
Jon L. Bentley* Robert Sedgewick#

Abstract

We present theoretical algorithms for sorting and

searching multikey data, and derive from them practical C

implementations for applications in which keys are charac-

ter strings. The sorting algorithm blends Quicksort and

radix sort; it is competitive with the best known C sort

codes. The searching algorithm blends tries and binary

search trees; it is faster than hashing and other commonly

used search methods. The basic ideas behind the algo-

rithms date back at least to the 1960s but their practical

utility has been overlooked. We also present extensions to

more complex string problems, such as partial-match

searching.

1. Introduction

Section 2 briefly reviews Hoare’s [9] Quicksort and

binary search trees. We emphasize a well-known isomor-

phism relating the two, and summarize other basic facts.

The multikey algorithms and data structures are pre-
sented in Section 3. Multikey Quicksort orders a set of II

vectors with k components each. Like regular Quicksort, it

partitions its input into sets less than and greater than a

given value; like radix sort, it moves on to the next field

once the current input is known to be equal in the given

field. A node in a ternary search tree represents a subset of

vectors with a partitioning value and three pointers: one to

lesser elements and one to greater elements (as in a binary

search tree) and one to equal elements, which are then pro-

cessed on later fields (as in tries). Many of the structures

and analyses have appeared in previous work, but typically

as complex theoretical constructions, far removed from

practical applications. Our simple framework opens the

door for later implementations.

The algorithms are analyzed in Section 4. Many of the

analyses are simple derivations of old results.

Section 5 describes efficient C programs derived from

the algorithms. The first program is a sorting algorithm

Fast Algorithms for Sorting and Searching Strings

that is competitive with the most efficient string sorting

programs known. The second program is a symbol table

implementation that is faster than hashing, which is com-

monly regarded as the fastest symbol table implementa-

tion. The symbol table implementation is much more

space-efficient than multiway trees, and supports more

advanced searches.

In many application programs, sorts use a Quicksort

implementation based on an abstract compare operation,

and searches use hashing or binary search trees. These do

not take advantage of the properties of string keys, which

are widely used in practice. Our algorithms provide a nat-

ural and elegant way to adapt classical algorithms to this

important class of applications.

Section 6 turns to more difficult string-searching prob-

lems. Partial-match queries allow “don’t care” characters

(the pattern “so.a”, for instance, matches soda and sofa).

The primary result in this section is a ternary search tree

implementation of Rivest’s partial-match searching algo-

rithm, and experiments on its performance. “Near neigh-

bor” queries locate all words within a given Hamming dis-

tance of a query word (for instance, code is distance 2

from soda). We give a new algorithm for near neighbor

searching in strings, present a simple C implementation,

and describe experiments on its efficiency.

Conclusions are offered in Section 7.

2. Background

Quicksort is a textbook divide-and-conquer algorithm.

To sort an array, choose a partitioning element, permute
the elements such that lesser elements are on one side and

greater elements are on the other, and then recursively sort

the two subarrays. But what happens to elements equal to

the partitioning value? Hoare’s partitioning method is

binary: it places lesser elements on the left and greater ele-

ments on the right, but equal elements may appear on

either side.

* Bell Labs, Lucent Technologies, 700 Mountam Avenue, Murray Hill.

NJ 07974; jlb@research.bell-labs.com.

Princeton University. Princeron. NJ. 08514: rs@cs.princeton.edu.

Algorithm designers have long recognized the desir-

irbility and difficulty of a ternary partitioning method.

Sedgewick [22] observes on page 244: “Ideally, we would

llke to get all [equal keys1 into position in the file, with all

360

361

the keys with a smaller value to their left, and all the keys

with a larger value to their right. Unfortunately, no

efficient method for doing so has yet been devised....”

Dijkstra [6] popularized this as “The Problem of the Dutch

National Flag’ ’ : we are to order a sequence of red, white

and blue pebbles to appear in their order on Holland’s

ensign. This corresponds to Quicksort partitioning when

lesser elements are colored red, equal elements are white,

and greater elements are blue. Dijkstra’s ternary algorithm

requires linear time (it looks at each element exactly once),

but code to implement it has a significantly larger constant

factor than Hoar-e’s binary partitioning code.

