
Proc. IEEE Symposium on Advances in Digital Filtering and Signal Processing, Victoria, Canada, June 1998

FAST ALGORITHMS FOR ORTHOGONAL AND BIORTHOGONAL
MODULATED LAPPED TRANSFORMS

Henrique Malvar

Microsoft Research
One Microsoft Way

Redmond, Washington 98052, USA

ABSTRACT

New algorithms for the computation of orthogonal and
biorthogonal modulated lapped transforms (MLTs) are
presented. The new structures are obtained by combining
the MLT window operators with stages from a recently
introduced structure for the type-IV discrete cosine trans-
form (DCT-IV). The net result is fewer multiplications
and additions than previously reported algorithms. For the
orthogonal MLT, in particular, the new structure requires
the computation of a slightly modified DCT-IV and some
extra additions, but no further multiplications; so it dem-
onstrates that the multiplicative complexity of the or-
thogonal MLT is the same as that of the DCT-IV.

1. INTRODUCTION

The modulated lapped transform (MLT) is an efficient
tool for localized frequency decomposition of signals [1].
It is a particular form of a cosine-modulated filter bank
[2] that allows for perfect reconstruction, has no blocking
artifacts, and has almost optimal performance for trans-
form coding of a wide variety of signals. Because of those
properties, the MLT is being used in most modern audio
coding systems, such as Dolby AC-3, MPEG-2 Layer III,
and others [3].

Fast algorithms for the computation of the direct and
inverse MLTs are based on a cascade of window operators
and a type-IV discrete cosine transform (DCT-IV) [1].
The DCT-IV can be efficiently mapped to either the dis-
crete Fourier transform (DFT) or the discrete cosine
transform (DCT) [1]. Therefore, one can easily generate
efficient MLT implementations by leveraging existing
DFT or DCT hardware or software.

In [4],[5] fast MLT algorithms with fewer multiplica-
tions than the fast MLT in [1] were obtained by combin-
ing the MLT window with the first stage of a DCT-IV
based on a half-length DFT for complex inputs. The price
paid by the reduced multiplicative complexity was the
need for additional data storage. In this paper we present
a new MLT implementation based on a recently intro-
duced DCT-IV structure [6]. The resulting MLT structure

leads to additional savings in the number of operations,
without the requirement of additional data buffers. It also
leads to savings in operations for biorthogonal MLTs [7],
whereas the structures in [4],[5] can only be used for or-
thogonal MLTs.

2. MLT AND DCT-IV

The MLT is based on the oddly-stacked time-domain
aliasing cancellation (TDAC) filter bank introduced by
Princen, Johnson, and Bradley [8]. Its basis functions can
be obtained by cosine modulation of smooth windows, in
the form [1],[7]

p n k h n
M

n
M

k
M

p n k h n
M

n
M

k
M

a a

s s

(,) () cos

(,) () cos

= + +�
��

�
�� +�
��

�
��

�
!

"
$#

= + +�
��

�
�� +�
��

�
��

�
!

"
$#

2 1

2

1

2

2 1

2

1

2

π

π
(1)

where p n ka (,) and p n ks(,) are the basis functions for the
direct (analysis) and inverse (synthesis) transforms, and
h na () and h ns() are the analysis and synthesis windows,
respectively. The time index n varies from 0 to 2 1M − and
the frequency index k varies from 0 to M −1, where M is
the block size. The MLT is the TDAC for which the win-
dows generate a lapped transform with maximum DC
concentration, that is [1]

h n h n n
Ma s() () sin= = +�

��
�
��

�
!

"
$#

1

2 2

π
(2)

The direct transform matrix Pa is the one whose entry
in the n-th row and k-th column is p n ka (,). Similarly, the
inverse transform matrix Ps is the one with entries
p n ks(,). For a block x of 2M input samples of a signal
x(n), its corresponding vector X of transform coefficients
is computed by X P x= a

T . For a vector Y of processed
transform coefficients, the reconstructed 2M-sample vec-
tor y is given by y P Y= s .Reconstructed y vectors are su-

perimposed with M-sample overlap [1], generating the
reconstructed signal y(n).

