions

= 21/6 61p,. When § < O(1/n) the improvement
by taking j* feasible solution behaves like a linear
function, i.e F(x; +01g) — F(x¢) = > cq F(x:+01) —
F(xt). This can be proved by a simple Taylor series
expansion and bounding the lower-order terms. So the
problem boils down to choosing a feasible solution S
which maximizes the linear function ) | ¢ F(x;+01c)—
F(x;). This in essence is like updating the coordinates
“in paralle]”. We note that for the analysis to work, §
must be inverse polynomial in n.

Our new idea is an algorithm which chooses
a solution at any given time step sequentially in-
stead of choosing it in parallel. More specifically, if
B ={ej,eq,...,e.} is the set chosen at time step t then
our sequential update rule chooses e; which maximizes
F(Xt + 51{61,62,.“,6171,67;}) - F(Xt + 51{61,62,...,61',1})-
In effect, we update the fractional solution and the
relevant derivatives of F' after each selected element
instead, rather than after choosing an entire indepen-
dent set. In contrast, the original continuous greedy
algorithm chooses an element e; which maximizes
F(x: 4+ 01.,) — F(x¢) with {ej,ea,...,e;} € Z. One



can easily see why our modification is a smooth inter-
polation between greedy and continuous greedy — for
0 = 1, we obtain the greedy algorithm and for 6 — 0
we obtain the (truly) continuous greedy algorithm. For
a fixed 6 € [0,1], we prove that the approximation
ratio with a step of size & is 1 — 1/(1 + 6)7 for every
6 € [0,1]. This results in improving the running time
to get a (1 — 1/e — €)-approximation for the following
three reasons.

1. It reduces the number of time steps from O(r/e) to
O(1/e).

2. It reduces the number of samples required per evalu-
ation of the multilinear extension from O(Z%7%logn) to
O (&rlogn).

3. It reduces the running time of the rounding
procedure, specifically swap-rounding from [3]. If
swap-rounding is given a fractional solution as a
convex combination of ¢ independent sets, then it runs
in time ¢r?. Since our continuous greedy produces
a fractional solution which is a convex combination
of O(1/¢) independent sets, the running time is O(r?/e).

A key trick in the analysis of this modified pro-
cedure is that if a time step begins with a fractional
solution x and finishes with a fractional solution x’ =
x+€lp, we compare our gains to the partial derivatives
g—i evaluated at x’ rather than x. This allows us to
eliminate the loss from partial derivatives depending on
the elements we have already included in B when se-
lecting the next one. The price for this is that after 1/e
steps, our value is at least (1 —1/(1+ €)'/€)OPT rather
than (1 — (1 — €)'/€)OPT, but this is only an O(e) loss
in the approximation factor.

4.1 The procedure for one time step In this
section we give and analyze a subroutine, which will
be used in the final algorithm. This subroutine takes a
current fractional solution x and adds to it an increment
corresponding to an independent set B, to obtain x +
€lp. The way we find B is similar to the decreasing-
threshold algorithm that we developed in Section 3.

Notation. In the following, for x € [0,1]¥ we denote
by R(x) a random set that contains each element
i € E independently with probability z;. We denote
R(x+e€lg) as R(x,S). By fr(e), we denote the marginal
value f(e) = F(RU {e}) = f(R).

CLAM 4.1. Let O be an optimal solution. Given a frac-
tional solution x, the Decreasing-Threshold procedure
produces a new fractional solution X' = x + elpg such
that

F(X') = F(x) z e((1 = 36)f(0) = F(X)).

Algorithm 2 Decreasing-Threshold Procedure
Input: f:2F =R, x€[0,1]%, e€[0,1], T C 2F.
Output: A set S C FE satisfying S C 7.

1. B+ 0.

2: d <+ max;ep f(])

3: for (w=d;w > £d;w <+ w(l —¢€)) do

4: for alle € E do

5: we(B,x) <« estimate of E[frxte1,)(e)] by

: 1
averaging 28"

random samples.

6 if BU{e} € Z and w.(B,x) > w then
7 B+ BU {6}

8 end if

9: end for

10: end for

11: return B.

Proof. Assume for now that the Decreasing-Threshold
procedure returns r elements, B = {by,bs,...,b.}
(indexed in the order in which they were chosen). The
procedure might return fewer than r elements if the
threshold w drops below £d before termination; in this
case, we formally add dummy elements of value 0, so
that |B] = r. Let O = {01,02,...,0,} be an optimal
solution, with ¢(b;) = o; as specified by lemma 2.1.
Additionally, let B; denote the first ¢ elements of B,
and O; denote the first i elements of O.

Note that from Lemma 2.3 we get that at each step,
E[fR(x+e15,)(€)] is evaluated to a multiplicative error of
e and an additive error of £ f(O) by averaging érlogn
i.i.d. samples, with high probability. This implies the
following bound, with high probability:

[we(Bis x) = Elfrex,5,)(€)]] < ff(O) + E[frx,B,)(€)]

When element b; is chosen, o; is a candidate element
which could have been chosen instead of b;. Thus, by
design of the Decreasing-Threshold algorithm, we have
wy, (Bi—1,%x) > (1 = €)w,, (Bi—1,x) — £d (because either
0; is a potential candidate of value within a factor of
1 — € of the element we chose instead, or the procedure
terminated and all remaining elements have value below
£d). Combining the two equations, and the fact that
f(O) > d, we get

Blf .1 (00)] = (1= Bl a5, 1) (00)] — < (0)

Using the above inequality we bound the improvement



at each time step:

F(x') — F(x)
—Z
_Z 833;,

> Z €B[fracterp,)(0i)]

= F(x+e¢€lp)— F(x)

(x+e€lp,)— F(x+elp,_,))

x+elB _1

>Z (01 OBlfrnraan, (o] - 25(0)
(1 — OBLF(R() UO) — F(R())] —26£(0))

>

> e((1=36)f(0) - F(xX)).

Here the second inequality is because o; is a candidate
element when b; was chosen. The first and last inequal-
ities are due to monotonicity, and the third inequality
is due to submodularity.

