
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1986

Fast Algorithms for Shortest Paths in Planar Graphs, with Fast Algorithms for Shortest Paths in Planar Graphs, with

Applications Applications

Greg N. Frederickson
Purdue University, gnf@cs.purdue.edu

Report Number:
84-486

Frederickson, Greg N., "Fast Algorithms for Shortest Paths in Planar Graphs, with Applications" (1986).
Department of Computer Science Technical Reports. Paper 406.
https://docs.lib.purdue.edu/cstech/406

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

FAST ALGORITHMS FOR SHORTEST PATHS
IN PLANAR GRAPHS, WITH APPLICATrONS·

Greg N. Frederickson
April 1986

Department of Compmer Sciences
Purdue University

West Lafayette, IN 47907

II< This f{',search was sUr'rlOrleO in pan by Ih~ Naj(lr.:al Scien..f': FOl~"C'l1jon nnrkr G:J'1'nr~ MCS
8201083 and DCR-83Z0124.

Abstract. Graph decomposition and data structures techniques are presented that exploit

the structure of planar graphs to yield faster algorithms for a number of shortest path and

related problems. Improved algorithms are presented for the single source problem, the

all pairs problem, the problem of finding a minimum Cut in an undirected graph, and test

ing the feasibility of a multicomrnodity flow when all sources and sinks are on the same

face. The algorithm for the single source takes 0 (n ...' log n) time in an n -vertex graph,

an improvement from O(n log n). The algorithm for all pairs takes O(n 2) time, an

improvement from 0 (n 2log n). The algorithm for minimum cut takes 0 (n log n) time,

an improvement from 0 (n (log n)2). As a consequence, an algorithm for maximum flow

is similarly improved.

Key words and phrases. all pairs shortest paths, decision trees, heaps, maximum flow,

minimum cut, multicommodity flow, planar graph, planar separator, single source shor

test paths.

1. Introduction

Algorithms that are efficient on sparse graphs will do well on planar graphs, since

the number of edges in an n-vertex planar graph is O(n). But in what ways can the

planarily of a graph be exploited, beyond taking advantage merely of the sparsity? We

examine this question by considering the problem of finding shonest paths in planar

graphs. We present algorithms faster than those previously known for solving the single

source shonest paths, the all pairs shonest paths, and several related problems. The work

highlights the effect that planarity has on issues of not only planar graph decomposition

but also data structures.

Finding shortest paths is a fundamental and well~studied problem in applied graph

theory [AHU, DP]. For the single source problem on a directed or undirected graph with

nonnegative edge costs, Dijksrra's algorithm takes 0 (n 2) time [D]. An implementation

of Dijksrra's algorithm that uses a heap improves this to O(n log n) time for any graph

with 0 (n) edges [J]. Our algorithm for the single source problem in a planar graph uses

o (n..J log n) time. For the all pairs problem on a undirected graph with nonnegative

edge costs, the best previous algorithm runs the heap version of Dijksrra's algorithm n

times, each time with a different venex as the source, and thus uses 0 en2 log n) time

altogether on a planar graph. Using results of [LRT] and [EK, J, Ne, Nil, this Slrategy

can be extended to handle directed graphs with negative cost edges but no negative

cycles in the same time bound. We presem an algorithm for both variants of the all pairs

problem that uses 0 (n 2) time. This result is optimal, if the output is required to be in the

straightforward form.

2

The beSt previous algorithms for finding an s -t minimum cut [RJ and an s -t max

imum flow [HJ] in an undirected planar graph use a number of shortest path computa

tions. We show how to adapt our shonest path techniques to improve these algorithms

from 0 (n (log n)2) to 0 (n log n) time. Algorithms for determining feasibility in a mul

ticommodity flow problem in which all terminals are on the same face of a planar graph

have been presented in [Hs2, MNSJ_ We show how to adapt our techniques to yield a

faster feasibility test.

Our algorithms are based on Dijkstra's single source algorithm, which we now

describe briefly. Dijkstra's algorithm performs a search of the graph that proceeds in

iterations. For each vertex v whose shonest distance d (v) from the source s is not

known, the vertex is termed open, and the currently known shortest distance p(v) from

the source to v is maintained. Initially, all vertices are open, pes) = 0, and p(v) = 00 for

aIJ. other vertices v. On each iteration, the open vertex v with minimum p(v) is closed,

and the shortest distances pew) are updated for all w such that there is an edge (v,w).

The distances p(v) can be maintained in a heap, giving a (log n) time per update. Since

there are 0 (n) updates in handling a planar graph, the total time is a(n log n).

We improve on Dijkstra's algorithm by conducting the iterative search on a care

fully selected subset of the vertices. This means that a preprocessing phase is necessary

to identify this subset of vertices. This phase must also detenrune shortest paths between

all pairs of vertices in this subset, where imennediate vertices on these paths are not in

the subset. The search phase consists of two parts. During the main thrust of the search

phase, when a vertex v in the special subset is closed, p(w) must be updated for all ver

tices w in the subset such that a path of the above type exists from v (0 w. At the end of

the main thrust, the shortest distances are known from the source to each vertex in the

subset. The mop-up portion of the search phase then detennines the shortest distance to

every remaining vertex.

For the main thrust of the search phase to be efficient, the vertices in the subset

must separate the graph into a number of regions of convenient size and favorable adja

cency properties. A planar separator algorithm [LTI] can be used in separating a planar

graph into regions. However, a straightforward use of this algorithm is not adequate to

generate regions with appropriate characteristics. We thus contribute interesting results

for planar graph decomposition.

A second idea that makes the main thrust of the search phase efficient involves

the design of appropriate data structures. When a vertex v is closed, many distances

p(w) may need to be updated .in Lbe heap. It turns our iliat the total number of updates

perfonned during the search phase is in worst case at least proportional to the number

perfonned in Dijkstra's algorithm. Fortunately however, the updates involve the same

region. We present a heap whose organization is based on the adjacency of regions and

thus allows a batch of related updates to be handled more efficiently.

Our algorithms for all pairs shonest paths and minimum cUl in a planar graph rely

in addition on perfonning extensive preprocessing of the graph, that allows for a number

of very fast searches. The preprocessing constructs decision trees to identify the portions

of a shortest path tree within each of many very small regions. The decision trees imple

ment a divide-and·conquer approach that splits a region based on shortest paths to a set

of separator vertices.

4

The paper is organized as follows. In sections 2 and 3 we show how to divide the

graph into regions and identify the special subset of vertices on which to perfonn the

main thrust. In section 4 we present an efficient data SIruClUre for performing the main

thrust. Section 5 gives the single source algorithm. Sections 6 and 7 describe one-time

preprocessing and the decision trees that allow for very efficient searches. The improve

ments to finding minimum cuts, maximum flows, and mulricommodiry flows are dis

cussed in sections 8 and 9.

A preliminary version of this paper appeared in [F2].

2. Regions and boundary vertices

Our shortest path algorithms make use of a division of the planar graph into

regions. A region will contain two types of vertices, boundary vertices and interior ver

tices. An inrerior vertex is contained in exactly one region, and is adjacent only to ver

tices contained in that region, while a boundary vertex is shared among at least two

regions. An example of a graph which has been divided into regions is shown in Figure

1. The boundary vertices are shown in bold, and the regions are circled. To generate

appropriate regions, we make use a linear-time alg?rithm of Lipton and Tarjan that finds

a planar separator [LTl]. Let the venices have nonnegative venex costs summing to no

more than one. The separator algorithm partitions the venices of G imo three sets A , B ,

and C such that no edge joins a vertex in A with a vertex in B , neither A nor B has total

cost exceeding 2/3, and C contains no more than 2fi.,f; venices.