It is interesting to compare the MLT with the DCT-IV.
For a signal u(n), its length-M orthogonal DCT-IV is de-
fined by [9]

U k
M

u n n k
M

n

M

() () cos≡ +�
��

�
��

+�
��

�
��

�

!

"

$
#

=

−

∑2 1

2

1

2
0

1 π
(3)

We see that the frequencies of the cosine functions that
form the DCT-IV basis are () ,k M+1 2 π the same as
those of the MLT. Therefore, we would naturally expect
the existence of a simple relationship between the two
transforms. That relationship is the basis of the fast MLT
algorithm described in the next section.

3. FAST MLT

For a signal x(n) with MLT coefficients X(k) determined
by the functions in (1), it is easy to show that X(k) = U(k)
if u(n) in (3) is related to x(n), for n M= −0 1 2 1, , , ,K by [1]

u n M x M n h M n x n h n

u M n x M n h n x n h M n

M a a

a a

() { () () () ()}

() () () () ()

+ = − − − − −

− − = − − + − −

2 1 1

2 1 1 1

∆

where ∆ M {}⋅ is the M-sample (one block) delay operator.

Thus, the MLT can be computed from a DCT-IV as
shown in the simplified flowgraph in Figure 1. The in-
verse MLT flowgraph is obtained in a similar way [1].
Note that the DCT-IV is its own inverse (since it is sym-
metrical and orthogonal). If Y(k) = X(k), i.e., without any
modification of the transform coefficients (or subband
signals), then it is easy to see that cascading the direct and
inverse MLT flowgraphs in Figure 1 leads to
y n x n M() ()= − 2 , where M samples of delay come from the
blocking operators and another M samples come from the
internal overlapping operators of the MLT (the
z M− operators).

The flowgraphs in Figure 1 do not assume the MLT
sine window in (2). They lead to perfect reconstruction as
long as the butterflies in the inverse transform are the
inverses of those in the direct transform. That is true if
[10]

h n
h n

h n h M n
a

s

s s

()
()

() ()
=

+ − −2 2 1

Therefore, they can be used to compute the biorthogonal
MLT, in which the synthesis window h ns() has a particu-
lar form that not only improves the stopband attenuation

of the synthesis filters in (1), but is also appropriate for
the generation of multiresolution MLTs [7].

h M na ()− −1

h na()

−h na ()
z M−

u M n(/)2+

u M n(/)2 1− −

X k()

x n()

x M n()− −1

w M n(/)2+

w M n(/)2 1− −

h M ns ()− −1

z M−

h ns ()

−h ns ()

windowing

input signal

...

...

M-sample
block

MLT
coefficients

DCT-IV
transform

Y k()

processed
MLT

coefficients

y n()

y M n()− −1
M-sample

block

output signal

one-block
delay

one-block
delay

windowing
DCT-IV

transform

...

...

U k()

Figure 1. Flowgraphs for the fast MLT transform. Top:
direct; bottom: inverse [1], n = 0, 1, …, M/2–1. These
structures can also be used for the biorthogonal MLT [7].

The computational complexity of the fast MLT in
Figure 1 is that of the DCT-IV plus the calculation of M/2
butterflies. For an orthogonal MLT, i.e. for h n h na s() ()= ,
each butterfly can be computed with three multiplications
and three additions [1]. Thus, to evaluate a direct and an
inverse MLT we need to compute two DCT-IVs plus 3M
multiplications and 3M additions. Furthermore, we need
M additional memory locations (to store half a block in
each the direct and inverse MLTs).

An approach to reduce the computational complexity of
the MLT is to combine the butterflies in Figure 1 with the
first stage of computations internal to the DCT-IV. In [4],
it was shown that if the DCT-IV is computed with the
algorithm based on a length-M/2 complex-valued DFT
[1], then M/2 multiplications can be saved in the direct
MLT, at the expense of additional M/2 memory locations.
In [5] it was shown that similar merging of butterflies can
be applied to the inverse MLT, leading a total savings of
M multiplications, at the cost of additional M memory
locations1. In the next section we show that additional
savings are possible if we start from a different DCT-IV.