CLAIM 4.2. The Decreasing-Threshold procedure runs
in time O (6%717“ log? %)

Proof. 1t is simple to note that the running time is a
product of the number of iterations in the outer loop
(tlog %), the number of iterations in the inner loop
(n), and the number of samples per evaluation of F,
which is 6%rlog n.

4.2 Final algorithm In this section we give the
complete algorithm and its analysis.

Algorithm 3 Accelerated Continuous Greedy
Input: f:2¥ - R,, T C2F.
Output: A set S C F satisfying S € 7.

1: x <+ 0.
2: for (t+ ¢ t<1; t+t+e)do
3: B < Decreasing-Threshold(f, x,¢€,Z).
4: X<+ x—+e-1p.
5
6
7

: end for
: S + Swap-Rounding(x,Z).
: return S.

CrLAM 4.3. The algorithm has an approzimation ratio
of 1—1/e—e.

Proof. Define Q@ = (1 — 3¢)f(0) = (1 — 3¢)OPT.
Substituting this in the result of claim 4.1, we get

F(x(t+¢€)) — F(x) > e(Q = F(x(t +¢))).

Rephrasing the equation we get

Q- F(x(t+e) < Q*%(Xe(m

Now applying induction to this equation, we obtain

Q
Q= Fx(0) £ g g7

Substituting ¢ = 1 and rewriting the equation we get
the desired approximation ratio:

F(x(1)) > (1 - (Hl)/) 0

~(- gm0

=(1-1/e—0O(¢))OPT.

3¢) OPT

CLAIM 4.4. The algorithm makes O( Lnrlog? ) ora-
cle calls to the submodular function oracle and makes
0] (Einog - +1 T ) oracle calls to the matroid indepen-
dence oracle.

Proof. First note that the oracle to the submodular
function is called only by the continuous greedy algo-
rithm and not by the rounding algorithm. Hence the
total number of oracle calls to the submodular function
is equal the number of time steps multiplied with the
number of oracle calls per iteration.

Submodular oracle calls < e~ 1. O (rne_3 log? B)
€

=0 (rne_4 log? %)

The number of oracle calls to the independence oracle
is divided into two parts, one due to continuous greedy
procedure and another due to rounding process.

Independence oracle calls < €™

Lo (ne_l log %)
<0 (ne_2 log %)

The swap rounding proceeds as follows. It takes the
fractional solution x and represents it as a convex com-
bination of independent sets. Then it begins merging
the independent sets while maintaining the property of
them being independent. Hence the number of oracle
calls is number of independent sets times the calls per
merge operation.

Independence oracle calls in rounding
= Number of independent sets - Calls per merge
<0 (e_1r2) .



5 Knapsack constraint

In this section we discuss the main ideas behind an al-
gorithm for maximizing a monotone submodular func-
tion subject to knapsack constraint which runs in time

1
O <n2 . (@) 68) and has approximation ratio 1 —

1/e — €. This is an asymptotic improvement over the
current best running time of n° from [32] (even though
not a practical improvement). Without loss of gener-
ality assume that the knapsack constraint has capacity
1.

The nP-time algorithm from [32, 19] works as
follows. It enumerates subsets S of size at most 3 and
given S it adds other elements to S greedily based on
marginal value to cost ratio while the budget constraint
is satisfied. We can immediately improve its running
time by enumerating sets of smaller cardinality while
resulting in a loss in approximation ratio. But achieving
an asymptotically faster 1 — 1/e — € approximation
seems challenging. We are able to achieve this using
a modification of continuous greedy. The three main
ideas behind the new algorithm are summarized below.
e Interpolation between greedy and continuous greedy.
e Geometrically decreasing thresholds.
¢ Enumeration in value space instead of subsets
Since the first two ideas are in common with Section 4
we focus on the third idea here. The primary reason
the above two ideas are not enough for knapsack con-
straint is that when there are “large cost” items, one
cannot round a fractional solution to a feasible solution
without losing significantly in the approximation ratio.
The combinatorial algorithm from [32] (not based
on continuous greedy) takes care of large items by
enumerating over subsets of size 3. This is the reason
for a blow-up of roughly n? in its running time. We
develop a new way of enumerating over values that the
submodular function takes, instead of subsets of the
ground set. Roughly speaking we have poly(1/e) “large
cost” items. The submodular function can potentially
take %logn different values with respect to each item.
Since we enumerate over all of these, it results in a

factor of (% log n)pozy(l/e) instead of n3.

To show the new idea of Enumeration in value space
instead of subsets we first consider a toy problem where
the optimal solution has at most 2 elements. For this
toy problem we give a (near)linear time algorithm with
approximation ratio 1 — 1/e — ¢ in subsection 5.1. The
general case for knapsack constraint is dealt with in
subsection 5.2

5.1 Optimal solution with two items In this
subsection we illustrate the idea of enumeration in

value space on a much simpler special case of knapsack
constraint. We consider here the case when optimal
solution has at most two elements and we want to design
a (near)linear time algorithm.

Let us first consider a special case when we know
that the optimal solution contains two items, one with
cost 1/2+ ¢ and another with cost 1/2 —e. Note that in
such a case we can trivially find the optimal solution
in n? oracle calls. But the problem becomes more
interesting if we restrict the algorithm to make at most
O(n) oracle calls. It is simple to see that this special case
can be cast as maximizing f over a partition matroid
constraint with 2 parts, one with items of cost 1/2 + ¢
and another with items of cost 1/2 — e. Then we can
use our algorithm from section 4 to get a 1 —1/e — ¢
approximation with O(n) oracle calls. This is what gave
us the idea of using continuous greedy to improve the
(asymptotic) running time of the general problem.

Next, consider a slightly more general version of
the problem where the optimal solution has two items.
Now it is no longer clear how to reduce it to a matroid
constraint or invoke continuous greedy (along with a
suitable rounding procedure). One of the main ideas
here is that we do an enumeration on the values
discretized in a specific way instead of enumeration
on subsets of items like most other algorithms for a
knapsack constraint. This will also help us to force
the continuous greedy to get a fractional solution which
“mimics” a partition matroid.