Wegner 1271 describes more efficient ternary partition-

ing schemes. Bentley and McIlroy [2] present a ternary

partition based on this counterintuitive loop invariant:

= < ? > =
+ e 9 #
a b c d

The main partitioning loop has two inner loops. The first

inner loop moves up the index 13: it scans over lesser ele-

ments, swaps equal elements to a, and halts on a greater

element. The second inner loop moves down the index c

correspondingly: it scans over greater elements, swaps

equal elements to d, and halts on a lesser element. The
main loop then swaps the elements pointed to by b and c,

increments b and decrements c, and continues until b and

c cross. (Wegner proposed the same invariant, but main-

tained it with more complex code.) Afterwards, the equal

elements on the edges are swapped to the middle of the

array, without any extraneous comparisons. This code par-

titions an n-element array using n - 1 comparisons.

Quicksort has been extensively analyzed by authors

including Hoare [9], van Emden [26), Knuth Ill], and

Sedgewick [23]. Most detailed analyses involve the har-

monic numbers H, = z ,4i<n l/i.

Theorem 1. [Hoare] A Quicksort that partitions

around a single randomly selected element sorts n dis-

tinct items in 2&I,, + O(n) = 1.3861~ lg n expected

comparisons.

A common variant of Quicksort partitions around the

median of a random sample.

Theorem 2. [van Emden] A Quicksort that partitions

around the median of 2t + 1 randomly selected ele-

ments sorts n distinct items in 2nH,, / (H2t+2 -H,+,)

+ 0 (n) expected comparisons.

By increasing t, we can push the expected number of com-

parisons close to n lg 17 + O(n).

The theorems so far deal only with the expected perfor-
mance. To guarantee worst-case performance, we partition

&g 31 41 31 1 59 41 59 26 53 53

26 41 /-w-Tq

m 59 ‘59

53 53’

Figure 1. Quicksort and a binary search tree

around the true median, which can be computed in cn com-

parisons. (Schoenhage, Paterson and Pippenger [20] give a

worst-case algorithm that establishes the constant c =3;

Floyd and Rivest [II] give an expected-time algorithm with

c = 3/2.)

Theorem 3. A Quicksort that partitions around a

median computed in cn comparisons sorts n elements

in cn lg n f O(n) comparisons.

The proof observes that the recursion tree has about lg n

levels and does at most cn comparisons on each level.

The Quicksort algorithm is closely related to the data

structure of binary search trees (for more on the data struc-

ture, see Knuth [I 11). Figure 1 shows the operation of

both on the input sequence “3 1 41 59 26 53”. The tree on

the right is the standard binary search tree formed by

inserting the elements in input order. The recursion tree on

the left shows an “ideal partitioning” Quicksort: it parti-

tions around the first element in its subarray and leaves ele-

ments in both subarrays in the same relative order. At the
first level, the algorithm partitions around the value 3 1, and

produces the left subarray “26” and the right subarray

“41 59 53”, both of which are then sorted recursively.

Figure 1 illustrates a fundamental isomorphism

between Quicksort and binary search trees. The (unboxed)

partitioning values on the left correspond precisely to the

internal nodes on the right in both horizontal and vertical

placement. The internal path length of the search tree is

the total number of comparisons made by both structures.

Not only are the totals equal, but each structure makes the

same set of comparisons. The expected cost of a success-

ful search is, by definition. the internal path length divided

by n. We combine that with Theorem 1 to yield

Theorem 4. [Hibbard] The average cost of a success-

ful search in a binary search tree built by inserting ele-

ments in random order is 2H,, + 0(I) = 1.386 lg n

comparisons.

An analogous theorem corresponds to Theorem 2: we can

reduce the search cost by choosing the root of a subtree to
be the median of 2t + 1 elements in the subtree. By anal-

ogy to Theorem 3, a peri‘cctly balanced subtree decreases
the search time to about lg IZ.

362

3. The Algorithms

Just as Quicksort is isomorphic to binary search trees,

so (most-significant-digit) radix sort is isomorphic to digi-

tal search tries (see Knuth [111). These isomorphisms are

described in this table:

This section introduces the algorithm and data structure in

the middle row of the table. Like radix sort and tries, the

structures examine their input field-by-field, from most

significant to least significant. But like Quicksort and

binary search trees, the structures are based on field-wise

comparisons, and do not use array indexing.

We will phrase the problems in terms of a set of n vec-

tors, each of which has k components. The primitive oper-

ation is to perform a ternary comparison between two com-

ponents. Munro and Raman [18) describe an algorithm for

sorting vector sets in-place, and their references describe

previous work in the area.

Hoare [9] sketches a Quicksort modification due to P.

