Permission to copy without fee all or part of this material is granted

FAST ALGORITHMS FOR N-DIMENSIONAL
RESTRICTIONS OF HARD PROBLEMS

by

Friedhelm Meyer auf der Heide

IBM Research Laboratory, San Jose, CA 95193

Abstract : Let M be a parallel RAM with p
processors and arithmetic operations addition

and subtraction recognizing L ¢ N" in t steps.
Then L can be recognized by a (sequential!)
linear search algorithm (LSA) in
O(n*(log(n) + f + log(p))) steps. Thus many n-
dimensional restrictions of NP-complete prob-
lems (binary programming, traveling salesman
problem, etc.) and even that of the uniquely
optimum traveling salesman problem, which is
Ag-complete, can be solved in polynomial time
by an LSA. This result generalizes the construc-
tion of a polynomial LSA for the n-dimensional
restriction of the knapsack problem previously
shown by the author, and destroys the hope of
proving nonpolynomial lower bounds for any
problem which can be recognized by a PRAM

as above with 2P processors in poly(n) time,

INTRODUCTION

Linear search algorithms (LSA’s) have turned
out to be a realistic and comfortable computa-
tion model for proving lower time bounds for
a large variety of interesting problems. Such an
algorithm is an abstraction of a random access
machine (RAM).

provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and; or specific permission.

©

1985 ACM 0-89791-151-2/85/005/0413 $00.75

413

These RAM's have the capability of executing
direct or indirect storage access, if-questions,
addition, or subtraction in one step (see [1] or,
tailored to our use, [2], [3] or [4]). They recog-
nize languages Le N" or L < N" and read the
input integer by integer (not bit by bit).

When dealing with LSA’s one usually allows
inputs consisting of n real numbers , only counts
if-questions as computation-steps , and assumes
that they all are of the form "If f(x) >0 then
goto if-question! else goto if-question2" , where
XeR" is the input and f:R" -+ R is an affine
function, ie. f(x) = ax — b for some aeR"beR.
An if-question as above is called to be defined
by f. We represent LSA's by rooted, binary trees
whose root and inner nodes are labelled with
predicates of the form "f(x) > 0" for some f as
above. The leaves are labelled with "accept” or
"reject”. A computation started with some input
%eR" consists of traversing the tree from the root
to a leaf, always choosing the left or right branch
of a node according to whether its predicate is
fulfilled or not. The LSA accepts the language
of all inputs arriving at an accepting leaf,

The reason why LSA’s are comfortable for prov-
ing lower bounds is their nice geometrical struc-
ture. As each if-question defined by some affine
function f:R" - R subdivides the input set in the
two halfspaces {xeR"| f(x) > (resp. <)0} of the
hyperplane {%eR" | f(x) = O}, the inputs arriving
at some node of an LSA form a (convex)
polytope. Lower bounds for LSA’s can for ex-
ample be found in [4],[5], or [6].

On the other hand, LSA’s provide a realistic
computation model in the sense that many lower
bounds for LSA’s can be carried over to RAM’s

(see [21,[3], and, for a general lower bound for
RAMs, [4, theorem3)).

In [7] it is shown by the author that LSA’s are
surprisingly strong. They can solve the NP-
complete (compare [8]) knapsack problem (in-
put: XeR , query: Jaef0,1}" 5., ax = 1) in poly-
nomial time. The reason for this strength of
LSA’s is that they only deal with inputs consist-
ing of a fixed number n of variables, i.e. they
only handle n-dimensional restrictions of given
problems. Thus, while a program solving e.g, the
knapsack problem must have constant length
(independent of the number of input variables),
the length of an LSA for its n-dimensional re-
striction may depend on n. In fact, the length
of the LSA shown in [7] is exponential in n, Its
main importance is to pinpoint the limits of
proving large lower bounds on LSA’s.

In this paper we will take a closer look at these
limits. For this purpose we consider parallel
RAM’s (PRAM’s). Such a PRAM consists of p
RAM’s as described above, its processors, and
an additional common memory consisting of
infinitely many registers, which can be accessed
directly or indirectly by the processors.

The main result of this paper is the following:

If L< N" can be recognized by a PRAM with p
processors in t steps, then a (sequential!) LSA can
recognize L in time polynomial in n, t, and log(p).