Algorithm overview: Let the optimal solution be
O = {o1,02}. Our main algorithm 4 guesses a set
of values(Vt, w}, w?) and sends it to the continuous
greedy algorithm 5. These values represent guesses for
marginal values of 01,00 with respect to the fractional
solution at any given time step t. The continuous
greedy algorithm first duplicates the set of items F to
create two copies F7 and E5. Then it constrains the
continuous greedy algorithm at each time step to pick a
solution {ey,e2} to satisfy the following two properties.

e ¢ € Fy and es € E5. Note that since F; and
E5 are copies of E this does not change the optimal
solution.

e c(e1) < c¢(o1) and c(ez) < c¢(o0z). Since the al-
gorithm does not know the cost of items in the optimal
solution it cannot force this property on the solution.
However, it makes sure that there exists at least one
set of guessed values(Vt,w;i,w?) which satisfy this
property. We will design such a set of guess values in
claim 5.2.



Further the continuous greedy algorithm updates
the vectors y; = y1 + €l., and y2 = y2 + €1, at each
time step along with some bookkeeping. At the end
the algorithm does a simple independent rounding to
convert to a feasible solution.

Similarity to partition matroid: Note that if the
above two bullet points hold, then any {€’, e’} with e’ €
P, = {e|yi(e) > 0} and " € P, = {e|y2(e) > 0} form a
solution which satisfies the capacity. Here P;, P, behave
exactly like 2 parts of a partition matroid constraint.

Algorithm 4 Knapsack, 2 item opt

Input: f:2¥ — R, cost function c¢: E — R,.
Output: A set S C F satisfying ¢(5) < 1.

I d < maxjeg f(j)
2: Guess-set < {d,d(1—¢),d(1—¢)?,...,e2d/n}uU{0}

Time-set « {e,2¢,3¢,...,1}

for all t € Time-set and w},w? € Guess-set do
S = Guessing-Continuous-Greedy/( f, w, ¢)
R=RU{S}

end for

return maxgep f(.5)

Algorithm 5 Guessing-Continuous-Greedy (GCG)

Input: f:2¥ — R, cost function ¢ : E — R, guess
1/ex2

values w € R/
Output: A set S CE.
1. By, Es + E (Duplicate the items).
2: Define f 2E1VE, _y R, as f(Sy, SQ) f(Sl USQ)
5 x4 0 €[0,1]7YF g, « 0 €[0,1]P,y ¢ 0 €
[0,1]%2
4: for (t et <1;t+ t+e€) do
5. for (i+ 1;1<2i+i+1)do
For each e € F; compute marginal(x,e) =
E[frx)(e)] in time O (2%)

7: Let e = argmin{c(e)le € E;, marginal(x,e) >
wi}

8: X X+ €ele.

9: Yi <y +e€le.

10:  end for

11: end for

12: Let U(y;) denote one random element from F;,
element j with probability y; (7).

13: S+ U(yl) U U(yz)

14: if ¢(S) > 1 then

15 S« 0.

16: end if

17: return S.

CrAm 5.1. Algorithm 4 has time

0 (- (22)").

Proof. The running time of Guessing-Continuous-
Greedy is a product of number of iterations in the outer
loop, number of iterations in the inner loop, number of
elements in the ground set and number of evaluations
of f per evaluation of F.
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Now the total running time is the number of different
possible choices for each of w},w? times the running
time of the Guessing-Continuous-Greedy.

1 ‘ 2?
Total running time = ( og(n)) -0 (n CE )
€

€

on ()

CLAIM 5.2. Algorithm 4 has an approrimation ratio of
1-1/e—ce.

ruUnNINg

1
Running time of GCG = = -2-n-2¢ =0 <n
€

Proof. The proof of approximation goes by showing
specific values for w},w? for which the Guessing-
Continuous-Greedy achieves a 1 — 1/e — e approxima-
tion. Let x(t) be the fractional solution at the end of
time step ¢. Define w; as the largest value in Guess-Set
smaller than E[fr(x())(01)]. Then let e} € Ey be the
choice of the continuous greedy. Then by the choice of

e; we have the following two inequalities.

o E[fpxanler)] = wi = (1 — OE[frxq) (o)
This follows from the fact that o; is a candidate for e;}.

e c(e;) < c(o1). This is because both e} and oy
are candidate elements to be chosen and we choose the
one with minimum cost.

Similarly, define w? as the largest value in Guess-
Set smaller than E[fr(x(t)+e1,,)(02)]-

* Elfreenyter,y) (€7)] = wf = (1= E[frpx(n)+e1,)(02)]
This follows from the fact that o, is a candidate for e?.

e c(e?) < c(oz). This is because both €? and o9
are candidate elements to be chosen and we choose the
one with minimum cost.

For the set of w},w? thus defined we have the
following property. For every e; € E; and e? € Fy with



yi(ef) > 0 and ya(e?) > 0, {ef,e?} forms a feasible
solution. Additionally the equations allow us to bound
the increase at each time step.

F(x(t+¢€) — F(x(t)) = F(x(t) + €l c2y)
= F(x(t) + €11 c2y) — F(x(¢t) + €l.1)

+ F(x(t) +€lor) — F(x(t))
€(E[frx(t)+e1, 1)(6t)] + E[frxt) (e)])
1= )(Elfrextt)+er,1) (02)] + Elfr(x(r)) (01)])

[

— )(E[fRx(t+0)+¢1,,)(02)] + E[fr(x(t+)) (01)])
1—€e)(E[f(Rx(t +€)UO)) — f(R(x(t +¢)))])
1=e)(f(O) = F(x(t +¢))).

Now we proceed as in Section 4. Rephrasing
the inequality above, we get f(O) — F(x(t + ¢€)) <

%. Then by induction we can prove

- F(x(1))

vV

vV

€

%
)
=

|
™
3}

Y%

€

(
(
(
(
(

1

0)—-F(x -
0) = Fix(t) < e

f(0).