Shackleton in a section on “Multi-word Keys”: “When it

is known that a segment comprises all the items, and only

those items, which have key values identical to a given

value over the first n words, in partitioning this segment,

comparison is made of the (n + 1)th word of the keys.”

Hoare gives an awkward implementation of this elegant

idea; Knuth [1 I] gives details on Shackleton’s scheme in

Solution 5.2.2.30.

A ternary partitioning algorithm provides an elegant

implementation of Hoare’s multikey Quicksort. This

recursive pseudocode sorts the sequence s of length n that

is known to be identical in components 1 ..d- 1; it is origi-

nally called as sort(s, n, 1).

sort(s, n, 6)
if n I 1 or d > k return;

choose a partitioning value v;

partition s around value v on component d to form

sequences s,, s=, s, of sizes 12~. 17 =, n ,;

sort(s., n,, 4;
sol-Q=, II=, d+ 1);

SOrt(S>, n,. 6);

The partitioning value can be chosen in many ways, from

computing the true median of the specified component to

choosing a random value in the component.

Ternary search trees are isomorphic to this algorithm.

Each node in the tree contains a split value and pointers to

low and high (or left and right) children; these fields per-

\ :
s\ Ye

f/\ : r 0
t

as at be by he in is it of on or to

Figure 2. A ternary search tree for 12 two-her words

form the same roles as the corresponding fields in binary

search trees. Each node also contains a pointer to an equal

child that represents the set of vectors with values equal to

the split value. If a given node splits on dimension d, its

low and high children also split on d, while its equal child

splits on d + 1. As with binary search trees, ternary trees

may be perfectly balanced, constructed by inserting ele-

ments in random order, or partially balanced by a variety

of schemes.

In Section 62.2, Knuth [11) builds an optimal binary

search tree to represent the 31 most common words in

English; twelve of those words have two letters. Figure 2

shows the perfectly balanced ternary search tree that results

from viewing those words as a set of n = 12 vectors of k = 2
components. The low and high pointers are shown as solid

lines, while equal pointers are shown as dashed lines. The

input word is shown beneath each terminal node. This tree
was constructed by partitioning around the true median of

each subset.

A search for the word “is” starts at the root, proceeds

down the equal child to the node with value “s”, and stops

there after two comparisons. A search for “ax” makes

three comparisons to the first letter (“a”) and two compar-

isons to the second letter (“x”) before reporting that the

word is not in the tree.

This idea dates back at least as far as 1964; see, for

example, Clampett [5]. Prior authors had proposed repre-

senting the children of a trie node by an array or by a

linked list; Clampett represents the set of children with a

binary search tree: his structure can be viewed as a ternary

search tree. Mehlhom [171 proposes a weight-balanced

ternary search tree that searches, inserts and deletes ele-

ments in a set of n strings of length k in I?(Jog n + k)

time; a similar structure is described in Section 1X6.3 of

Mehlhom’s text [161.

Bentley and Saxe [4] propose a perfectly balanced ter-

nary search tree structure. The value of each node is the

median of the set of elements in the relevant dimension;

the tree in Figure 1 was constructed by this criterion.

Bentley and Saxe present the structure as a holution to a

363

problem in computational geometry; they derive it using
the geometric design paradigm of multidimensional
divide-and-conquer. Ternary search trees may be built in a
variety of ways, such as by inserting elements in input
order or by building a perfectly balanced tree for a com-
pletely specified set. Vaishnavi [25] and Sleator and Tar-
jan [24] present schemes for balancing ternary search trees.

4. Analysis

We will start by analyzing ternary search trees, and
then apply those results to multikey Quicksort. Our first
theorem is due to Bentley and Saxe [4].

Theorem 5. [Bentley and Saxe] A search in a perfectly
balanced ternary search tree representing n k-vectors
requires at most Llg n] + k scalar comparisons, and
this is optimal.

Proof Sketch. For the upper bound, we start with n
active vectors and k active dimensions; each compari-
son halves the active vectors or decrements the active
dimensions. For the lower bound, consider a vector set
in which all elements are equal in the first k - 1 dimen-
sions and distinct in the k’” dimension. n

Similar search times for the suffix tree data structure are
reported by Manber and Myers [141.

We will next consider the multikey Quicksort that
always partitions around the median element of the subset.
This theorem corresponds to Theorem 3.

Theorem 6. If multikey Quicksort partitions around a
median computed in cn comparisons, it sorts n k-

vectors in at most cn(lg II + k) scalar comparisons.