Given a parameter r, we first discuss how to generate e(n Ir) regions with 0 (r)

5

vertices each, and 0 (n /W) boundary vertices in total. Initially, G consists of one region

with all vertices interior. Apply the separator algorithm to the graph with all vertex

weights equal 10 lIn, yielding sets A, Band C. Infer two regions with vertex sets

AI>; A U C and A z c B U C, of sizes an +0 (-.In) and (J-a)n+O (-.In), where

1/3 5: a 5: 2/3. Recursively apply the procedure on the 5ubgraph induced by any region

with more than r vertices. The toral time required will be 0 (n lag(n Ir». This approach

is similar to that described in [LTI].

Lemma 1. An n -vertex planar graph can be divided into e(n Ir) regions with no more

than r vertices each, and 0 (n /,r;:) boundary vertices in total.

Proof. Let the above method be applied to a graph. For any boundary vertex v, let b (v)

be one less than the number of regions that contain v in the division. Let B (n, r) be the

total of b (v) over all boundary vertices v. Thus B (n, r) is the sum of the number of

boundary vertices v weighted by the count b (v). From the above discussion, we have

the following recurrence:

B (n, r) " e-.ln +B (an +0 (-.In), r) + B ((l-a)n+O (-.In), r)

B (n, r) ; 0 for n "r

where c = 2-12 and 1/3 ~ a. ~ 2/3. Then we claim that

B(n, r) " en!"" - d-.ln

for some constant d. The claim can be shown by induction. 0

for n > r

An r-division is a division into Gen/r) regions of 0 (r) vertices each and 0 ({f)

boundary vertices each. An r-division may be obtained from the preceding division in

the following way. While there is a region [hat has more than cW: boundary vertices, for

•
some constant c, apply the planar separator algorithm to the region, with the n' boundary

vertices each having weight lin', and interior venices having weight zero. Infer the two

resulting regions as before.

Lemma 2. A planar graph of n vertices can be divided into an r-division in 0 (n log n)

time.

Proof. We claim that the above method generates the desired division. Consider a divi

sion before regions are split to enforce the requirement of 0 ("r,:) boundary vertices per

region. Let Ii be the number of regions with i boundary vertices. From the proof of the

previous lemma, note that L j ilj = L vevs(b(v}+-I), where 118 is the set of boundary

vertices. It follows that L vev
B
(b(v)+l) < 2B(n, r), which is o (nlw). For a region

with i boundary venices, where i > c.Jr. at most di I(c..r,:) splits need be done, for some

constants c and d. This will result in at most l+di/(c-Jr) regions, and at most c-Jr new

boundary vertices per split. Thus !.he number of new boundary vertices is at most

:L (c.Jr)(dU(e..r,:))cj ,; d :L it; = O(nl..r,:)

The number of new region~ will be at most

L j (dU(e..r,:nt, = 0 (n Ir). 0

It is convenient to have no boundary vertex be in more than some constant

number of regions. Thus before any other preprocessing, we transform the initial planar

graph Go into planar graph G with no vertex having degree greater than 3. A well

known rransformarion in graph theory [Hr, p. 132] may be used to generate G from Go.

Consider a planar embedding of Go. For each vertex v of degref:. d > 3, where

Wo,'" ,wd_l is a cyclic ordering of the vertices adjacent to v in the planar embedding,

replace v with new venices va''" ,vd_ 1· Add edges {(Vj,V Ci +1)mod d) [i=O,'" ,d-l},

each of distance 0, and replace the edges {(Wj ,v) [i =0, ... ,d-l} with

{(Wj,Vj) Ii =0, ... ,d-I}, of corresponding distances. From a corollary of Euler's fonnula

[Hr], the number of venices in the resulting graph will be n $ 6no-12, where no is the

number of vertices in Go.

3. Suitable graph divisions

To facilitate efficient execution of heap updates in the search phase of our algo.

rithm, it is helpful to have each region share bound<rry venices with relatively few other

regions. Two problems arise with the division as generated in the previous section.

First, a boundary vertex may be in a large number bf regions, even though its degree is

limited to three. Second, the' regions generated by the previous method are not neces

sarily connected, so that the effect of locality provided by the planarity of the graph may

be lost. A suitable r-division of a planar graph is an r-division such that

1. each boundary vertex is contained in at most three regions, and

2. any region that is not connected consists of connected components, all of which

share boundary vertices with exactly the same set of either one or two connected regions.

The following strategy ensures that no boundary vertex is in more than three

regions. Consider an application of the planar separator algorithm, which yields sets A ,

B and C. Let C' be the set of vertices in C not adjacent to any venex in AU B, and let

C" = C - C'. Identify the connected components A I' A 2' ... ,Aq in A U B U C' .

Any vertex v in C" adjacent [Q a vertex in A j and not adjacent to a venex in A
j

for J*i,

can be removed from C" and insened it into Ai' We term the resulting subgraphs con

nected subgraphs. Connected subgraph i will have interior venices Ai and boundary

vertices in C" that are adjacent to. some vertex in Ai' The time to find and augment the

connected subgraphs will be linear. A boundary venex will be in at most three connected

subgraphs, since the degree is at most three, and a venex is included as a boundary vertex

of a connected subgraph only if it is adjacent to an interior vertex in the connected sub-

graph.

More than e(n Ir) connected subgraphs can result when the above strategy is

applied recursively to each connected subgraph with more than r vertices. To generate

e(nlr) regions from the set of connected sugraphs, do the following in a greedy fashion.

Initialize each region to be a connected subgraph. While there are two regions that share

a common boundary vertex and each has no more than r12 vertices, union the regions

together. It is still possible that there may be more than e(n Ir) regions. While lhere are

two regions that each have no more than r 12 venices, and are adjacent to the same set of

either one or two regions, combine them. This procedure can be perfonned in linear

time.

The resulting division will have each region being either connected or the union

of connected subgraphs which share boundary venices with the same set of regions.

Examples of regions that are unions of connected subgraphs are shown in Figure 2. Each

component of region C is adjacent only [Q ~on A , and each component of region D 15

adjacent to both region A and region B .

Of course, it is also required that no region have more than c..r;: boundary ver

tices, for some constant c. However this constraint is nor a problem. Before initializing

the regions to be the connected subgraphs, apply the separator strategy to any connected

subgraph with more than c..r;: boundary vertices. The regions are then initialized to be

the resulting subgraphs, and combined in a fashion similar to that described above. But

now a region can be combined with another if it has at most r /2 venices and at most

cW/2 boundary vertices.

Theorem 1. A planar graph of n vertices can be divided into a suitable r-division in

o (n log n) time.

Proof. It is clear that the above strategy generates regions with at most r vertices and

cw boundary vertices. We must establish that there will be S(n/r) regions in the divi

sion. Consider a graph, ·called the region graph, in which there is a node for each region

in the division, and an edge between two nodes if the corresponding regions share a

boundary. The region graph is not explicitly constructed, but rather is a device for count

ing regions in the division. Call a node small if it represents a region that has at most r12

vertices and at most c..Jr/2 boundary venices, and normal otherwise. Since there are

o (n) vertices and 0 (n /..J"T) boundary vertices in toral, there can be no more than 0 (n Ir)

nonnal nodes.