Substituting t = 1 and rephrasing once again

1
F(x(1)) > (1 — (1_’_6(1_6))1> f(O)
> (1-1/e — 0(0)f(0).

By Lemma 2.4 we get that the rounding in step 12 of
algorithm 5 results in a solution S such that E[f(S)] >
F(x(1)) = (1 =1/e =€) f(0).

5.2 General case of knapsack constraint In this
section we consider the general case of a knapsack
constraint without any restrictions. The final algorithm
requires several ideas developed in this paper.

Define the set of “small items”, items which satisfy
f(e) < e8f(0) and c(e) < et (we only need an estimate
for f(O), so we can discretize the values in between
max;cpg f(4) and nmax;cg f(¢) into logn/e values and
check each one of them). We call the set of small
items Es. Define the set of “large items” as FE\Fs.
Let the optimal solution be O = O; U O, where O; =
{01,02,...,01/:} = O\FE; is the set of large items in O
and Oy is the set of small items in O.

The basic ingredient of our algorithm is a variant
of continuous greedy. Algorithm 7 just guesses a set of
values represented as w{ in a brute force manner and
sends to continuous greedy algorithm (Algorithm 8).
The continuous greedy at each time step updates the
fractional solution x with a feasible solution S to get
X + €lg in the following two steps.

e Handling large items At any given time step
the continuous greedy handles the large items similar
to algorithm from Section 5.1.

e Handling small items Handling small items
in a given time step is much trickier. This is because
unlike large items we can have up to O(n) small items.
Hence we cannot afford to have a separate part for
each small item in the partition matroid structure (as
our running time is proportional to roughly logn/e
raised to the number of parts). At a high level our
algorithm handles all the small items as a single part
and is essentially a greedy algorithm with respect to
the marginal value / cost ratios.

Once we compute the fractional solution, we need
to round it to an integral one. Although our rounding
is based on known techniques, it is somewhat non-
trivial to use them in our setting. We explain the
rounding step in Section 5.2.3.

5.2.1 Subroutine for handling small items We
give a sketch of the subroutine here. A formal imple-
mentation can be found in Algorithm 6. The subroutine
here is called at each time step and it updates the cur-
rent fractional solution x with a set S, C FE, of small
items. Furthermore we desire such a solution to have
the following properties.

e F(x+elg,)—F(x)>¢(1-—

e ¢(S5) < ¢(Os).

To this end we have a guess W of the value of
E[fr(x)(Os)] which is sent to the subroutine. At a high
level our algorithm achieves the desired set of properties
(when our guessed value is correct) by just running a
greedy algorithm on the marginal value / cost ratios.
The only problem with a naive implementation of such
an algorithm is that it requires n? evaluations of F
which results in a running time of O(n3). We decrease
this to O(n?) and solve several other issues by the
following set of ideas.

O(€)E[frx) (0],

e A key idea is that the marginal value of an
item need not be reevaluated unless its value decreases
by more than a 1 — e factor. Further if an item’s value
gets reevaluated more than 2logn/e times then we can
throw it away from the current time step as it no longer
can add a significant value to our solution. This results
in needing us to evaluate F only O(nlogn/e) times.
We implement this by managing a sorted list Q.

e We achieve ¢(Ss) < ¢(O4) by stopping the algo-
rithm slightly before it reaches our target guess value.



Algorithm 6 Decreasing-Density

Input: A monotone submodular function f : 27 — R,
cost function ¢ : E — R, guess value W, current
fractional value x.

Output: A set SCE.

50

Q < 0 (sorted list)

for all e € E do

we (0, z) < estimate of E[fg(x)(e)] by averaging

nlogn
3

W o

-+— random samples..
Let v(e) = max{(1 —¢€)! | ¢t € Integers,v(e) <
we(B,z)/c(e)}.
Add (e,v(e)) to Q.

end for

Sort @ in decreasing order of v(e).

while @ is non-empty do

10:  Let (e,v(e)) be the element at the top of Q.

Delete it from Q).
11: we(S,z) ¢ estimate of E[fpxte14)(e)] by aver-

o

. 1
aging *—£" random samples.

12 Let v/(e) = max{(1 — €)' | t € Integers,v'(e) <
we (S, x)/c(e)}.

13: if v'(e) > (1 — €)v(e) then

14: S+ SuU{e}

15:  else if e has been reinserted back into () less than
log(n)/e times then

16: Reinsert (e,v’(e)) into Q.

17:  end if

18:  TotalMarginal < estimate of F(x + elg) — F(x)
by averaging "lsg,g" random samples.

19:  if TotalMarginal > (1 — 10¢)W then

20: break loop;

21:  end if

22: end while

23: return S.

Then we proceed to show that if this condition were
violated, then we would have stopped the algorithm at
a later point.

e To make the analysis work we once again use
the trick from Section 4 of comparing the gains to
partial derivatives evaluated at x’ = x + €lg,_ instead
of at x. This will also require some careful counting.

CLAIM 5.3. If there exists a set T such that (1+¢€)W >
€E[frx)(T)] = W and W > €2 f(O) then Algorithm ¢
finds a set S such that F(x+e€elg)—F(x) > (1—12¢)W.
Additionally we will have that ¢(S) < ¢(T). (Here
T denotes a proxy for Os when W is appropriately
defined.)

Proof. From lemma 2.3 we get that F/(x+¢elg)—F(x) is
evaluated to a multiplicative error of ¢ and an additive
error of €3f(0). By the stopping rule we stop when
TotalMarginal > (1 — 10e)W. Hence when we stop, we
have

F(x+elg) — F(x) > (1 — ¢)TotalMarginal — €* f(O)
>(1—¢€)(1—-10e)W —eW > (1 —12e)W.