Proof. Because the recursion tree is perfectly bal-
anced, no node is further than [lg nJ f k from the root
by Theorem 5. Each level of the tree contains at most n,
elements, so by the linearity of the median algorithm,
at most cn scalar comparisons are performed at each
level. Multiplication yields the desired result. n

A multikey Quicksort that partitions around a randomly
selected element requires at most I?(2H ,, + k + O(1)) com-
parisons, by analogy with Theorem 1. We can further
decrease that number by partitioning around a sample
median.

Theorem 7. A multikey Quicksort that partitions
around the median of 2r + 1 randomly selected ele-
ments sorts n k-vectors in at most 2nH,, /

(H Z,+2 -H,+ ,) + 0(kn) expected scalar comparisons.

Proof Sketch. Combine Theorem 2 with the observa-
tion that equal elements strictly decrease the number of
comparisons. The additive cost of O(kn) accounts for
inspecting all k keys. w

By increasing the sample size t, one can reduce the
time to near n lg n + O(kn). (Munro and Raman [181
describe an in-place vector sort with that running time.)

We will now turn from sorting to analogous results
about building ternary search trees. We can build a tree
from scratch in the same time bounds described above:
adding “bookkeeping” functions (but no additional primi-
tive operations) augments a sort to construct a tree as well.
Given sorted input, the tree can be built in O(kn) compar-
isons.

Theorem 6 describes the worst-case cost of searching
in a totally balanced tree. The expected number of com-
parisons used by a successful search in a randomly built
tree is 2H,, + k + 0(1); partitioning around a sample
median tightens that result.

5.

Theorem 8. The expected number of comparisons in a
successful search in a ternary search tree built by parti-
tioning around the median of 2t + 1 randomly selected
elementsis2H,/(H2,+z-H,+,)+k+O(l).

Proof Sketch. Use Theorem 7 and the isomorphism
between trees and sort algorithms. n

String Programs

The ideas underlying multikey Quicksort and ternary
search trees are simple and old, and they yield theoretically
efficient algorithms. Their utility for the case when keys
are strings has gone virtually unnoticed, which is unfortu-
nate because string keys are common in practical applica-
tions. In this section we show how the idea of ternary
recursive decomposition, applied character-by-character on
strings, leads to elegant and efficient C programs for sort-
ing and searching strings. This is the primary practical
contribution of this paper.

We assume that the reader is familiar with the C pro-
gramming language described by Kemighan and Ritchie
[lo]. C represents characters as small integers, which can
be easily compared. Strings are represented as vectors of
characters. The structures and theorems that we have seen
so far apply immediately to sets of strings of a fixed length.
Standard C programs, though, use variable-length strings
that are terminated by a null character (the integer zero).

We will now use multikey Quicksort in a C function to
sort strings.* The primary sort function has this declara-
tion:

void ssortlmainichar *x[l, int n)

It is passed the array x of n pointers to character strings;
its job is to permute the pointers so the strings occur in lex-

* The program (and other related content) is available at

http://www.cs.princeton.edu/-x-s/strings.

364

icographically nondecreasing order. We will employ an

auxiliary function that is passed both of those arguments,

and an additional integer depth to tell which characters

are to be compared. The algorithm terminates either when

the vector contains at most one string or when the current

depth “runs off the end” of the strings.

The sort function uses these supporting macros.

#define swap(a, b) { char *t=x[aI; \
x[al=x[b]; x[bJ=t; 1

#define i2c(i) x[iI [depth]

The swap macro exchanges two pointers in the array and

the i2c macro (for “integer to character”) accesses char-

acter depth of string x [i I . A vector swap function

moves sequences of equal elements from their temporary

positions at the ends of the array back to their proper place

in the middle.

void vecswap(int i, int j, int n, char *x[])
(while (n-- s 0) {

swap(i. jr;
i++;
j++;

The complete sorting algorithm is in Program 1; it is

similar to the code of Bentley and McIlroy [2]. The func-

tion is originally called by

void ssortlmain(char *XL], int n)
l ssortl(x, n, 0); }

After partitioning, we recursively sort the lesser and

greater segments, and sort the equal segment if the corre-

sponding character is not zero.

We can tune the performance of Program 1 using stan-

dard techniques such as those described by Sedgewick

[21]. Algorithmic speedups include sorting small subar-

rays with insertion sort and partitioning around the median

of three elements (and on larger arrays, the median of three

medians of three) to exploit Theorem 7. Standard C cod-

ing techniques include replacing array indices with point-

ers. This table gives the number of seconds required to

sort a /usr/dict/words file that contains 12,275

words and 696,436 characters.