Now one can show the existence of polynomial
LSA’s for given problems by simply designing
polynomial parallel algorithms for them using
2% processors. This method yields for exam-
ple polynomial LSA’s for NP-complete problems
as the traveling salesman problem, binary pro-
gramming, and integer programming with
bounded solution size. Furthermore we obtain
a polynomial LSA for the problem of deciding
whether an instance of the traveling salesman

414

problem has a unique optimal solution. This
problem is shown to be complete in A%, the class

of all problems that can be solved in polynomial
time using oracles from NP (see [9]).

The paper is organized as follows. In the first
section we define PRAM’s in more detail, state
our theorem, and show applications. In the sec-
ond section we outline the proof, state the two
basic lemmas, and conclude the theorem from
them. The sections three and four contain the
proofs of the two lemmas mentioned above. In

the last section, some open problems are dis-
cussed.

SECTION 1

A PRAM M consists of a finite number p of
processors Py,..., Pp and a common memory.
Each P; has two private registers g; and b;. The
common memory consists of infinitely many
registers m, jeN. Each register can store one
integer. #a;, #b;, #m; denote the current content
of the respective register, M is assumed to be
synchronized. In the beginning of a computation,
the input x = (xy,...,x,)eN" is stored in the first
n common registers. The computation of M
started with x proceeds in phases each consisting
of four steps, namely a read step, an arithmetic
step, a write step, and a Boolean step. In a read
step, each P; stores #my,, into @;. In an arithmetic
step, each P; stores #a;, + #b; , g, - #b, or a
constant < i into @; or b. (Note that we allow
arbitrary constants < i whereas usually one only
allows 0, 1, and its address i to be used by P;.)
In a write step, each processor Pj tries to write
#a, into my, . Hereby a write conflict may arise
when several processors want to write into the
same register. We use the most general method
to solve this conflict considered in literature by
assuming that the processor with largest index
succeeds. In a Boolean step, each processor asks
an if-question "If #2,>0 then execute instruction

I, else instruction J". M stops if Py stops, and
accepts, if finally #a,=1. The complexity of M
is the maximum number of steps, M started with
some input ¥eN" executes,

We will prove the following theorem in this
paper.

THEOREM : Let L ¢ N" be recognized by a PRAM
with p processors in t steps. Then L can be recognized

byan LSA in6n*(log(n) +1 + log(p)) +O(n) steps.

We now give some applications of this theorem.
All algorithms for PRAM’s mentioned below are
trivial, and are not explained in this paper.

First we consider some NP-complete problems
(compare [8]).

Integer Programming with Solutions <k (n variables, m
inequalifies) (Input: m linear inequalities with vari-
ables xy,....x,. Query: 3(x1,...%,)&{0,...k}" which
fulfills all the inequalities.)

(Note that for k=1 we have defined the Binary
Programming problem.)

This problem can be solved by a PRAM with

(k+1)" processors in O(nm) steps, thus by an
LSA (for inputs from RV in
O((nm)4(nm+nlog(k+ 1))) steps.

We note here that in [4], an Sl(nzlog(k+ 1)) lower
bound for m=1 on LSA’s and RAM’s is shown
generalizing the bounds from [6] and [3] for
m=1, k=1.

Traveling Salesman Problem (n towns) (Input: nxn-
matrix of distances between all pairs of towns,
and a number k. Query: There is a roundtrip
visiting each town exactly once with total length
at most k.)

415

This problem can be solved by a PRAM with
n! processors in O(nlog(n)) steps, thus by an LSA

(for inputs from an) in O(nglog(n)) steps.

We now consider the following generalization of
the traveling salesman problem, namely the

Uniquely Optimum Traveling Salesman Problen (n
fowns) (Input: nxn-matrix of distances between
all pairs of towns. Query: There is a unique
shortest roundtrip visiting each town exactly
once.)

This problem is shown in [9] to be A-complete.
Also this problem can obviously be solved by
a PRAM with n! processors in O(nlog(n)) steps,

thus by an LSA in O(nglog(n)) steps.

SECTION 2

The proof of the theorem is not done by simulat-
ing a PRAM step by step by an LSA. Instead
we do the following. We first show that languag-
es recognized by a PRAM with p processors in
t steps have a certain structure; we call them
q-languages where q denotes a parameter depen-
dent on t and p. Then we show that g-languages
can be recognized fast by LSA’s.