Now we just need to prove that ¢(S) < ¢(T). To prove
it first we prove an upper bound on F(x+e€lg) — F(x).
Note that by the stopping condition we stop when
Total-Marginal > (1 — 10¢)IW. Hence Total-Marginal <
(1 —106)W + maxeep, f(e) < (1 — 10e)W + 3 f(0) <
(1 —9¢)WW. Now by Lemma 2.3 we have that

F(x +¢€lg) — F(x) < (14 ¢)TotalMarginal + € f(O)
<A+e1—-9)W +eW < (1 —Te)W.

Hence we get that F'(x+elg)— F(x) < (1—7e)W. Now
we prove ¢(S) < ¢(T) by contradiction. Assume c¢(S) >
¢(T); then we show that F(x+elg)—F(x) > (1—4¢)W
which is a contradiction.

Let S = {s1,52,...,8¢} be the elements in the order
they are chosen. Sort T = {¢,ta,...,t;} in the order of
decreasing E[fr(x+e14)(t:)]/c(ti). Consider any number
0 <¢<ceT). Let N(¢) = min{j : >0, c(si) > ¢}
Similarly let M(¢) = min{j : >°7_, ¢(t;) > ¢}. Then we
show that

E[fR(erelsN(CFI)(SN(C))] + %f(O)
c(sn(o)

E[frcsers) (b)) — S £(0)
c(tar(ey) '

(1—¢)

The above equation is true because when sy
was chosen, some element from {t1,%2,...,tp ()} was a



candidate which could have been chosen instead. Now
we can bound the total gain from S.

F(x+elg) — F(x)

Algorithm 7 Knapsack, General Case

M\

F(x+elg,)— F(x+€lg,_,))

Input: f:27 — R, cost function c: F — R,.
Output: A set S C F satisfying ¢(5) < 1.
L d <+ n-maxjeg f(J)

Guess-set < {d,d(1—¢),d(1—¢)?,...,e2d/n*}U{0}
Time-set < {¢, 2¢, 3¢, ...,1}
for all t € Time-set and w},w?, ..., 1/ W €

Guess-set do
S = Greedy-With-Guessing( f, ¢, w, W)
R=RU{S}

end for

return maxgep f(.9).

=1
¢ 2:
ZGZ E[fR x+elsi71)(3i)]
i—1 3:
/P(S) E[ fR(x+elsN(<) O(sno)] a 4
=€
0 c(sn(c)) 5.
/ F‘[f]:i’(x+6151\,(<> 1)(SN(C))] dC 6
0 c(sn(e)) T
o /0<T> <E[fR(x+ds><tM<<>>] ~2£(0) ¥
o 0 c(tm(c))
< 1(0)

- C(SN(())) d
fR(x+els)( )] - 2€3f(0)

fz € —¢2

Algorithm 8 Greedy-With-Guessing

t;€T
>(1 - ) (B[f(R(x + e15) UT) — f(R(x + 1))
—264f(0)
>e(1 - ) (BI(R(x) UT)] ~ F(x + els)) - 26*(0)
>(1— ) (W - e(F(x + els) — F(x))) — 2.

Rephrasing the equation we get F(x+elg)—F(x) >
(1-3e)W/(1+¢€) > (1 —4e)W which is a contradiction.

CrAM 5.4. Algorithm 6 runs in time O (}4712 log? n)

Proof. Note that each item is reinserted back into the
sorted list at most log(n)/e times. Hence the running
time is at most the product of the total number of items

(n), the maximum number of times an item is reinserted 9

(log(n)/e), and the number of samples per evaluation

(nlog(n)/€3). 10:

11:
5.2.2 Complete algorithm The main algorithm, 12:
Algorithm 7, is similar to the main algorithm from Sec-  13:
tion 5.1 in the sense that it guesses a set of values and  14:
sends it to the continuous greedy algorithm (Algorithm  15:
8). The continuous greedy algorithm at each time step 16:
finds a feasible solution S = S, U S; as follows. Let 17:
Sl:{81,827...,81/56}. 18:

19:

20:

e Handling large items At any given time step the 21:

Input: [ :

2F 5 R, cost function c :
1/ex1/€8 1/e
guessed values w € RY/ W eR).

E—>R+,

Output: A set S C E.

: By, Es, ..., Eie,Es < E (Duplicate the items).
xeﬁéﬂﬂw
For each E;, y; + T e [0, 1)%
2+ 0 €[0,1)5
S0
for (t+ et <1;t<+t+e€) do
for (j < 1;5<1/e%j+«+ j+1)do
For each e € E compute marginal(x,e) =
E[frx)(e)] by averaging "lozg” samples.
Find e € E such that marginal(x, e) > w] and
c¢(e) is minimized.
X ¢ x+el,.
yj < yjt+ele
end for
V < Decreasing-Density( f, x, W;)
Z+ Z+ely
X+ X+ ely
end for
S + Rounding-Algorithm(x,yq, .. .
if ¢(S) > 1 then
S0
end if
return S.

7Y1/€67Z)

continuous greedy handles the large items similar to
the algorithm from Section 5.1. We need the fact that
each item s; € S satisfies the following constraints.



- ¢(si) < c(0i),

- E[frxters, )(s1)] = (1 = O(€))E[fr(xters, ,)(0i)]-
In Claim 5.6 we design a set of guess values (w) for
which the above two properties are satisfied.

e Handling small items The subroutine to handle
small items is described in Section 5.2.1. We need the
set returned by the subroutine to satisfy the following
constraints.

- ¢(Ss) < ¢(Os),

- F(x+€ls) — F(x + elg) > (1 — O())E[frpxsets, ) (05
Once again we design a set of guess values (W) in
Claim 5.6 for which the above properties are satisfied.

Then the algorithm at the end of each time step
does certain bookkeeping on the vectors x,y; and
z. Finally it invokes a rounding algorithm which we
describe in Section 5.2.3.

CLAIM 5.5. Algorithm 7
1
O <n2 . (log(n)) <8 ) .

Proof. 1t is straightforward to see that the running
time of each instantiation of continuous greedy is
O(n?log®n/e®). The total running time is a product
of this with number of possible choices for w.

€

—0 <n2 . (10g(n)>1/68> .