The third column reports the time of the system qsort

function, and the fourth column reports the time of Pro-

gram 1. Our simple code is always as fast as the (general-

purpose but presumably highly tuned) system function, and

sometimes much faster. The fifth column reports the time

void ssortl(char *XL], int n, int depth)
{ int a, b. c, d, r, v;

if (n <= 1)
return;

a = randO % n;
swap (0, a) ;
v = i2c(O);
a=b=l;
c = d = n-l;
for (;;) I

while (b <= c && (r = i2c(b)-v) <= 0) I
if (r == 0) { swap(a, b); a++:)
b++;

I
while (b <= c && (r = i2c(c)-v) P= 0) {

if (r == 0) { swap(c, d); d--;)
c--;

if (b > c) break;
swap(b. c);
b++;
c--;

1
r = minta, b-a); vecswap(0, b-r, r, x);
r = min(d-c, n-d-l); vecswaptb, n-r, r. x);
r = b-a: ssortl(x, r, depth);
if (i2c(r) != 0)

ssortl(x + r, a + n-d-l. depth+l);
r = d-c; ssortl(x + n-r. r. depth):

Program 1. A C program to sort strings

of our tuned sort, which is always substantially faster than

the simple version. As a benchmark, the final column

describes the run time of the highly tuned radix sort of

McIlroy, Bostic and McIlroy [151; it is the fastest string

sort that we know.

We also ran the four sorts on two data sets of library

call numbers used in the DIMACS Implementation Chal-

lenge.* We extracted from each file the set of unique keys

(about 86,000 in each file), each of which is a card number

(“LAC 59.7 K - -- 24-1976”, for instance); the keys had

an average length of 22.5 characters. On the MIPS

machines, our tuned sort was twenty percent faster than the

radix sort; on the Intel machines, it was a few percent

slower. Multikey Quicksort might prove faster than radix

sort in other contexts, as well.

The primary challenge in implementing practical radix

sorts is the case when the number of distinct keys is much

less than the number of bins (either because the keys are all

equal or because there are not many of them). Multikey

Quicksort may be thought of as a radix sort that gracefully

adapts to handle this case, at the cost of- slightly more work

when the bins are all full.

We turn now to implementing a string symbol table

with the ternary search trees depicted in Figure 2. Each

node in the tree is represented by this C structure:

ia We retrieved the DIMACS library call numba data sets from
http://theory.stanford.edu/-csilvers;libdata/.

int searchl(char *s)

(Tar P;
p = root;
while (p) (

if (*s < p->splitchar)
p = p->lokid;

else if (*s == p->splitchar) I
if (*s++ == 0)

return 1;
p = p->eqkid;

) else
p = p->hikid;

return 0;

number of branches taken over all possible successful

searches in the tree. The results are presented in this table:

Input
Order

Balanced
Tournament
Random
Dictionary
Sorted
Reversed

Nodes

285,807
285,807
285,807
285,807
285,807
285,807

Branches
Lo Eq Hi Total

4.39 9.64 3.91 17.94
5.04 9.64 4.62 19.30
5.26 9.64 5.68 20.58
0.06 9.64 31.66 41.36
0 9.64 57.72 67.36

37.40 9.64 0 47.04

Program 2. Search a ternary search tree

Tptr insertl(Tptr p, char *s)

c if (p == 0) {
p = (Tptr) malloc(sizeof(Tnode));
p->splitchar = *s;
p->lokid = p->eqkid = p->hikid = 0;

1
if (*s < p-zplitchar)

p->lokid = insertl(p->lokid, s);
else if (*s == p->splitchar) {

if (*s != 0)
p->eqkid = insertl(p->eqkid, ++s);

) else

The rows describe six different methods of inserting

the strings into the tree. The first column immediately sug-

gests this theorem.

Theorem 11. The number of nodes in a ternary search

tree is constant for a given input set, independent of the

order in which the nodes are inserted.

Proof. There is a unique node in the tree correspond-

ing to each unique string prefix in the set. The relative

positions of the nodes within the tree can change as a

function of insertion order, but the number of nodes is
p->hikid = insertl(p->hikid, s);

return P;
invariant. n

I Notice that a standard search trie (without node com-

Program 3. Insert into a ternary search tree

typedef struct tnode *Tptr;
typedef struct tnode (

paction) would have exactly the same number of nodes. In

this data set, the number of nodes is only about 41 percent

of the number of characters.

char splitchar;
Tptr lokid, eqkid, hikid;

) Tnode;

The value stored at the node is spli tchar, and the three

pointers represent the three children. The root of the tree is

declared to be Tptr root;.