In order to define g-languages let F={fi,...fn}

be a set of affine functions f;:R" - R. Then the
following languages are called F-languages.

1) (FeR"|f®) : 0}, i=1,...m, ""ef=,<,>]), are

F-languages.
2) Unions and intersections of F-languages are

F-languages.

In order to interpret F-languages geometrically,
and for later use, we now give some geometrical
definitions. Let f:R" - R be an affine function.
The hyperplane {¥eR"|f(x) =0} and (its
halfspaces are called to be defined by f. The
intersection of a finite number of halfspaces and

hyperplanes is a (convex) polytope. Let F be the
set of affine functions described above, and let
Hy,....H, be the hyperplanes defined by fi,... f
Then for each A <{l,.,m}, each polytope
NH - U H consists of is called a face

wd iefl,.. mi~A

of F, or a face of the language UlH,-.

With these definitions it is easily seen that each
F-language is a union of some faces of F.

Now let F, denote the set of all affine functions

f:R" » R with coefficients from {-q,...q}. An
Fj-language is called a g-language.

The proof of the theorem is based on the follow-
ing two lemmas.

LEMMA 1 : Let M be a PRAM with p processors
recognizing L < N” in t steps. Then there is a
p2"-language L' with L = L' N N",

LEMMA 2 : Each g-language can be recognized by
an LSA in 6n4(log(n)+10g(q))+ 0(n3) steps.

The proof of the theorem now is done by inserting
the bound for q from lemma 1 into lemma 2,
Therefore it remains to prove these two lemmas.

SECTION 3

In order to prove lemma 1 we will "unroll" the
above PRAM M to a certain kind of paraliel
computation tree (compare [10], resp. [2] or [3]
for the sequential case), In [10] a similar con-
struction is shown. But it has the disadvantage
that the resulting computation tree does not
simulate M for all inputs, which is not sufficient
for our purpose, Therefore we will define a

generalized computation tree T with p processors
(p-GCT).

A p-GCT is a finite, rooted tree levelled accord-
ing to the four phases of the PRAM. For seN

416

the levels 4s-3, 4s-2, 4s-1, and 4s contain read,
arithmetic, write, and Boolean nodes, resp.. Read

n+4dps

and write nodes have 2 , arithmetic nodes

1, and Boolean nodes 2P sons. The 0'th level
contains the root. It has one son.

Each node v represents a configuration of the
simulated PRAM. It is represented by an instruc-
tion list, a storage list, and a computation list.
The instruction list (/],...,I;) contains the instruc-
tions to be executed by the processors. The
storage list (L},R};i = 1,...5,), L|,R/:N" = N, de-
scribes the state of the common memory in the
following way : If, started with some input XeN",
M chooses the computation given by the path
to v, then myy;) contains R{(x) for i=1,..s, ,
and all other m/s contain 0. The computation
list (4],Bli=1,.,p), A/ B/:N" - N, describes
the contents of the private memories: #a; = 4, (%)
, #b; = B/(¥). Each edge e is labelled with its
restriction set C, € N” of inputs ¥, such that M

started with X executes the computation de-
scribed by the path to e.

Such a p-GCT is said to simulate M. We may
w.lo.g. assume that each leaf v either fulfills
Ai=1or A =0 . In the first case , v is accept-
ing, in the latter case it is rejecting. Thus the
language L recognized by M is the union of the
restriction sets belonging to edges which are
incident to accepting leaves. The following claim

will show that the restriction sets are q-languages
for a certain q.

CLAIM 1 : There is a p-GCT T simulating M, such
that for each node v and each edge e in depth s, the
storage and the computation list of v consist of func-

tions from Fops,and Cois a p2’-language.

Now we can easily conclude lemma 1. As by
claim 1, each set C, for an edge incident to an

accepting leaf is a p2t-language, L, the union of

all these sets, is also a p2t-language, as claimed
in lemma 1. Thus it remains to prove claim 1.