From the foregoing procedure, the following propenies hold. Each small node is

adjacent only to normal nodes. There can be no more than one small node of degree 1

adjacent to each normal node. There can be no more than one small node of degree 2

adjacent to any pair of normal nodes. Thus the number of small nodes of degree 2 is no

10

greater than the number of edges in the reduced graph with each such small node and its

incident edges replaced by one edge. Hence the number of small nodes of degree 2 is in

worst case proportional to .the number of nonnal nodes. Consider the reduced graph with

small nodes of degree one and two removed, and consider a planar embedding. Add as

many edges as possible between normal nodes. and then delete the edges incident on

small nodes. There will be at most one of these small nodes per planar face, of which

there can be at most 0 (n Ir). Thus there are at most 0 (nlr) small nodes of all degrees in

the reduced graph.

The rime bound follows, since the time to apply the separator strategy recursively

is 0 (n log n), and the time to perform the combining is 0 (n). 0

4. A topology-based heap and the batched update operation

We now show how to organize a heap based on a suitable r -division. Partition

the boundary vertices into boundary seTS, which are maximal subsets such that every

member of a set is shared by exactly lhe same set of regions. The boundary sets

corresponding to the boundary venices in Figure 1 are circled in Figure 3a. Every boun

dary set contained in exactly two regions will correspond to an edge in the region graph

discussed in the proof of Theorem 1. As for boundary sets contained in three regions, no

region can contain more such boundary sets than there are edges incident on its node in

the region graph. Since the region graph is planar, and there are 8(n Ir) nodes in it, there

are 8(nlr) edges. Thus there are 8(nJr) boundary sets.

The boundary sets can be identified as follows. Assume that the regions are

11

indexed from 1 up [0 the number of regions. For each boundary vertex, generate an

ordered list of the either two or three regions that the vertex is in. Now sort the set of

lists, using a lexicographic sort. All boundary venices in the same boundary set will

have their lists appear in consecutive order as a result of the sort. The time to identify the

sets will be proporrional to the number of boundary vertices.

A topology-based heap on boundary vertices is a heap represented by a balanced

rree in which the values associated with the boundary venices appear in the leaves, with

values from anyone boundary set being in consecutive leaves. A topology. based heap

corresponding to the boundary sets of Figure 3a is shown in Figure 3b. The sets of leaves

that are circled correspond to the boundary sets. Note that the boundary venices can be

associated with the leaves in precisely the order generated by the previous lexicographic

son. Thus a topology-based heap can be set up in 0 (nl..fi) time.

A batched update is an operation that updates in the topology-based heap the

values associated with all vertices of a boundary set. In the search phase of our algo

rithm, whenever some vertex is closed, each region containing the vertex will have a

batched update performed for each of its boundary sets. To perform a batched update, do

the following. Modify the values at all leaves corresponding to vertices in the boundary

set. Then proceed to modify the ancestors of these leaves level by level moving upward:

first parents of the leaves, then grandparents, etc., until the value at the root is modified.

The number of nodes in the heap that are modified by a batched update is less

than 2 log n plus twice the size of the boundary set. This is established by the following

reaso"ning. The number of interior nodes, all of whcse leaf descendants correspond to

12

vertices in the boundary set, is less than the size of the boundary set. The only other inte

rior nodes that are examined have some leaf descendants that correspond to venices in

the boundary set, and some that do not. There are at most two such interior nodes per

level.

Theorem 2. Let an n -venex planar graph be divided into a suitable r~division_ Using

the associated topology-based heap, the main thrust of our algorithm will perform a set of

hatched update operations which cost 0 (n + (n /...r,:)log n).

Proof. Since there are at most 0 C-Jr) boundary vertices per region, and each boundary

set is in at most 3 regions, each boundary set can have a batched update performed on it

at most 0 (..Jr) rimes. Thus the total work involved in all hatched updates for anyone

boundary set is proportional to ..JrJog n plus W times the cardinality of the boundary

set. Since there are 8(nlr) boundary sets, the total cost of the first term over all boun.

dary sets is o «nl..Jr)log n). Since there are o (nl{T) boundary vertices, the total cost

of the second tenn over all boundary sets is 0 (n). 0

We now describe how our strategy would work, if we are already given a suitable

r-division of a graph, for a parameter r which we shall specify later. To perfonn the

main thrust, we need, for each region, the shortest paths between every pair of boundary

vertices. These paths can be found by performing, for each boundary vertex of a region,

Dijkstra's algorithm within the region. Since there are 0 (nl.Jr) boundary vertices, and

each run of Dijkstra's algoi"ithm will use 0 (r log r) time, the rime required to find these

paths will be 0 (n {T log r).

13

Given this preprocessing, the main thrust of the algorithm follows OUf previous

description, using the wpology-based heap, and performing hatched update operations in

it. At termination of the main thrust. shortest paths from the source to each boundary

vertex will be known. Shortest distances to other vertices may be found by perfonning

mop-up in each region separately. Dijkstra's algorithm can be used in each region, start

ing the search from the set of boundary venices, labeled with the shortest distances to

them. We choose r = (log n)/(Iog1og n), so as to baJance the times for the main thrust

and the preprocessing.

Lemma 3. Let an n -vertex planar graph be divided into a suitable r-division, where

r = (log n)/(loglog 11). A single source shortest path tree can be found in

o (n,j log n ,j loglog n) time.

Proof. As claimed in Theorem 2, the time to perform Lhe main thrust will be

o (n + (nl..Jr)log n). The mop-up will take 0 (r log r) time for each of 0(nlr) regions,

yielding 0 (n log r) time allogether. The result follows since r = (log n)/(loglog n). 0

5. A Fast Algorithm for the Single Source Problem

In this section we give an algorithm for finding a single source shonest path tree

in a planar graph in 0 (n..J log n) time. To achieve this bound, we must show how to

find a suitable r-division in 0 (n log n) time. We must also improve on the performance

of [he algorithm in the last section, as described in Lemma 3. We first discuss the latter

problem.

A time-critical part of the computation is in the preprocessing, in which for each

region the shortest paths between every pair of boundary vertices are found. Insread of

using Dijkstra's algorithm to perform these searches within regions, we shall use our

search strategy. This will of course require that suitable divisions of each region be

found, so that the search can be performed.

We now describe our algorithm. First find a suitable 'I-division of the graph,

where r 1 = log n. (We shall describe later how to do this in 0 (n log n) time.) Call each

region in this division a level 1 region. Then for each level 1 region find a suitable r2

division, where r2 = Ooglog nl Call each region in these divisions a level 2 region.

When finding this division, stan with each level 1 boundary vertex automatically being a

level 2 boundary vertex. This will not cause more than e(n I-{r;) boundary vertices of

level 2 regions to be created. For each level 2 region, find the shortest paths between

every pair of its boundary vertices. Dijksrra's algorithm should be used for this task,

with the source being each boundary vertex of the region in tum. Then for each level 1

region, find the shortest paths between every pair of its boundary vertices. The main

thrust of our search phase, described earlier, should be used. This concludes the prepro

cessing. Having found, for each level 1 region, the shortesr distances between its boun

dary vertices, we then perform the search phase on the graph. The main thrust will yield

a shortest path tree encoding the shortest paths to each level 1 boundary vertex in the

graph. The mop-up phase can then be performed by labeling boundary vertices with the

shortest distances to them, and then using Dijkstra's algorithm within each region.