1 The inverse MLT flowgraph in Fig. 4 of [5] actually uses 2M
delays, but M of them are redundant and can be removed.

4. NEW ALGORITHM - GENERAL CASE

An efficient algorithm for the DCT-IV has been presented
recently [6] as part of a recursive DCT algorithm.
Whereas the DCT and DCT-IV algorithms discussed in
[1],[11] are all based on mappings into DFTs via or-
thogonal butterflies, the algorithm in [6] uses nonor-
thogonal stages, including diagonal matrices. Similar
recursive algorithms have been developed in [9], [12], but
they include flowgraph branches with gains given by
1 1 2 2cos[()]r M+ π , which can be very large (greater than
150 for M = 256, for example), leading to numerical in-
stability.

The key result for the DCT-IV algorithm in [6] is the
observation that U(k) in (3) satisfies

U k U k V k k

U V

() () (),

() ()

+ − = >
=

1 0

0 2 0

 for
(4)

where

V k
M

v n n
k

M
n

M

() ()cos≡ +�
��

�
��

�
!

"
$#=

−

∑2 1

2
0

1 π

which we recognize as the DCT (with a 2 scaling factor
for the DC coefficient) of the sequence v(n), given by

v n x n c n c n n
M

() () (), () cos= ≡ +�
��

�
��

�
!

"
$#2

1

2 2

π
(5)

Figure 2 shows a simplified flowgraph for the DCT-IV
algorithm based on (4)–(5). Since the DCT-IV is sym-
metric, it can also be implemented by the transpose of the
flowgraph, i.e., by flowing the signals from left to right.
The diagonal matrix C has its entries equal to c(n), and
the matrix B corresponds to the mapping U(k) = V(k) –
U(k – 1), according to (4).

DCT

...

2 −1
U(0)

U(1)

U(2)

U(3)

U(M−1)

u(0) v(0)

v(M−1)

...

2c(0)

2c(M−1)
u(M−1)

−1

−1

−1

BC

Figure 2. Flowgraph for computing the DCT-IV by means
of a DCT [6].

The DCT in Figure 2 can be computed, for example, by
mapping it to a real-valued FFT of length M via the FFCT
algorithm [11]. Wee see from Figure 2 that computation
of the DCT-IV requires M multiplications, M – 1 addi-
tions, and a DCT. Let us assume that the block size M is a
power of 2. If a DCT is computed via the FFCT (which
takes ()logM M2 2 multiplications and

()log3 2 12M M M− + additions), then the algorithm in

Figure 2 has a complexity of ()logM M M2 2 + multiplica-

tions and ()log3 2 2M M additions. That matches the

minimum complexity attainable for the DCT-IV [1].
Now let’s use the flowgraph in Figure 2 for the DCT-IV

block in the fast MLT of Figure 1. The result is shown in
Figure 3. The mapping from x(n) to v(n) becomes the cas-
cade of the butterflies of Figure 1 with the diagonal ma-
trix C of Figure 2. Similarly, by using the transpose of the
flowgraph in Figure 2 for the DCT-IV block in the fast
inverse MLT of Figure 1, we get the inverse MLT flow-
graph also shown in Figure 3.

h M na()− −1

h na()

−h na() z M−

x n()

x M n()− −1

...

2 2c M n(/)+

2 2 1c M n(/)− −

v M n(/)2+

v M n(/)2 1− −

B X k()DCT

h M ns ()− −1
...

−h ns ()

h ns ()

y n()

y M n()− −1
IDCTBTY k()

2 2c M n(/)+

2 2 1c M n(/)− −

z M−

Figure 3. Fast MLT algorithm based on a length-M DCT.
Top: direct; bottom: inverse. The operator B is the same
as the one in Figure 2. The operators inside the dashed
rectangles can be efficiently computed with the structures
in Figure 4 (for biorthogonal MLTs) or Figure 5 (for the
orthogonal MLT with the sine window in (2)).