Proof of claim I ;: Suppose we are given a - still
unlabelled - tree T as described in the above
definition of a p-GCT. We first attach instruction
lists to the nodes. The root represents the state
of M before the computation starts. Therefore
its instruction list is empty, That of the son of
the root consists of the instructions to be execut-
ed first by the processors. Now suppose this

attachment is done up to depth s. Let v be a
node in depth s and v’ a son of v. If v is no
Boolean node (i.e. it does not represent a Boolean
step of M), then I} "is the (uniquely determined)

instruction to be executed by P; after I}, i=1,...,p.
If v is a Boolean node, Ilet

Vi d = (d,...d)ef>, <¥, be the 2P sons of v. If
now I’ means "If #a > 0 ,then execute I, else
execute J", then Il*=I, if d=1, else I}’=].

Now we attach the storage lists and the compu-
tation lists to the nodes and the restriction sets
to the edges. Thereby we prove the properties
demanded in claim 1 inductively on the depth
5.

The root gets the storage list (i,x;, i=1,...,n), and
its computation list consists of O-functions. The
restriction set of its outgoing edge is N". Hereby,
obviously the configuration before the start of
a computation of M is described correctly, and
the properties from claim 1 hold for s=0.

Now let s>0 and suppose that all nodes up to
depth s-1 and all outgoing edges are labelled and
fulfill the properties demanded in the claim. Let
v be a node in depth s-1.

If v is a read node, then there are at most s,+1
many different values to be read by some proces-
sor P; when M started with x has executed the
computation up to v, namely Rj(%), if
B/(%) = Li(%), j=1,..5 , or 0, if none of these
equations holds. Now consider some tuple
D=(dj;, i=1,.p; j=1..8)el=, #£}™. For each
such tuple D choose a son vp of v. (Note that
5, S n+ p(s — 1), because in the beginning n reg-

417

isters are occupied and in each step at most p
further registers can be accessed. Thus v has a
son for each tuple D.) Let e be the edge from
v to vp and €' the incoming edge of v. Then
Ce={.£EN"|B:(f) - L;(f) d,‘j 0, = 1,..,[7,

J=1,..5IN Cq. The storage list of vp is that
of v, and the computation list is defined accord-
ing to the description above about the different
values to be read. This attachment clearly en-
sures that the simulation goes on correctly. Fur-
thermore, all functions appearing in the storage
or computation list of vp belong to those of v,
thus to I'; -1 € sz,, as demanded in the claim.

As differences of two functions from F, belong
to By, Ce is defined by functions from f';,z:,
which proves claim 1 for this case.

If v is an arithmetic node, and v’ is its son, then
the storage list of v’ is that of v, the restriction
set of the edge from v to v’ is that of the incoming
edge of v, and A,-"I or B,Y’ equal 4] ¥ B or some
constant <i dependent on the arithmetic opera-
tion to be executed by P;. But anyway we simuy-
late correctly, and obtain functions from sz”
namely constants <p or sums or differences of

functions from 1; -1 Thus the claim also holds

in this case,

If v is a write node, we consider the same set
of sons vp and attach the same restriction sets
to the edges as in the above description for read
nodes. The computation lists of these sons are
those of v, and their storage lists are derived
from those of v by the following modifications.
Let Def=, #1"7¢™" and je{1,....s,} be fixed. If
there is i’e{1,...,p} such that dj-; means "=" then
let i be minimal with this property (compare
our rule of solving write conflicts), and replace
R; by A, If such an i’ does not exist, then add
a new pair (L,R) to the list with L= B!, R=4].
It is immediate that this attachment fulfills the
properties demanded in the claim.

If v isa Boolean node, then each of the 2P sons
of v represents a possible outcome of the p
if-questions asked by the p processors. Their
storage and computation lists are those of v. Let
v4 be a son of v representing the outcomes d=

(d1,...dp)ef>, <¥ of the if-questions. Let e be

the edge from v to vq. Then C.= Cpg
14

n q {xeN"| A/ (%) d; 0}. This attachment also ful-

fills all demanded properties, and therefore claim
1 is proved. g.e.d.

SECTION 4

In this section we prove lemma 2. This proof
is based on theorem 2 from [7].

THEOREM (7)) : Let Hy,...,H,, be hyperplanes in
R", Hi={xeR"|fi(x) =0} for some feeF, and
L= Ul H;. Then [—1,11'NL can be recognized by an
LSA in 3n4(log(n)+log(q))+ O(n3) steps.

In order to prove lemma 2 we first show

CLAIM 2 : The above theorem also holds, if L instead
of [= 1A' N L has to be recognized.