Program 2 returns 1 if string s is in the tree and 0 oth-

erwise. It starts at the root, and moves down the tree. The

lokid and hikid branches are obvious. Before it takes

a eqkid branch, it returns 1 if the current character is the

end-of-string character 0. After the loop, we know that we

ran off the tree while still looking for the string, so we

return 0.

Program 3 inserts a new string into the tree (and does

nothing if it is already present). We insert the string s

withthecode root = insertlroot, s). The first if
statement detects running off the end of the tree; it then

makes a new node, initializes it, and falls through to the

standard case. Subsequent code takes the appropriate

branch, but branches to eqkid only if characters remain

in the string.

We tested the search performance on the same dictio-

nary used for testing sorting. We inserted each of the

72,275 words into the tree. and then measured the average

The average word length (including delimiter charac-

ters) is 696,436/72,275 = 9.64 characters. The average

number of equal branches in a successful search is pre-

cisely 9.64, because each input character is compared to an

equal element once. The balanced tree always chooses the

root of a subtree to be the median element in that collec-

tion. In that tree, the number of surplus (less and greater)

comparisons is only 8.30 (about half the worst-case bound

of 16 of Theorem 5), so rhe total number of comparisons is

just 17.94.

To build the tournament tree, we first sort the input set.

The recursive build function inserts the middle string of its

subarray, and then recursively builds the left and right sub-

arrays. This tree uses about eight percent more compar-

isons than the balanced tree. The randomly built tree uses

just fifteen percent more comparisons.

The fourth line of the table describes inserting the

words in dictionary order (which isn’t quite sorted due to

capital letters and special characters). The final two lines

describe inserting the words in sorted order and in reverse

sorted order. These inputs slow down the search by a fac-

tor of at most four; in a binary search tree, they slow down

the search by a factor of over 2000. Ternary search trees

appear to be quite robust.

366

We conducted simple experiments to see how ternary
search trees compare to other symbol table structures
described by Knuth [111. We first measured binary search,
which can be viewed as an implementation of perfectly
balanced binary search trees. For the same input set,
binary search uses 15.19 string comparisons and inspects
5 1.74 characters, on the average (the average string com-
parison inspects 3.41 characters). On all computers we
tested, a highly tuned binary search took about twice the
time of Program 2 (on a tournament tree).

The typical implementation of symbol tables is hash-
ing. To represent n strings, we will use a chained hash
table of size tabsize = n. The hash function is from
Section 6.6 of Kemighan and Ritchie [lo]; it is reasonably
efficient and produces good spread.

int hashfunctchar *s)

(unsigned n = 0;
for (; *s; s++)

n = 31 l n + *s;

return n % tabsize;

Here is the body of the search function:

for !p = tab[hashfunc(s)l; p; p = p-)next)
if (strcmp(s return 1i p->str) == 0)

return 0;

For fair timing, we replaced the string comparison function
strcmp with inline code (so this hash and tree search
functions used the same coding style).

On the same dictionary, the average successful hash
search requires 1.50 string comparisons (calls to the str-

cmp function) and 10.17 character comparisons (a success-
ful search requires one comparison to the stored string, and
half a comparison to the string in front of it, which almost
always ends on the first character). In addition, every
search must compute the hash function, which usually
inspects every character of the input string.

These simple experiments show that ternary search
trees are competitive with the best known symbol table
structures. There are, however, many ways to improve ter-
nary search trees. The search function in Program 2 is
reasonably efficient; tuning techniques such as saving the
difference between compared elements, reordering tests,
and using registers squeeze out at most an additional ten
percent. This table compares the time of the resulting pro-
gram with a similarly tuned hash function:

Machine MHZ
Successful Unsuccessful

TST Hash TST Hash

MIPS R4400 150 .44 .43 .27 .39

MIPS R4000 100 .66 .61 .42 .54

Pentium 90 .58 .65 .38 .50

486DX 33 2.21 2.16 1.45 1.55

The times are the number of seconds required to perform a
search for every word in the dictionary. For successful
searches, the two structures have comparable search times.
We generated unsuccessful searches by incrementing the
first character of the word (so bat is transformed to the
word cat, and cat is transformed to the nonword dat).