We analyze the time for this algorithm, exclusive of the time to find the r
1
-

15

division. The time required to find an r 2-division of a region of size r 1 is 0 (r I log r 1)'

Summing over the eCn /r 1) regions gives a total time of 0 (n loglog n). Using Dijkstra's

algorithm, the time to find a shortest path tree in a region of size at most '2 is

0('2 log TV_ Finding these shortest path trees for each of 0 (n/~ level 2 boundary

vertices will use 0 (n loglog n logloglog n) lime. Using our main thrust, the time to

find a shortest path tree in a region of size at most r 1 is 0 (r I+(r }/-Jr;)log r 1)' or 0 (r 1)'

Note that no mop-up is necessary, since each level 1 boundary vertex was automatically

designated a level 2 boundary vertex. Thus the total time for finding these shortest path

trees for each of the o (n/;{r;) level 1 boundary vertices is o(n...[r;), or o en"'; log n).

By Theorem 2, the main thruSt within the graph will take rime 0 (n " log n). The mop

up for each of e(n Ir 1) level 1 regions will take 0 (r I log r 1) time per region, or

o (n loglog n) time total. Thus the total time for everything except finding the r1

division will" be 0 (n " log n).

We now show how to generate a suitable r-division quickly. Find a spanning tree

of the graph using depth-first search. Generate connected sets of e(..Jr) vertices in a

bottom-up fashion, using a procedure FINDCLUSTERS from [FI]. Now shrink the

graph on these sets, yielding a planar graph Gs with 8(nl..Jr) vertices. Apply the planar

separator slTategy from section 3 to graph Gs to yield 8(nlr3fl) regions of cardinality

o (r). Expand G5 back to G. In G there will be 0 (n Ir) regions of size 0 (..Jr) resulting

from boundary vertices in G5' plus 8(nlr3fl
) regions of cardinality 0 (r 3fl) resulting

from the interior venices of Gs - Infer boundary venices and slightly expanded regions

that share these venices. Apply our procedures from section 3 on the regions to generate

16

a suitable r-division.

Lemma 4. A planar graph of n venices may be divided imo a suitable r -division in

O(n log r + (nt.Jr)log n) time.

Proof. The connected sets and the graph Gs can be identified in 0 (n) time. The time to

generate a division of Gs will be O(n(Iog n)I..{f). The time to expand Gs back to G

will be 0 (n). The rime to split regions of size 0 (r 312) will be 0 (n log r). 0

Theorem 3. A single source shonest paths problem on an n-yenex planar graph with

nonnegative edge costs can be solved in 0 (n,j log n) time. 0

Our single source shortest path algorithm can be used to speed up an algorithm

[Hsl, IS] for finding a maximum flow in an s-t planar network. The dominating term in

the running time of this algorithm is the time to solve one single source problem. Substi

tuting our single source shortest path algorithm yields the following.

Corollary 1. A maximum ftow in an s-{ planar network can be found in O(nv log n)

time. 0

6. Decision trees for regions

As indicated in the introduction, there are several problems that can be solved by

solving a number of single source problems. For such a problem il is not necessary to

balance the preprocessing time against the search time of one shortest path computation,

since the preprocessing need be done only once, while the search will be done many

17

times. In the next section, using Ihe results of this section, we show how to realize 0 (n)

search time at a one-time expense of 0 ('I log n) preprocessing time.

A part of the search will use decision trees, one for each of many small regions.

For each of these regions, its decision tree will take as input the shortest distances from

some source venex in the graph to each of the boundary vertices of the region (plus some

other information to be described subsequently). A leaf in the decision tree will identify

all edges inside the region that are contained in a shortest path tree of the graph rooted at

the source vertex. The height of the decision [ree for any region, and thus the time to

search it, will be proportional to the size of the region. The time to build the decision

tree will be quite large in comparison to the size of the region. However, this technique

will be applied in the next section to regions of very small size as a function of n.

We assume initially that the region is nice, i.e., that there is a planar embedding

of the region such that all boundary venices of the region are on the exterior face, and

that a shonest path from lhe source to any boundary venex is exterior to the region. In

general, a region will not be nice. In the case when the region is not nice we show later

in this section how 10 set up a decision ttee that will identify a subset of the boundary

vertices that are on an exterior face in some embedding, so that shonest paths can still be

computed.

The decision ttee that we construct for nice regions will work for nice regions that

are in apreparedform. Each prepared region will consist of a source vertex, a set ofver

tices Vb, and a set of other vertices V U
• For each venex Vj in Vb there is an edge from

the source to Vj' and for each venex vk in V U there is no edge from the source to v.I:.

18

Every edge except those incident on the source has an edge COSt supplied when the deci.

sion tree is built. For each vertex Vj in Vb. the cost of the edge from the source to Vj will

be supplied as input when the decision tree algorithm is run. The input will satisfy the

constraint that for each Vj in Vb. the edge from the source to Vj will represent a shortest

path from the source to Vj that is exterior to the region.

We first discuss how to transform a nice region H into its prepared fann. The

boundary vertices of H will comprise the set Vb, and the interior vertices will comprise

the set V
U

• Introduce a source vertex and an edge from the source to each vertex Vj in

Vb. The region from the lower right in the graph of Figure 1 is shown in Figure 4a. The

corresponding region in prepared form, along with costs on its edges, is shown in Figure

4b.

We next discuss how shortest distances and shortest paths from the source to

every vertex in~'H can be found efficiently. Let m = IVU I and b == IVb [. If m == 0,

then shortest paths are already known from the source to each vertex in H, and no com.

parisons are needed in its decision tree. If b = 1, let Vb == {yd. A shortest distance to

each vertex x will be d(source, x) == d (source, vI) + d (v I' x). A shortest path from

the source to x must go from the source to v I' and then follow a shortest path from v 1 to

x. Since a shortest path from v 1 to x does not depend on the input to the decision rree,

again no comparisons are needed in the decision tree for H .

If b = 2, let Vb == {vI' V2}' The shortest distance from the source to each vertex

x will be the smaller of d (source , VI) + d(v 1> x) and d(source, v2) + d(v2' x). Note

that distances d(vl' x) and d(v2' x), and the shortest paths realizing these distances, do

19

not depend on the inputs to the decision tree, and can be computed when the decision tree

is built. Thus for each vertex x of V U
, only one comparison is needed in the decision

tree to determine which of v I and v2 is on lhe shortest path from the source [Q x. This

means that m comparisons involving input values are sufficient to detennine the edges in

H contained in a shortest path tree rooted at the source.

If m>O and b>2, region H can be handled as follows. By the planar separator

theorem of [LTI], there is a separator V S of size at most 2,J2,r;;; for the subgraph

induced by V
U

• Let S = IV S I. For each vertex vk in V S
• a shortest distance from the

source to vk can be found by finding the smallest value d(source, Vj) + d(vj' v
k

) over

all vertices Vj in Vb. We assume that a tie between [wo vertices Vj and Vi in Vb is .bro

ken by choosing Vj if j < j'. The shortest path from the source to vk will consist of the

edge from the source to the vertex Vj realizing the minimum, followed by the shonest

path from vj to vk. Since the latter shortest paths do not depend on the input to the deci

sion tree, only (b-l)s comparisons involving input values are necessary to find shortest

paths from the source to all vertices in V S
• These (b-l)s comparisons would be per

fanned in the top (b-I)s levels of the decision tree for the region, and would determine

the set of shortest paths to all vertices in V S
• The remaining levels can be derermined as

follows.