Proof : For an affine function f:R" -+ R with
fX)=ax-b for aeR", beR, let
FR™ &R be

~

F (& xi1) = ax — bx,yy. Now let
fiofms Hy,o), be as in the above theorem

some

defined by

from [7], H ;,...,I';,,, be the linear hyperplanes in
R™! defined by ?1,"--?»" and I = U I'},. It suf-
=1

fices to prove the theorem for L , because an LSA
recognizing L recognizes L if we substitute 1 for

Xt L consists of linear hyperplanes, i.e. all H ;'S
contain 0.

41

Now let P}L (I’f):{)?eR"Jrl [x;>(<)0 and
[x;) = max{{x ... % 11} and

Zf = ZﬂPf. Then by lemma 1 from [7], I':'jt
can be recognized as

L/ n{EeR" 5= ¢ 1} = L 0[-1,17,

whereL” is the union of the hyperplanes in
R™(xR™!|,_11) defined by fjj = fil5=s1. As
f; belongs to F,, f; does, too. Thus L}, and

fast as

~4 \ .
therefore L;, too, can be recognized in

3n4(log(n)+log(q)) +O(n3) steps because of the
theorem from [7]. Therefore the following LSA
recognizes L as fast as desired in claim 2.

Decide in which P} the input % lies. Suppose
iert.

Use the above LSA for recognizingL N P}'.

The first part of this algorithm needs 2(n+1)
steps, the second part needs

3n4(log(n)+log(q))+0(n3) steps as shown
above, g.e.d.

Claim 2 already proves lemma 2 for special
g-languages, namely those which consist of
hyperplanes defined by functions from F,. We
now shall construct LSA’s for arbitrary q-
languages from the above LSA’s for g-languages
consisting of hyperplanes. For this purpose let

H,,..H, be arbitrary hyperplanes in R” and

m
L= U1 H;. We say, an LSA partitions R" accord-

ing to L, if for each leaf v of the LSA, the set
of inputs arriving at v is a subset of a face of
L (compare section 2).

CLAIM 3 : If L can be recognized by an LSA in ¢

steps, then R can be partitioned according to L in
2t steps.

The claims 2 and 3 imply lemma 2 as follows.
Let L be a q- language and L, the language
consisting of all hyperplanes defined by functions

from F;. Then, by claim 2, L, can be recognized
by an LSA in t= 3n4(log(n) + log(q)) + 0(n®)
steps. Thus, by claim 3, R" can be partitioned
according to L, in 2t steps by some LSA T. By
the definition of a q-language, L is the union of
faces of L. Therefore we obtain an LSA of depth
2t for L by attaching "accept" to all leaves v
of T for which the set of inputs arriving at v
is a subset of a face of L, belonging to L, and
attaching "reject” to the other leaves of T. Thus
it remains to prove claim 3.

Proof of claim 3 : A 3-way LSA T is a 3-ary
tree whose nodes are labelled with affine func-
tions f:R” -+ R. An input xeR” arriving at such
a node chooses the left (middle, right) branch,
if f(¥)>(=,<)0. The leaves are labelled with
"accept"or "reject”. The set of inputs arriving
at a node v is called c(v). T accepts the union
of all sets c¢(v) for accepting leaves v of T.

SUBCLAIM : Let T be a 3-way LSA accepting L
in t steps. Then there is a 3-way LSA T with depth
t and the following property : For each leaf v of T’
with c(v)<L there is a leaf v’ of T for which c(v’)NL
is empty, such that c(v) is a face of c(v’).

Proof : Let T be as above. We may assume
w.lo.g. that v is a leaf whenever c¢(v)cL. Then
an accepting leaf is always reached via the mid-
dle branch of its father. The following algorithm
constructs T" from T.

1)Mark all fathers of accepting leafs.

2)While there is a marked node v whose right
son v" is no leaf, replace its middle son by a
copy of the subtree with root v".

3)Remove all labels (accept or reject) from the
leaves,

This algorithm stops, because it neither changes
the maximum degree nor the depth of the tree
but adds at least one node to it in each step of
2).