Ternary search trees are faster than hashing for this simple
model and others. Models for unsuccessful search are
application-dependent, but ternary search trees are likely to
be faster than hashing for unsuccessful search in applica-
tions because they can discover mismatches after examin-
ing only a few characters, while hashing always processes
the entire key.

For the long keys typical of some applications, the
advantage is even more important than for the simple dic-
tionary considered here. On the DIMACS library call
number data sets, for instance, our program took less than
one-fifth the time of hashing.

The insert function in Program 3 has much room for
improvement. Tournament tree insertion (inserting the
median element first, and then recursively inserting the
lesser and greater elements) provides a reasonable tradeoff
between build and search times. Replacing the call to the
memory allocation function ma1 lot with a buffer of
available nodes almost eliminates the time spent in mem-
ory allocation. Other common techniques also reduced the
run time: transforming recursion to iteration, keeping a
pointer to a pointer, reordering tests, saving a difference in
a comparison, and splitting the single loop into two loops.
The combination of these techniques sped up Program 3 by
a factor of two on all machines we have been considering,
and much more in environments with a slow malloc. In
our experiments, the cost of inserting all the words in the
dictionary is never more than about fifty percent greater
than searching for all words with Program 2. The efficient
insertion routine requires 35 lines of C; it can be found on
our Web page cited earlier.

The main drawback of ternary search trees compared to
hashing is their space requirements. Our ternary search
tree uses 285,807 16-byte nodes for a total of 4.573 mega-
bytes. Hashing uses a hash table of 72,275 pointers,
72,275 &byte nodes, and 696,436 bytes of text, for 1.564
megabytes. An alternative representation of ternary search
trees is more space-efficient: when a subtree contains a sin-
gle string, we store a pointer to the string itself (and each
node stores three bits telling whether its children point to
nodes or strings). This leads to slower and more complex
code, but it reduces the number of tree nodes from 285,807
to 94,952, which is close to the space used by hashing.

Ternary search trees can efficiently answer many kinds
of queries that require linear time in a hash table. As in
most ordered search trees, logarithmic-time searches can

367

find the predecessor or successor of a given element or

count the number of strings in a range. Similarly, a tree

traversal reports all strings in sorted order in linear time.

We will see more advanced searches in the next section.

In summary, ternary search trees seem to combine the

best of two worlds: the low overhead of binary search trees

(in terms of space and run time) and the character-based

efficiency of search tries. The primary challenge in using

tries in practice is to avoid using excessive memory for trie

nodes that are nearly empty. Ternary search trees may be

thought of as a trie implementation that gracefully adapts

to handle this case, at the cost of slightly more work for

full nodes. Ternary search trees are also easy to imple-

ment; compare our code, for instance, to Knuth’s imple-

mentation of “hash tries” [3] .

Ternary search trees have been used for over a year to

represent English dictionaries in a commercial Optical

Character Recognition (OCR) system built at Bell Labs.

The trees were faster than hashing for the task, and they

gracefully handle the 34,000-character set of the Unicode

Standard. The designers have also experimented with

using partial-match searching for word lookup: replace let-

ters with low probability of recognition with the “don’t

care” character.

6. Advanced String Search Algorithms

We will turn next to two search algorithms that have

not been analyzed theoretically. We begin with the vener-

able problem of “partial-match” searching: a query string

may contain both regular letters and the “don’t care” char-

acter &‘.“. Searching the dictionary for the pattern

“.o.o.o” matches the single word rococo, while the pat-

tern “.a.a.a” matches many words, including banana,

casaba , and pajama.

This problem has been studied by many researchers,

including Appel and Jacobson [I] and Manber and Baeza-

Yates [131. Rivest [191 presents an algorithm for partial-

match searching in tries: take the single given branch if a

letter is specified, for a don’t-care character, recursively

search all branches. Program 4 implements Rivesl’s

method in ternary search trees; it is called, for instance, by

srchtop = 0;
pmsearch(root, ".a.a.a");

Program 4 has five if statements. The first returns

when the search runs off the tree. The second and fifth if

statements are symmetric; they recursively search the

lokid (or hikid) when the search character is the don’t

care “.” or when the search string is less (or greater) than

the splitchar. The third if statement recursively

searches the eqkid if both the splitchar and current

character in the query string are non-null. The fourth if

char *srcharr[1000001;
int srchtop;

void pmsearch(Tptr p, char l S)
(if (!p) return;

nodecnt++;
if (*s == '.‘ 11 *s < p-zsplitchar)

pmsearch(p->lokid. s);

if (*s == '.I 11 *s == p-xplitchar)
if (p-xplitchar EC& *s)

pmsearch(p->eqkid, s+l);
if (*s == 0 && p-psplitchar == 0)

srcharr[srchtop++l =
(char *) p->eqkid;

if (*s == '_' 11 *s > p->splitchar)
pmsearch(p->hikid, s);

)

Program 4. Partial match search

statement detects a match to the query and adds the pointer

to the complete word (stored in eqkid because the

storestring flag in Program 4 is nonzero) to the out-

put search array srcharr.