Any set of paths realizing shonest distances to vertices in V S divides H into some

number of subregions, say t. Note that any venex x in V U which is on a shortest path

from the source to some vk in V S has a shortest path from the source that is a prefix of

the shortest path to vk. Let C be the set of vertices in V U that are are on a shortest path

20

from the source to a vertex in lis. Every maximal connected subset in V U - C will be

taken to be the interior vertices vt of a subregion Hi. Any edge between vertices in Vr

will remain in subregion H j •

The set vt is detennined as follows. Vertex Vj in Vb is included in vt if either Vj

is adjacent to some vertex y in Vr. or the shortest path [0 some vertex vi: in V S contains

both Vj and a vertex x which is adjacent to some vertex J' in Vt. In the former case,

there will be an edge included in Hj from Vj to y. In the lanee case, for any such pair Vj

and y, there will be an edge (Vj' y) in H j , of cost d(vi' x) + c(x, y) which is minimum

over all such x.

With respect to the region in Figure 4b, a separator set V S for the subgraph

induced by V
oU

is shown in Figure 4c. along with shortest paths to vertices in VS • These

paths partition the region into three nice subregions, which are shown in prepared form in

Figure 4d. For instance, the edge (v6. y) in Figure 4d results from y being adjacent to

vertex x, which is on the shortest path from v6 to one of the separator vertices in Figure

40. The cost 11 follows since c (x. y) =2 and d (v" x) = 6<-3 =9. Similarly, edges

(v2, z) and (v6' z) in Figure 4d result from z being adjacent to separator vertices that are

claimed by v2 and v6 in Figure 4c. Their COSls of 9 and 13, resp., represent the costs

6+1+2 and 6+3+2+2 of the corresponding paths.

Lemma S. Consider the dividing of a region H into subregions {Hj } based on paths as

above. Let bi = 1VfJ. Let J = {i Ibi > 2). Then :LeJ (bi -2) ,; b-2.

Proof. By induction on III. The basis with II 1= 1 is immediate. For II I> 1, we

21

assume that the lemma is true for any region H' with II'I < 111_ We show how to split

H into H' and H" I so that the induction hypothesis can be applied to each, and the bound

established. Index the boundary vertices in H in order around the exterior face from 1 to

b. Consider any i' in I .

Let Vj and VI be in vt such that j < I and there is no vI' In Vl~ with

j < I' < r· Then for any V,~" either all vertices v,l;; in V,~, have j $; k $; j'. or no ver

tices vk in Vj~' have j < k < j'. Suppose Vj~' contained vk and vK. where j < k < j'

and either k' < j or j' < k'. There would be a path from Vj to Vj in Hr , and a path from

vk to vK in Hr - Since all vertices in Vb are on the exterior face in H, the paths must

cross, an impossibility_.

Let i' , t' E I. and without loss of generality choose j and j' as above so that all

vertices vk in V,~, have j :::; k :::; j'. Now partition the H j so that i e I' if and only if H
j

contains no vertex vk in Vi? with j < k < r, and i e]" otherwise. This induces a divid

ing of H into HI and H", with Hi' within HI, and Hr within H". Thus 1 is partitioned

into I' and I", with each of smaller cardinality than I. The only boundary vertices

shared by HI and H" are Vj and VI' so that b' + b" $; b + 2. Applying the induction

hypothesis, LiEf (bi-2)'; b'-2, and LiEf' (bi-2)'; b"-2. Thus LiE' (bi -2)

,; (b' -2) + (b" -2)'; b-2. 0

We summarize the construction of the decision tree for a region H which has an

embedding with all boundary vertices on an exterior face. If m = 0 or b = I, then the

decision cree consists of a leaf labelled with the shortest path cree in H. If b = 2, then the

decision tree is of height m, with a test at every level derennining for each interior venex

22

x in tum whether the shortest path to x goes through v1 or v2' If m > 0 and b > 2, then

first build a decision tree of height (b-l)s, which determines for each venex v
k

in VS

through which vertex in Vb a shonest path from the source passes. Each leaf in this tree

represents a certain division of H into l subregions based on the shonesr paths from the

source to vertices on these paths. Each subregion Hi has a corresponding prepared form,

and the decision tree for Hi can be found recursively. Such a decision tree for HI will

replace the leaf for that particular panition. The decision tree for H 2 will replace each of

the leaves of H l' and so on for the rest of the H j 's resulting from that partition. Each leaf

will be labelled with the shortest path tree that is the result of the comparisons on the

path down to that leaf. When all partitions of H have been handled, the decision tree for

H is complete.

From the above discussion, the height of the resulting decision tree, and thus the

time to search it, can be described by the recurrence

T(O, b) = T(m, 1) = 0

T(m,2) = m

T(m, b) ,; max {s(b-J) + I-f=l T(m;, b;)}
s, I, m,'

where mj :S: 2/3 (by the planar separator algorithm), and 'L!:o:l mj $ m.

Lemma 6. For b > 2, the solution to the above recurrence satisfies

T(m,b) ,; c,Jrn" b +m

where c = 6'1'2 + 4'3.

Proof. By induction on m. The basis is for m = O. T (0, b) = 0 clearly satisfies the

23

above bound. The induction step is for m > O. If b == 1 or b = 2, then the bound is

clearly satisfied. If b > 2. then we have

T(rn. b) :s; max {s(b-l) + L[=1 T(rni' bi)}
s, I, m,.

= max {s(b-l) + L iel T(rni. bi) + Lie I T(rni' bi)}
s, t. m,-

Use of the planar separator ensures that mj ::; 2m!3. From the manner in which the

subregions are generated, m 2: L{=l mj. and Lie! (bj -2) $. b-2. Thus the sums are

maximized if JII = I, with mi == 2/3 and hi == b for the one j in I. The tenn involving s

is maximized when s is as large as possible, which can be at most 2Y2~ by the separa-

tor theorem [LTl]. Thus

T(rn. b) :s; 2-./2-.J;;;"(b-l) + d2rn/3 b + rn

< (2-./2 + d2l3)-.J;;;" b + rn

Taking c as above gives the claimed result. 0

We now discuss the handling of a region for which there is no planar embedding

with all boundary vertices on the exterior face. An example of such a region is region A

in Figure 2. We show how to build a decision tree which finds a subset of boundary ver-

lices with the desired property, while still allowing for the correct computation of shor-

test paths. We assume that a shortest path tree from the source to each of the boundary

vertices in the graph will be known, and that the boundary vertices in this tree will have

been given preorder and postorder numbers.

As input to the tree are shortest distances from the source vertex to each boundary

vertex of the region, along with the preorder and postorder numbers of each boundary

24

vertex of the region with respect to the preorder and postorder numbering of all boundary

venices in a shortest path tree in the graph rooted at the source. It is well-known that a

vertex Vj is an ancestor of vk in a tree if and only if preorder(vj) ~preorder(vk) and

postorder (Vj) ~ postorder (vd. Thus it is possible to detennine the Structure of the shor

test path tree with respect to the b boundary vertices of H by comparing each preorder

number with each other, and similarly with postorder numbers. This will take b (b -1)

comparisons. Precisely those boundary vertices in H with no ancestor that is a boundary

vertex in H will be in the subset All others will be viewed as interior.