CLAIM 5.6. Algorithm 7 has approximation ratio 1 —
1/e — O(e).

Proof. The proof is by designing a sequence of w for
which the algorithm Greedy-With-Guessing gives a 1 —
1/e — e approximation.

For each step define w! as the maximum number in
the guess-set smaller than E[fr(x(1)+c15, ,)(0:)]. Then
by the choice of e; we have the following two properties.
* E[frxws. e + 5f(O0) = wp = (1 -
E[frx(t),5,_1)(0:)].  This follows from the fact
that o; is a candidate for e;.

e c(e;) < (o).

has  running  time

n2log®n

Running time < ( 5
€

Define W; as the largest value in Guess-Set smaller
than €E[fr(x(t)te15,)(O0s)]- Then from Claim 5.3 of the
section for handling small items we have that
o F(x(t) + elsus,) — F(x(t) + elg) =
126)E[fR(x(t)+e1s,) (Os)]-

e ¢(S5) < c(Oy).

e(l —

For the set of w{, W, thus defined we will see that
a simple rounding in Section 5.2.3 returns a feasible
solution. Additionally we can bound the increase at
each time step as follows.

F(x(t+¢€)) — F(x(t))
1/€®
= Z (F(X(t) + 61Si_1u{ei}) - F(X(t) + 6131'71))
i=1
+F(x(t) + els,us,) — F(x(t) + €lg,)
1/€8
> € Z E[frx(t)+e1s, ,)(€i)]
LF(x(t) + elsus,) — F(x(t) + els,)
1/€8
> e(l—e¢) ZE TROx(t)+ets, 1)(01)] - *f( )
+e(1 = 126)E[fr(x(t) +e15,)(0s)] — € £(0)
1/€8
= e(1-¢ Y (E[f(R(x(t) +€ls,_,) U{o;})
i=1
—f(R(x(t) + €els,_,))]) — €2 £(O)
+e(1 — 12e)E[f(R(x(t) + €15,) U Os)
—f(R(x(t) + €lg,))] — € f(O)
1/6
> e(1—e) > (B[f(Rx(t)+els) UO;)
i=1
—f(R(x(t) + €15) U O;—1)])
+e(1 — 12e)E[f(R(x(t) + €15) U O;)
—f(R(x(t) + €lg))] — 2¢*£(O)
= (1 —e)(B[f(R(x(t) + €ls) U Oy)
—f(R(x(t) + €1s))])
+e(1 = 12e)E[f(R(x(t) + €15) U Oy)
—f(R(x(t) + €1s))] — 26 f(O)
> e(1—e)(E[f(R(x(t) +€els)UO)
—f(R(x(t) + €15) U Os)])
+e(1 = 12)E[f(R(x(t) + €15) U Oy)
—f(R(x(t) + €els))] — 26 f(O)
> (1 - 120E[f(R(x(t) + cls) UO)
—f(R(x(t) + €elg))] — 2€° f(O)
> e(1—14e)(f(0) — F(x(t +¢€))).

Now we proceed similarly to the analysis of continu-
ous greedy for a matroid constraint. Rephrasing we get

F(0) = F(x(t + ¢)) < HALEO)

we can prove

Then by induction

1

F(O) = F(x(t) < ((1 +e(l - 14e))

) o)



Now substituting ¢ = 1 and rephrasing once again

1
& <1 C(1+e(l- 146))1) /o)
> (1-1/e — O()(O).

F(x(1))

5.2.3 Rounding In this subsection we show how to
convert a fractional solution as produced by Algorithm 7
to an integral solution. We restrict our attention to the
fractional solution {X,y1,y2,...,¥1/es,2} correspond-
ing to the values w, W designed in Lemma 5.6 for which
we have the following properties.

e F(x) = (1—-1/e—0(e))f(O).
o X = Z 1e 1 €ls,, where S; is the set chosen at time
€t.

e The set chosen at time ¢, S; = S+ U Ss; can
be represented as a union of large items (S); =
{s1,6,82,¢,---,51/e6,¢+}) and small items (Ss;). Let
0O =0,U0O, with O; = {01,02,. .. 701/66}

e For each time ¢ and each s;; € S;; we have that
si+ € E;. Additionally S, ; C F.

e For each time ¢ and each s;; € S;; we have that
c(sit) < c(o;).

e For each time t we have that ¢(Ss ) < ¢(Os).

Now from the above properties one can see that for any
given 7 since ¢(s;;) < c(o;) we can choose any of the
elements U;{s;,} and it will be a good substitute for
0;. Now applying Lemma 2.4 we shall not lose anything
in the approximation ratio. The rounding is formally
described in Algorithm 9.

Algorithm 9 Rounding-Algorithm

Input: Fractional solution x = z—l—Z:Gl yi= ,€lg,.
Output: A set S C F satisfying ¢(S) < 1 and

E[f(9)] = (1 -e)F(x)
1: SI,SS «— 0
2: Define 2 € [0,1]% as z'(e) = z(e) if cle) <

€3 max; ¢(Ss+) and z’(e) = 0 otherwise.

3: fori=1,2,...,1/¢® do

4:  Include one of e € E; to S; with e being included

with probability y;(e).

5. end for

6: For each e € F, include in S independently with
probability (1 — €)z/(e).

7. S« S5 US;.

8: return S.

CLAM 5.7. Algorithm 9 rounds the fractional solution
to a set S such that E[f(S)] > (1 — €)F(x).

Proof. First let us relate value of the fractional solution
x=z+) ,ystothatof X' =2+, y.

)

)

F(x'

>

c(e)>e3 max; ¢(Ss,t)

z(e)f(e)

>F(x) — gré%x f(e) Z z(e)
c(e)>e3 max; ¢(Ss,¢)
>F(x) — (eﬁf(O)) %

Next we note that we get S by selecting exactly one ran-
dom element from each F;, and sampling independently
from E;. Hence applying Lemma 2.4 we get

E[f(5)] = F((1- > (1-0(e)) F(x).