We can reduce the computational complexity of the fast
MLT in Figure 3 by scaling the butterfly coefficients, and
applying the inverse scaling to the c(n) gains. By doing
that, we can replace the blocks inside the dashed rectan-
gles in Figure 3 by those shown in Figure 4, where

φ φ
δ δ

δ
δ

a a a s s s

a a s s

a a

s s

n h n h M n n h n h M n

n c n h M n n c n h M n

M n c M n h M n

M n c M n h M n

() () () , () () ()

() () (), () () ()

() () ()

() () ()

= − − = − −
= + = +

+ = + − −
+ = + − −

1 1

2 2 2 2

2 2 2 1

2 2 2 1

(6)

For most window designs, we have 1 2 2/ (), ()< <h n h na s

for M n M2 ≤ < [1],[7]. Therefore, the divisions in (6) do
not to significantly increase the dynamic ranges
of φ φa sn n() () and .

φa n()

−φa n() z M−

x n()

x M n()− −1

... δ a M n(/)2 +

δ a M n(/)2 1− −

v M n(/)2 +

v M n(/)2 1− −

...

y n()

y M n()− −1

z M−

−φ s n()

φs n()

δ s M n(/)2 +

δ s M n(/)2 1− −

Figure 4. Reduced-complexity butterfly structures for the
fast MLT structure of Figure 3. Top: structure for the di-
rect transform; bottom: structure for the inverse trans-
form. These butterflies define the Type-I fast MLT.

With the modified butterflies in Figure 4, we replace
the computation of one butterfly (which needs three mul-
tiplications and three additions [1]) and two additional
multiplications by a modified butterfly that takes four
multiplications and two additions. Thus, we save one
multiplication and one addition per butterfly stage. For
the computation of a direct and an inverse MLT, we save
a total of M multiplications and M additions.

5. NEW ALGORITHM FOR THE
MLT WITH SINE WINDOW

We can obtain additional savings in computations for the
case of the orthogonal MLT with the windows defined in
(2). Comparing (2) with (5), we see that all butterfly gains
in Figure 3 are sines or cosines of the same angles. It is
easy to show that the butterflies in Figure 4 can be re-
placed by those in Figure 5, with

p n c n h n c n q n c n h n c n

n M

() () () () , () () () ()

, , , / .

≡ + ≡ −
= −

0 1 2 1K

(7)

The multiplications by 21 2 in Figure 5 are just a con-
stant scaling factor for all coefficients. If the DCT is im-
plemented via the FFCT [11], for example, those factors
can be absorbed in the output rotation butterflies. We
could also work with scaled coefficients, and replace those
factors at both the direct and inverse transforms by factors
of two (which are just shifts) at the inverse transform
only, for example. For coding applications those scaling
factors can be embedded in the quantization step sizes.

q n()

p n() z M−

x n()

x M n()− −1

−1...

v M n(/)2 +

v M n(/)2 1− −

q n()

p n()

−1...

y n()

y M n()− −1

z M−

2

2

Figure 5. Reduced-complexity butterfly structures for the
fast MLT structure of Figure 3. Top: direct transform;
bottom: inverse transform. These butterflies define the
Type-II fast MLT, which implements the windows in (2).

Hence, the Type-II fast MLT replaces the computation
of one butterfly and two additional multiplications (the
block inside the dashed rectangle in Figure 3) by a modi-
fied butterfly that needs only two multiplications and
three additions. The computational complexity of the
Type-II fast MLT, for either the direct or inverse trans-
form, is that of the DCT plus M multiplications and
5 2 1M − additions, for a total of () logM M M2 2 + multi-
plications and () log3 2 32M M M+ additions. That is
equivalent to the computation of a DCT-IV and 3M extra
additions.

A comparison of the computational complexity of vari-
ous MLT algorithms is shown in Table 1, in terms of
overhead with respect to the computation of two DCT-
IVs. For the sine window of (2), which is nearly optimal
for most coding applications [1], the new Type-II fast
MLT saves M multiplications and M memory locations
when compared to [5]. For the biorthogonal MLT, with its
more flexible window choices, the new Type-I fast MLT
algorithm saves M multiplications and M additions when
compared to [1],[7].

Table 1. Computational complexity of MLT algorithms for
direct and inverse transforms. Numbers are in addition to
those required to compute two DCT-IVs.