To preserve shortest paths, cenain pseudo-edges must be inlIOduced. If vk is a

boundary vertex not included in the subset, with nearest boun_dary vertex ancestor Vj'

then pseudo-edge Vj' vk) is introduced if and only if d (source, Vk) - d (source, Vj) is

less than the distance within H from Vj to vk- Such an edge is of cost

d(source, Vk) - d(source, Vj)' and represents the shortest path from vj to vk. At most

b-2 comparisons are needed to determine which pseudo-edges must be introduced.

Thus we build a decision tree of height at most b (b -l}+b -2. On each pair of the

first b (b -1) levels a different pair Vj' Vk is tested to determine whether Vj is an ancestor

of Vb or vice versa. On the following at most b-2 levels it is determined which new

edges are introduced. Associated wirh each leaf of the decision tree is an induced nice

region, having as boundary vertices a subset of boundary vertices from the original

region, and including lhe additional edges as described above.

Given this decision tree, we can extend it [0 a decision tree that finds the ponion

of shortest paths from a source going through any region. In place of each leaf in the

25

above tree, put a decision tree for the corresponding induced nice region. The resulling

decision tree has the top at most b (b -l)+b -2 levels determining the induced region, and

the remaining levels finding the shortest paths in the induced region. Leaves of the

resulting decision tree will not contain pseudoedges.

Theorem 4. Let H be a region· in a suitable r-division of a planar graph G. The portion

in H of a shortest path tree for the source in G can be found using a decision tree of

height 0 (r), which takes as input the shortest dislances from the source to each of the

boundary vertices in H. plus the preceding boundary vertex in each such path. The deci

sion tree can be built in 0 (r21og r 2cr) time, and will use 0 (r2cr) space, for some con

stant c .

Proof. The region will have 0 (-Jr) boundary venices. and at most r interior venices.

Thus the prepared form for region H will have b be 0 (..f;) and m ::;; r. By Lemma 6

and the preceding discussion, the height of the decision rree for region H will be a (r).

Determining shortest paths within the region, encoded as r shortest path trees, will use

o (r210g r) time. The amount of work to determine the information generated by a set of

prescribed tests will be 0 (r 2
). If b = 2, the result for each set of outcomes of the m

comparisons can be translated into a shortest path tree in 0 (r) time per vertex, or 0 (r 2)

time [otal. If m > 0 and b > 2, the result for each set of outcomes of the (b-l)s com

parisons can be translated into a dividing of a region into subregions in 0 (b +r) time per

separator plus 0 (r) time per vertex. or 0 (r2) time in total. Since the decision tree is a

binary rree, and of height at most cr for some constant c. the number of nodes in the tree

is 0 (2cr
). Each of 0 (2cr) leaves will use 0 (r) space. 0

26

7. A very fast search strategy

We use the decision tree technique from the previous section, plus an additional

technique, to generate a search strategy that takes 0 (n) time. In the section 5. by choos~

ing r 1 = (log n)2, we could have realized 0 (n loglog n) search time, at the expense of

o (n log n) preprocessing time. Furthennore, we could have reduced the search time to

o (n logloglog n) if we had done the following. Instead of using DijkstTa's algorithm on

level I regions for the mop-up, we could have run our main thrust on level 1 regions and

then used Dijkstra's algorithm for the mop-up within level 2 regions. Assmning that

r 1 = (log n)2 and r2 = (Iog1og nl. this would have yielded a search time of

o (p. logloglog n). This idea can be carried to its limit by using log· n levels. At 0 (n)

main thrust time per level, this would give 0 (n log" n) time total.

We show how to do better using the decision trees. The preprocessing is the fol

lowing. First find a suitable r1-division of the graph, where rl = Oog n)2. For each

level I region, find a suitable rrdivision, where r2 = (1oglog n)2. When finding this

division, start with each level I boundary vertex automatically being a level 2 boundary

vertex. For each level 2 region, find a suitable '3-division, where '3 = (Iogloglog n)2.

When finding these divisions, start with each level 2 boundary vertex automatically being

a level 3 boundary vertex. For each level 3 region, build a decision tree. Then for each

level 3 region, find the shonest paths between every pair of level 3 boundary vertices.

This should be done by using the decision tree to solve each a single source problem for

each boundary venex. For each level 2 region, find the shortest paths between every pair

of level 2 boundary venlces. The main thrust is used for this, using each level 2 boun-

Z7

dary vertex in rum as the source. Finally for each level 1 region, find the shortest paths

between every pair of level 1 boundary vertices, using the main thrust from each level 1

boundary vertex.

The search of the graph is then the following. To perform a single source compu

tation, firSt find the shortest padls from the source to the boundary vertices of the level 1

region containing the source. This can be done using Dijkstra's algorithm. Given the

shortest distances to boundary vertices in the level 1 region containing the source, per

fann the main thrust on level 1 boundary venices. Given these results, perform the main

thrust within each level 1 region on level 2 boundary vertices. Then perform the main

thrust in each level 2 region on level 3 boundary vertices. Finally, complete the p_roblem

in each level 3 region by using the decision tree.

Theorem 5. An n -vertex planar graph can be preprocessed in 0 (n log n) time so that

each subsequent shortest path computation can be performed in 0 (n) time.

Proof. The Tl-division can be found in O(n log n) rime. The Tr and T3-divisions can

be seen to require no more rime than this. Building decision trees for all of the G(nlr3)

level 3 regions, will take rime 0 (nr3logT3 2crl
). With T3 = (logloglog n)2, the rime will

be 0 (n log n). Finding the shonest paths between boundary vertices at levels 3, 2 and I

can be seen to take 0 (n log n) time by arguments similar to previous ones. Thus the

preprocessing time is 0 (n log n). For the time to solve the next single source problem,

we have the following. The initial shortest path computation within the level 1 region

containing the source will use OCr} log Tj) time, which is o ((log n)2loglog n). The

searches on boundary vertices at levels I, 2 and 3 can be seen to take 0 (n) rime. The

28

search within a level 3 region, using the decision tree for the region, will be 0 (r3)' which

yields 0 (n) total for all level 3 regions. 0

The best previous algorithm for all pairs shortest paths in a planar graph is

presented in Johnson [1]; For the case of nonnegative edge costs, Dijkstra's algorithm

with a heap implementation may be run from each vertex, yielding 0 (n 210g n) time. If

there are edges of negative cost, bur no negative cycles, and the edges are directed, then

the best single source algorithm for planar graphs [LRT] uses 0 (n 3/2) time. However,

such an algorithm need be used only once in an all pairs computation. Dijkstra's algo

rithm will perform correctly if vertices are closed in order of d (v)+h (v), where h (v) is

the shortest distance from v to a specific vertex u [EK, J. Ne, Ni]. Using our algorithm

in place of Dijkstra's, we achieve the following.