CLAM 5.8. Algorithm 9 rounds the fractional solution
to a set S such that with high probability ¢(S) < 1. i.e
S is a feasible solution to the knapsack constraint.

Ox') > (1—e)F(x)

Proof. Note that by the condition that for each ¢,
c(sit) < c(o;) the large items after the rounding will
have cost less than the large items of the optimal
solution. Hence it is enough to prove that with high
probability ¢(Ss) < ¢(Os). First note that

E[c(R((1 = 6)z))] = (1 — )E[c(R(2"))]
(1 = e)E[c(R(2))]
(

<
<(1- )mfmxc Ssi) <

(1 —€)c(Oy).

Additionally we have that for each element e with
z'(e) > 0 we have that c(e) < €3¢(O;). Hence we bound
the probability that ¢(Ss) > ¢(O;) by a simple Chernoff
bound (Lemma 2.2) to show this happens with very low
probability. We set up the Chernoff bound with X, =
c(e)/(3c(0y)) if e € S, and X, = 0 otherwise. Then
E[X] = Y B[X,] = Ele(R((1 — 2)]/(€c(0s)) <
(1 —€)/e. Therefore, we obtain

=Pr[X > ¢

6 p-system and ¢ knapsack constraints

Here we consider a more general type of constraint: a
p-system combined with ¢ knapsack constraints. (We



refer the reader to Section 2 for the definition of a p-
system.) This is the most general type of constraint that
we handle in this paper. As special cases, this contains
the intersection of p matroids and ¢ knapsacks, as well
as p-set packing combined with ¢ knapsack constraints.
We assume without loss of generality that each knapsack
constraint has unit capacity.

Algorithm 10 p-system and ¢ knapsack constraints

Input: f : 2 — R,, a membership oracle for p-
system Z C 2F, and ¢ knapsack-cost functions
¢i: E—[0,1].

Output: Aset S C F satisfying S € Z and ¢;(S) < 1Vi.

1: M + maX;er f(j)

2: repeat the following for p € {T]\-s/-[w (1+ e)p—%, (1+
6)2%, e QJLTZ\?} (density threshold)

337 < M, < max{f(j) Zz(ii)c“ > p} (value
threshold) o

4: S+ 0

5. while 7 > £M, and ¢;(S) < 1Vi do

6: forVje F do

7: ifS—i—jGIande(j)zTand%zp

then Y

8: S+ S+

9: if 3i;¢;(S) > 1 then

10: Sy S, T, < S\ {j}, T, < {j}

11: restart with the next value of p

12: end if

13: end if

14:  end for

15: T4 7

1'+5
16: end while

17 Ty <= S, = S, T, < 0

18: restart with the next value of p

19: return the set of maximum value among 7, and
T}, for all enumerations of p.

Algorithm overview: We define the density of an
element j with respect to a set S as ’257(2 Our
i=1 Cij

algorithm combines two ideas:

e a fixed density threshold p, which is somewhat
below the value/size ratio of the optimal solution; this
is guessed (i.e. enumerated) by the algorithm,

e a decreasing value threshold 7, which mimics
the greedy algorithm for p-systems but leads to a faster

running time.

In each stage, the algorithm picks all items that

are above the density threshold and also above the
value threshold. The value threshold decreases slightly
after each stage. This is effectively a greedy algorithm
with respect to marginal values, while discarding all
elements of density below some threshold. The greedy
rule guarantees an approximation ratio for a p-system
constraint, while the density threshold guarantees that
we do not exceed the knapsack constraints without
collecting enough value.

For a formal description, see Algorithm 10. We call
the execution of the algorithm for a given value of p a
“run of the algorithm”. We call the inner loop for a
given value of 7 a “stage of the algorithm”.

THEOREM 6.1. Algorithm 10 runs in time O(Zz log? 2)
and provides a (1+ ¢€)(p+ 20+ 1)-approzimation for the
problem of mazimizing a monotone submodular function
subject to a p-system and ¢ knapsack constraints.

We note that we consider p, ¢ to be constant; i.e.,
the O notation hides a constant depending on p,¢.
This constant is actually very mild - linear in ¢, and
independent of p (this is due to our model which
assumes a membership oracle for the p-system). The
following claim gives a more accurate statement of
running time.

CLAM 6.1. The running time of Algorithm 10 is
O((%log” ).

Proof. The enumeration loop consists of log, .(2n)
values of p. The decreasing-threshold loop consists of
log; . . % values of 7. The inner loop checks each element
of F, querying its marginal value and performing an
O(¢) time computation. Therefore, the total running
time is

0] (ﬁn log,,.(2n)log, . %) = O (Ee% log® %) .

For the analysis of the approximation ratio, let us
introduce some notation: We fix an optimal solution O.
Given a density threshold p and the resulting solution
S,, we denote

0, =tjco: L2 _

Di1 Cij
and O>, = 0\ O,.

CLAIM 6.2. Given p and the respective algorithmic so-
lution S,, we have

fs,(0<p) < Lp.



Proof. By the definition of O.,, for each j € O,
we have fs (j) < pizl cij. By submodularity,

. ¢
fSp(O<p) < Z_j60<p fSp(]) < Pzi:1 ZjeO<p cij < pt
by the feasibility of O and O, being a subset of O.

CLAIM 6.3. If the algorithm terminates without exceed-
ing any knapsack constraint, we have

f5,(02p) < (1 +e€)p+e)- f(S,).

The proof of this claim is essentially the analysis
of the greedy algorithm for a p-system, as in [2]. We
supply the proof for completeness.

Proof. Consider the elements of S, in the order they are
added by the algorithm: denote them by ey, e, ..., e€,..
For ¢ € {1,...,r}, we define a set 4; C O>, \ 5,
consisting of the elements that could have been added
instead of e;:
Ai = {] c OZP\SP . {61,...,6i_1,j} GI}

We also define A,;; in the same way; these are the
elements in O>, \ S, that could still be added to S,
at the end of the run. Since O, \ S, € Z, we have
Ay = O>, \ S,. By the down-monotonicity of Z, it
follows that OZP \ Sp = A1 2 A2 2 A3 2 ...A,«+1.