Algorithm Extra
multiplications

Extra
additions

Extra
memory
locations

Window
choice

Ref. [1],[7] 3 M 3 M M any

New, Type I 2 M 2 M M any

Ref. [4] 2 M 3 M 1.5 M (2) only

Ref. [5] M 3 M 2 M (2) only

New, Type II 0 3 M M (2) only

For example, Table 2 shows the total computation and
memory resources needed by the various algorithms for M
= 32. The new Type-II MLT saves 30% in multiplications
when compared to [1], or 12% in multiplications and 25%
in memory size when compared to [5].

Table 2. Computational complexity of various algorithms
for direct and inverse transforms, M = 32.

Algorithm Multiplications Additions Memory
locations

Window
choice

DCT-IV 224 480 64 –

Ref. [1],[7] 320 576 96 any

New, Type I 288 544 96 any

Ref. [4] 288 576 112 (2) only

Ref. [5] 256 576 128 (2) only

New, Type II 224 576 96 (2) only

6. CONCLUSION

We presented two new algorithms for fast MLT computa-
tion, with lower computational complexity than previous
ones. Similar to the approaches in [4],[5], the computa-
tional savings are based on merging the MLT window
operator with the first stage of a fast DCT-IV algorithm.
Unlike the structures in [4],[5], the new algorithms do not
require additional data storage.

The proposed Type-I fast MLT matches the computa-
tional complexity of [5] without being restricted to the
sine window of (2). For that window, the proposed Type-
II MLT reduces the total operation count by M, and shows
that the multiplicative complexity of the MLT with the
sine window of (2) is the same as that of the DCT-IV. It is
not possible to reduce that multiplicative complexity even
further, except at the cost of an excessive number of addi-
tions (otherwise, the MLT could be used to compute the
DFT with a lower multiplicative complexity than the
split-radix FFT, which is not possible [1],[4]).

REFERENCES

 [1] H. S. Malvar, Signal Processing with Lapped Trans-
forms. Norwood, MA: Artech House, 1992.

 [2] P. P. Vaidyanathan, Multirate Systems and Filter
Banks. Englewood Cliffs, NJ: Prentice Hall, 1993.

 [3] S. Shlien, “The modulated lapped transform, its time-
varying forms, and applications to audio coding,”
IEEE Trans. Speech Audio Processing, vol. 5, pp.
359–366, July 1997.

 [4] P. Duhamel, Y. Mahieux, and J. P. Petit, “A fast al-
gorithm for the implementation of filter banks based
on time domain aliasing cancellation,” Proc. IEEE
ICASSP, Toronto, Canada, May 1991, pp. 2209–
2212.

 [5] D. Sevic and M. Popovic, “A new efficient imple-
mentation of the oddly stacked Princen-Bradley filter
bank,” IEEE Signal Processing Lett., vol. 1, pp. 166–
168, Nov. 1994.

 [6] C. W. Kok, “Fast algorithm for computing discrete
cosine transform,” IEEE Trans. Signal Processing,
vol. 45, pp. 757–760, Mar. 1997.

 [7] H. S. Malvar, “Biorthogonal and nonuniform lapped
transforms for transform coding with reduced block-
ing and ringing artifacts,” IEEE Trans. Signal Proc-
essing, vol. 46, pp. 1043–1053, Apr. 1998.

 [8] J. Princen, A. W. Johnson, and A. B. Bradley, “Sub-
band/ transform coding using filter bank designs
based on time domain aliasing cancellation,” Proc.
IEEE ICASSP, Dallas, TX, Apr. 1987, pp. 2161–
2164.

 [9] K. R. Rao and P. Yip, Discrete Cosine Transform:
Algorithms, Advantages, Applications. New York:
Academic Press, 1990.

 [10] G. Smart and A. B. Bradley, “Filter bank design
based on time domain aliasing cancellation with
nonidentical windows,” Proc. IEEE ICASSP, Ade-
laide, Australia, Apr. 1994, pp. III-185–III-188.

 [11] M. Vetterli and H. J. Nussbaumer, “Simple FFT and
DCT algorithms with reduced number of operations,”
Signal Processing, vol. 6, pp. 267–278, 1984.

 [12] B. G. Lee, “A new algorithm to compute the discrete
cosine transform,” IEEE Trans. Acoust., Speech, Sig-
nal Processing, vol. ASSP-32, pp. 1243–1245, Dec.
1984.