Theorem 6. The all pairs shortest paths problem on an n -vertex planar graph with either

undirected edges and no negative costs or directed edges and negative COSts but no nega

tive cycles can be solved in 0 (n 2) time. D

8. Minimum cut and maximum flow

Our shortest path procedure may be used to speed up Reifs algorithm for finding

a minimum S -1 cut in an undirected planar network, which runs in 0 (n (log n)2) time

[R]. The idea behind the algorithm is that a minimum cut corresponds in the planar dual

to a shortest cycle that separates sand 1, and that this cycle can be found efficienrly by a

divide-and-conquer strategy. Reifs algorithm proceeds in the following manner. The

29

graph G is embedded in the plane, and the dual graph D (G) is determined. Each edge in

D (G) has cost equal to the capacity of its corresponding edge in G. Let Pst be a

minimum cost path in D (G) from a vertex representing a face in G that borders s to a

vertex representing a face in G that borders t.

If Pst contains one vertex, v, then s and t are on the same face, f v' in G _ The

minimum s -(cut in G can be found by using a shortest path algorithm in an augmented

dual D' (G) generated as follows. Vertex v is replaced by new vertices v' and v". Each

edge (v,w) incident on v is replaced by by (v' ,w) if the corresponding edge in G is in

that portion of the boundary of face f II that stans at s and proceeds clockwise to t, and

by (v" ,w) otherwise. The shortest path Pv. between v' and v" corresponds to the

minimum cost cycle in D(G) containing v that separates face s from face 1. (This par.

tion of Reifs algorithm corresponds to the a (n log n) rime algorithms of Itai and Shi

loach [IS] and Hassin [HsI] for finding a maximum s-t flow in a planar graph when both

s and t are on the same face.)

If PSI contains more than one vertex, Reif's algorithm does the following. The

augmented dual-D' (G) is generated by splitting apart the path PSI into two paths PSI' and

p 51 ", duplicating the vertices and edges of Pst, and replacing the edges incident on P51 as

follows. Any edge (v ,w) that is not in PSf but is incident on vertex v in PSI is replaced

by (v',w) if(v,w) is to the right of P" in D(G), and by (v",w) if(v,w) is to the left of

PSf in D (G). Once D' (G) is generated, it is searched as follows. Let v be a midpoint of

the original path Ps'. Let v' and v" be the corresponding vertices in D' (G). A shortest

path computatioil in D' (G) is perfonned using v' as the source and v" as the destination.

30

The shonesl path Pv between v I and v" corresponds to the minimum cost cycle in D (G)

containing v that separates face s from face E. The network D' (G) is split into two sub

networks along Pv' including venices and edges from Pv in both subnetworks. Any

maximal path of at least two bridges is replaced by a new edge, of cost the sum of costs

in the maximal path. Then Reif's algorithm recurses on each half. Among the cycles so

identified, the cycle of minimum cost will correspond to a minimum s-t cut. The work

perfonned across each level of recursion is dominated by the shortest path computations,

which are O(n log n) time if Dijksrra's algorithm is used. The time to handle all levels

of recursion is 0 (n (log n)2), since there are 0 (log n) levels of recursion.

In place of Dijkstra's shortest path algorithm, we will use our own algorithm. We

perform preprocessing similar to that discussed in section 7 on the augmented dual

D'(G). First find a suirable rl-division of the graph, where r 1 = Oog n)2, and then a

suitable r2-division of each level 1 region, where r2 = Ooglog n)2. When finding this

division, start with each level 1 boundary vertex automatically being a level 2 boundary

vertex. For each level 2 region, find the shortest paths between every pair of level 2

boundary vertices, using Dijkstra's algorithm. Finally for each level 1 region, find the

shortest paths between every pair of level I boundary vertices. using the main thrust from

each level 1 boundary vertex.

Now perfonn Reif's minimum cut algorithm, but whenever a source-destination

shortest path computation is required, use the following. Find the shoI1esr paths from the

source to the boundary venices of the level 2 region containing the source. Dijksrra's

algorithm can be used for this purpose. Then find the shortest palhs to the boundary ver-

31

rices of the level I region containing the source. Our main thrust can be used within this

level 1 region. Now perform our main thrust on level I boundary venices. This will in

particular give the shortest distances to the boundary vertices of the level 1 region con

taining the destination. Perfonn the main thrust on level 2 boundary vertices within this

region. This will give the shortest distances to the boundary vertices of the level 2 region

containing the destination. Finally perform a shortest path computation within this

region, using Dijksrra's algorithm. This will then give the shortest path from the source

to the destination.

Whenever a shortest path corresponding to a cycle is identified, a number of

regions in general will need to be split. However it is not hard to do this if the boun

daries are maintained in a convenient form. The regions can be split so that an efficient

main thrust can still be carried out. For each region, maintain a list of its boundary ver~

rices, ordered by boundary set, and within boundary set ordered by the order along the

boundary. For each boundary vertex in the region, shortest disr..ance information to all

other boundary venices is kept in this same order. When a region is split, the venices are

partitioned into two sets, each of which can be described by a sequence of index pointers

into the original list. If a subnet\.Vork contains a sequence of split regions with just two

boundary vertices, then this sequence should be replaced by a pseudo split region with

just two boundary vertices. This operation is analogous to replacing a sequenee of

bridges in Reif's algorithm.

During a search, a split region will be handled in the following fashion. When a

boundary vertex in one set of the partition is closed, only vertices in the same set of the

partition are updated. This means that for all searches at any level of the recursion in the

32

modification of Reif's algorithm, no more work is done in updating the heap than at the

top level of the recursion. This follows since the same number of boundary vertices are

closed as in the top level of recursion, and for each boundary venex that is closed, the

updating is at worst no more expensive than at the top level.

Theorem 7. A minimum S-l cut in an undirected planar network can be identified in

o (n log n) time.

Proof. The time required is the following. The preprocessing time is 0 (n log n). The

time to search from a source to the boundary vertices of the level 2 region containing it is

O(T2 1og r1), which is o ((loglog n)2log1oglog n). The time to search from the boun

dary vertices of the level 2 region containing the destination to the destination itself will

be the same. Since there are 0 (n) source-destination computations, these activities will

use in total 0 (n (loglog n)210gloglog n) time. The remaining activities in the source

destination computations are accounted for by considering all such computations on one

level of recursion. The main thrusts on anyone such level of recursion will take 0 (n)

time. Note that the time to split regions corresponding to the source-destination paths

found will total no more than proportional to the number of edges in the graph, which is

o (n). Since there are 0 (log n) levels, the total time for all source·destination computa

tions is 0 (n log n). 0

Hassin and Johnson [HJ] have shown how to use Reif's consrruction to find a

maximum flow in a planar undirected network in 0 (n (log n)2) time. The output that

they need from Reif's algorithm is the minimum cost s-r cut cycle in D (G) that con-

33

tains v. for each venex v in PSI' Aside from the time to find a minimum s-(cut, the

Hassin and Johnson algorithm uses 0 (n log n) time. Since our minimum cut algorithm

produces the same infonnation about cut cycles as Reifs, ours may be llSed in its place.

Corollary 2. A maximum s-(flow in an undirected planar network can be found in

o (n log n) time. D

9. Multicommodity flows

In this section we discuss the multicommodity flow problem in a planar graph in

which all sources and sinks are on the same face. Algorithms for determining feasibility

and finding feasible flows in such graphs have been presented in [Hs2, MNS]. The feasi

bility test for mulricommodity flows given in [MNS] uses 0 (min{n 21og" n, kn.J log n)

time, where k is the number of source-sink pairs. A flow construction algorithm is also

presented in [MNS], which runs in O(kn + n2..J log n) time. We show how to adapt our

techniques to yield a faster feasibility test.