Next, we use the defining property of p-systems.
Consider the set Q; = {e1,...,e;} U (A1 \ 4;41). We
have A; \ A;+1 € Z, hence @; has a base of size at
least |A; \ Ai+1]- On the other hand, {e1,...,e;} is
also a base of @;, since no element of A; \ A;41 can be
added to {e1,...,e;} (otherwise by definition it would
be in A;11). Since Z is a p-system, the cardinality of
the two bases cannot differ by a factor larger than p;
equivalently, |A; \ A;41] < pi.

Now consider the stages of the algorithm defined
by decreasing 7. For 1 < ¢ < r, define 7; to be the
value of the threshold 7 when e; was included in S,.
In particular, the marginal value of e; at that point
is fle,..eioiy(€i) > 7. For each j € A;, if j were
considered at a stage earlier than e;, 7 would have been
added to S, because its density would have been above
p (by submodularity) and adding it to {e1,...,e;—1}
would not violate feasibility in Z. (Also, we assumed
that no knapsack constraint overflows in this run of
the algorithm). However, j ¢ S,, and hence j could
not have been considered before e;. This implies that
Fteroner}(3) < (1+ )73, for each j € A;.

By a similar argument, for each j € A,y1, we
have fs, (j) < £M, (the lowest possible value of the
threshold 7; see the algorithm for definition of M,),
otherwise j would still be added to S, = {e1,...,e,}.
In fact, it can be seen that the first element chosen by

M,.

the algorithm is of value exactly M,, and 71 =
Therefore, fs,(j) < £m for all j € A,yq.

It remains to add up the values of all the elements
in Ay = O>, \ S,, marginally with respect to S,. By

submodularity, we have

fs,(A1) <) fs, ()

JjEAL

= > > s+ D fs,0)

=1 jEA;\Aip1 JEAr 11

As we proved, fs,(j) < fle,,....eio} () < (1 + )7y for
J € A\ Aiy1, and fs,(j) < o1 for j € Arq1. So we
obtain

fo, (A1) (14 D7 [AN Appalmi + [Aria | =71,

i=1

We proved above that |A; \ A;41| < pi. Also, observe
that due to the operation of the algorithm, 7 > m >
73 > .... Under these conditions, the right-hand side
is maximized when |A; \ A;11| = p for each 1 <4 < r.
Thus we obtain

fs,(A1) < (1403 pritAalom

i=1

T
< (1 +e)2p7’i + eTq.

i=1

Recall that 7; was the value of the threshold 7 when e;
was included; this implies that fe, . ., ,(e;) > 7, ie.
f(S,) > >"0_, 7i. Therefore,

f5,(0p) = [s,(A1) < A+ €)p- f(S,) + € f(S)).
Let us proceed to the proof of Theorem 6.1.

Proof. Consider an optimal solution O and set p* =

i f(0). Since M < f(0) < nM (by submod-
ularity), we have p* € [%, QP”TJ\Z[] Thus there is a

run of the algorithm with density threshold p such that
p* € [p, (1 + €)p]. In the following we consider this run
of the algorithm. We consider two cases.

(1) If the algorithm terminates by exceeding some
knapsack capacity, then we obtain a set S, such that
¢i(S,) > 1 for some i € [{]. Le., certainly Zle ¢i(S,) >
1. Since every element that we include satisfies fs(j) >
pizl cij, with respect to the current solution S, we

obtain ,
f(Sp) > PZ Z Cij > -

i=1j€S,
This solution is infeasible; however, we keep either
T, = S, \ {j} or T, = {j} where j is the last element



included in S,. Each of these solutions is feasible and
by submodularity, one of them has value at least % p. By

our choice of p > f-p* = mﬂO), we obtain

1
p =

T (14e(p+20+ 1)f(0)'

max{f(T,), /(T})} >

(2) If the algorithm terminates without exceeding
any knapsack capacity, then by the above claims,

20

< < = —
fs,(0<p) < €p < Lpx PG Y A

f(0)

and
f5,(0p) < (L +€)p+e€) - f(Sp).

By submodularity,

[5,(0) < fs5,(0<p) + f5,(0>))
< O+ (L Op - £(S,)

Since fs,(0) = f(S,U0) — f(S,) = f(0) ~ J(S,). this

means

20

f(O)Sm

fO)+ A +e)(p+1)- f(Sy)
and from here

1
1 > — .
(149f(5) 2 5 1(0)
Again, f(S,) > m]‘(O), which proves the
theorem.

7 A lower bound for p-systems

THEOREM 7.1. For any ¢ > 0, a 1/(p + ¢€)-
approzimation for the problem max{|S| : S € T},
where I is a p-system, requires an exponential number
of queries to T.

Proof. The proof is by constructing two p-systems
Py, P, C 2% randomly, with p - max{|S| : S € P} =
max{|S| : S € P}, such that it requires an exponen-
tial number of queries to distinguish between them with
constant probability. We define the two set systems as
follows.

e Define t = n/(4p) (where n = |E|) and let S C E
be in P iff |S] < t.

e Let T be a set of size pt chosen uniformly at random
from (ft) Then let S be in Py iff either |S| < ¢ or

It is easy to verify that P, and P, are both p-
systems: for Pj it is trivial, and for P, all maximal bases
have size between ¢ and pt. Also, max{|S|: S € P} =t
and max{|S|: S € P} = pt.

Now consider any query S. S can distinguish
between P; and Py iff t < |S| < pt and S C T. Fix
any S with ¢ < |S| < pt. Then S C T with probability
()
(%)
as S Z T, we do not learn anything about whether the
set system is P, or the identity of T'. Hence we need
to make Q((Igl)/(\?l)) queries to distinguish P; from Py
with constant probability. From here,

N (n 18’
# Queries required = Q) <(’:qt) > <(pt)5>

> Q <(" ;tpty) o (3”/<4p>) .

over the random choice of T. Furthermore, as long
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