Now let v be a leaf of T* with c¢(v)<L. Traverse
the path from the root to v until the first time

419

it chooses the middle branch of a marked node.
At this point choose the right branch instead,
and go on in the copy of the path to v in the
subtree of this branch in the same way. Let this
path lead to the leaf v’. Then c¢(v) and c(v’) differ
exactly by the fact that restrictions from marked
nodes of the form f(x) = 0 defining c(v) are
replaced by f(¥) <0 in the definition of c(v’).
But this just means that c(v) is a face of c(v’).
Furthermore c(v')\L is empty , because inputs
from L choose a path in T’ on which at least
at one marked node the middle branch is chosen.
By construction this is not the case in the path
to v'. ged.

In order to prove claim 3 we now show that the
above 3-way LSA partitions R” according to L.
As obviously T’ can be simulated by an LSA
in 2t steps, this implies claim 3.

Let v be a leaf of T'. If ¢(v)NL is empty, then
c(v) belongs to a connected component of
R" — L, which is by definition a face of L. If
c(v)cL, then by the subclaim c(v) is a face of
c(v') for some leaf v’ for which ¢(v’)NL is empty.
As each face of a polytope contained in one of
the polytopes P, R" — L consists of, is a subset
of a face of P, claim 3 follows. q.ed.

SECTION §

We have shown in this paper that the n-
dimensional restriction of many languages can
be recognized surprisingly fast. This result moti-
vates the following questions.

1) The set F, consists of m, = O(g") functions,
ie. L, the union of all the hyperplanes defined
by functions from F,, consists of m, hyperplanes.
Our result shows that L, can be recognized in
poly(m,) steps. In order to understand the power
of LSA's it is interesting to find out whether
LSA’s can recognize every union of m

hyperplanes in R” in poly(log(m),n) steps, or
whether there exist *hard’ such languages.

2) By Ben Or’s result from [11], most known
lower bounds for LSA’s also hold for algebraic
computation trees (ACT’s) in which multiplica-
tion and division are allowed. Also ACT’s only
deal with n-dimensional restrictions of problems.
Does this also imply surprisingly fast ACT’s? A
weaker result than that in this paper can be
shown which says shows that at least
deterministic and probabilistic ACT’s are
polynomially related.

3) The reason why LSA’s are so fast is the fact
that the length of LSA’s may depend on n, the
number of input variables, whereas the length
of 'usual’ programs is bounded independent of
the input. This means for a 'bounded program
length’ version of LSA’s that both the tree and
the set of functions attached to its nodes have
a lot of structure, It would be of greatest interest

to explore this structure and to derive lower
bound arguments from it

REFERENCES

[11A4. V. 4ho, J. E. Hopcroft, J. D. Ullman : The
Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading Mass., 1974,

2] W. J. Paul, J. Simon : Decision Trees and
Random Access Machines, Symposium ueber
Logik und Algorithmik, Zuerich, 1980.

429

[3] P. Klein, F. Meyer auf der Heide : A Lower
Time Bound For the Knapsack Problem on Ran-

dom Access Machines, Acta Informatica 19,
385-395, 1983.

(4] F. Meyer auf der Heide - Lower Bounds for
Solving Linear Diophantine Equations on Ran-
dom Access Machines, Interner Bericht 6.84, Fb
Informatik, Universitaet Frankfurt, 1984.

[5] E. Reingold : On the Optimality of some Set
Algorithms, J. ACM 19, 649-659, 1972.

(6] D. Dobkin, R. J. Lipton : A Lower Bound of

%nz on Linear Search Programs for the Knap-

sack Problem, J.C.S.S. 16, 413-416, 1978.

(7] F. Meyer auf der Heide - A Polynomial Linear
Search Algorithm for the n-Dimensional Knap-
sack Problem, J. ACM 31(3), 668-676, 1984.

[81 M. R. Garey, D. S. Johnson : Computers and
Intractability: A Guide to the Theory of NP-
Completeness, Freeman, San Francisco, 1979.

[91 C. H. Papadimitrioy + On the Complexity of
Unique Solutions, J. ACM 31(2), 392-400, 1984,

[10] F. Meyer auf der Heide : Lower Time Bounds
for Testing the Solvability of Diophantine Equa-
tions on Several Paralle] Computational Models,
Interner Bericht 784, Fb Informatik,
Universitaet Frankfurt, 1984,

(1] M. Ben Or : Lower Bounds for Algebraic
Computation Trees, 15th ACM Symposium on
Theory of Computing, Boston, 80-86, 1983.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8