Let B be the set of edges bounding the face f that contains all the sources and

sinks as vertices. Let b be the number of venices of this face that serve as sinks and/or

sources. We assume that b ~ 2k, since if b > 2k, then additional edges of capacity 0

can be added to the graph to yield b ,; 2k. As discussed in [Hs2, MNS], these edges will

connect consecutive source and/or sink venices on the boundary of face f _ Thus the

only vertices on the boundary of face f in the modified graph will be sources and/or

sinks, implying that the number of edges on the boundary of this face will be at most 2k.

We assume that the input graph has already been so modified, and quote our results in

34

these terms. Also, k ~ b (b -1)/2, since there are at most this many distinct pairs from

among the venices bounding f .

The feasibility can be tested as follows. Let e and e' be two edges in B. Let

C (e. e') be the set of cuts that contain as the only edges from B the edges e and e'. For

a cut X. let c (X) be the total capacity of X, and d (X) the [oral demand of X. Let

m(X) = c(X)-d(X) be the margin of cur X. Define m(e, e') as the minimum m(X)

such that X is in C (e. e'). From results in [OS], it is shown in [Hs2, MNS] thatthere is

a feasible k -commodity flow if and only if m (e. e') > 0 for every pair e • e' in B .

In [Hs2. MNSl, the values m(e, e') are detennined in the following way. For a

fixed e in B and all e' in 8.. dee, e') can be determined in O(k+b) time. By traversing

the edges of B in order starting at e. the values of d (e I e') for all pairs "(e. e') -can be

found in 0 (k +b 2) time. To compute the values of c (e , e'), a dual graph D (G) is con

structed, with costs on the dual edges equal to capacities of the corresponding original

edges. Let c (e , e') be the minimum value of c (X) for X in C (e. e'). Then c (e , e') is

equal to the sum of the capacities of e and e' plus the length of a shonest nontrivial path

joining e and e' in D (G). Using Dijkstra's algorithm, all values c (e. e') can be found

in 0 (k + bn log n) time. In [MNSJ, it is noted that our single source and all pairs algo

rithms (presented in [F2]) can be used to reduce the rime to 0 (min{n 210g· n.

bn-Y log n }).

However we can speed up the computation of the c (e, e') values more by using

the shonest path methods described in sections 6 and 7. We use our approach of one

time preprocessing and many-time search, but tailor it to the value of b. If b $ log n,

35

choose r I = b log n. If b > log n, choose r1 = (log n)2, as before.

Theorem 8. The testing for feasibility of a k-commodity flow in an n -venex planar

graph in which all sources and sinks are on one face, bounded by b edges, b $ 2k. can

be performed in 0 (bn + n ~ b log n) time.

Proof. First consider the case when b :s; log n, and r 1 = b log n. The preprocessing

time will be dominated by the rime to find shonest path trees for each level 1 boundary

vertex, which in total will be 0 (n ;fT';), or 0 (n -J b log n). The b iterations of search

will each be dominated by the main thrust at levell, which is O(b(n + (n/~)log n)

by Theorem 2, or 0 (n ~ b log n).

Next consider the case when b > log n, and rl = (log nl By Theorem 5, the

preprocessing will be 0 (n log n), which is 0 (bn). The b iterations of search and post

processing will use 0 (bn) time.

Finally, the 0 (k + b2) time to determine all d (e , e') values is 0 (b 2) by previous

discussion, and the latter is 0 (bn). 0

Acknowledgements. The author would like to thank Takao Nishizeki, Knut Moeller,

Carsten Vogt, Peter Klosterberg, and an anonymous referee for their careful reading of

the manuscript and many helpful suggestions.

36

References

[AHU] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Com
puter Algorithms, Addison-Wesley (1974).

[DP] N. Dea and C. Pang, Shonest-path algorithms: taxonomy and annotation, Ner
works 14 (1984) 275-323.

[0] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische
Mathematik J (1959) 269-271.

[EK] J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency
for network flow problems, JACM 19, 2 (April 1972) 248-264.

[FI] G. N. Frederickson, Data structures for on-line updating of minimum spanning
trees, with applications, SIAM J. on Computing 14, 4 (November 1985) 781
798.

[F2] G. N. Frederickson, Shortest path problems in planar graphs, Proc. 24th TEEE
Symp. on Foundations of Computer Science, Tucson (November 1983) 242.
247.

[Hr] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass. (1969).

[RsI] R. Hassin, Maximum flow in (s,O planar networks, Inf. Proc. Leu. I3, 3 (Dec.
1981) 107.

[Hs2] R. Hassin, On multicommodi'y flows in planar graphs, Nerworks 14 (1984) 225
235.

[HJ] R. Hassin and D. B. Johnson, An 0 (n log2n) algorithm for maximum flow in
undirected planar networks, to appear in SIAM J. on Computing 24, 3 (Aug.
1985).

[IS] A. Itai and Y. Shiloach, Maximum flow in planar networks, SIAM J. Comput. 8
(1979) 135-150.

[1] D. B. Johnson, Efficient algorithms for shortest paths in sparse networks, 1. ACM
24,1 (January 1977) 1-13.

[LRT] R. J. Lipton, D. J. Rose and R. E. Tarjan, Generalized nested dissection, SIAM J.
Numer. Anal. 16 (1979) 177-189.

[LTl] R. 1. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J.
Appl. Math. 36, 2 (April 1979) 177-189.

37

[LT2] R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem, SIAM J.
Comput. 9, 3 (August 1980) 615-627.

[MNS] K. Matsumoto, T. Nishizeki, and N. Saito, An efficient algorithm for finding mul
ticornmodity flows in planar networks, SIAM J. Computing 14, 2 (May 1985)
289-302.

[Ne] G. L. Nemhauser, A generalized permanent label setting algorithm for the shor
test path between specified nodes, J. Math. Anal. Appl. 38, 2 (May 1972) 328
334.

[Ni] N. J. Nilsson, Problem-Solving Methods in Artificial Intelligence, McGraw-Hill,
New York (1971).

[OS] H. Okamura and P. D. Seymour, Multicomrnodity flows in planar graphs, J. Com
binatorial Theory, Series B 31 (1981) 75-81.

[R] J. H. Reif, Minimum s-{ cut of a planar undirected network in 0 (n log2(n»
time, SIAM J. Comput. 12, 1 (Feb. 1983) 71-81.

Figure 1. Division of a planar graph into regions.

®D
A

c D
B

Figure 2. Examples of regions that are unions of connected components.

(a)

(b)

Figure 3. a. Boundary sets for the regions of Figure 1, and the
b. Corresponding topology-based heap.

(a)

source

3

5
5

2
2

(b)

3

6

source

V4

12

source~"<:;'::----- v6

source

3

x2 v62
9

5 9 13
vI 5

(C) z (d)5
vI 5

Figure 4. a. A region from the division in Figure 1,
b. lls corresponding prepared form, with edge costs shown,

c. Separator vertices circled, and shortest paths to them shown,
d. Prepared subregions induced by shortest paths to separator venices.

	Fast Algorithms for Shortest Paths in Planar Graphs, with Applications
	Report Number:
	

	tmp.1307986960.pdf.vYFIf