Rivest states that partial-match search in a trie requires

“time about O(n(k-s)‘k) to respond to a query word with s

letters specified, given a file of n k-letter words”. Ternary

search trees can be viewed as an implementation of his

tries (with binary trees implementing multiway branching),

so we expected his results to apply immediately to our pro-

gram, Our experiments, however, led to a surprise:

unspecified positions at the front of the query word are dra-

matically more costly than unspecified characters at the

end of the word. For the same dictionary we have already

seen, Table 1 presents the queries, the number of matches,

and the number of nodes visited during the search in both a

balanced tree and a random tree.

To study this phenomenon, we have conducted experi-

ments on both the dictionary and on random data (which

closely models the dictionary). The page limit of these

proceedings does not allow us to describe those experi-

ments, which confirm the anecdotes in the above table.

The key insight is that the top levels of a trie representing

the dictionary have very high branching factor; a starting

don’t-care character usually implies 52 recursive searches.

Near the end of the word, though, the branching factor

tends to be small; a don’t-care character at the end of the

word frequently gives just a single recursive search. For

this very reason, Rivest suggests that binary tries should

“branch on the first bit of the representation of each char-

acter . . . before branching on the second bit of each”. Fla-

jolet and Puech [7] analyzed this phenomenon in detail for
bit tries; their methods can be extended to provide a

detailed explanation of search costs as a function of

unspecified query positions.

368

Pattern

television
tele......
t.l.v.s..n
. . . . vision
banana
ban...
.a.a.a
. ..ana
abracadabra
.br.c.d.br.
a..a.a.a..a
xy
.xy
45

Matches

1
17

1

1
I

15
19
8

1

1
1
3

3

1

NC

Balanced

18

261

153

36,484

15

166

2829

14,056

21

244

1127

67

156,145

285,807

:s

Random

24

265

164

37,178

17

166

2746

13,756

17

266

1104
66

157,449
285,807

Table 1. Partial match search performance

We turn finally to the problem of “near-neighbor

searching” in a set of strings: we are to find all words in

the dictionary that are within a given Hamming distance of

a query word. For instance, a search for all words within

distance two of soda finds code, coma and 117 other

words. Program 5 performs a near neighbor search in a

ternary search tree. Its three arguments are a tree node, a

string, and a distance. The first if statement returns if the

node is null or the distance is negative. The second and

fourth if statements are symmetric: they search the appro-

priate child if the distance is positive or if the query char-
acter is on the appropriate side of spli tchar. The third

if statement either checks for a match or recursively

searches the middle child.

We have conducted extensive experiments on the

efficiency of Program 5; space limits us to sketching just

one experiment. This table describes its performance on

two similar data sets:

void nearsearch(Tptr p, char *s, int d)
I if (!p / 1 d -z 0) return;

nodecnt++;
if (d 5 0 ((*s c p->splitchar)

nearsearchtp->lokid, s, d);
if (p-ssplitchar == 0) {

if (tint) strlen(s) <= d)
srcharr[srchtop++l =

(char l) p->eqkid;
) else

nearsearchcp->eqkid, l s ? s+l:s.
(*s==p-bsplitchar) ? d:d-1);

if (d > 0 11 *s > p-zsplitchar)
nearsearchtp->hikid, s, d);

I

Program 5. Near neighbor search

D
I

Dictionary Random
Min Mean Max Min Mean Max I I

0 1 9 17.0 22 1 9 17.1 22

1 228 403.5 558 188 239.5 279

2 1374 2455.5 3352 1690 1958.7 2155

3 6116 8553.7 10829 7991 875 1.3 9255

4 15389 18268.3 21603 2075 1 21537.1 21998

The first line shows the costs for performing searches

of distance 0 from each word in the data set. The “Dictio-

nary” data represented the 10,451 g-letter words in the

dictionary in a tree of 55,870 nodes. A distance-O search

was performed for every word in the dictionary. The

minimum-cost search visited 9 nodes (to find latticed) and

the maximum-cost search visited 22 nodes (to find wood-

note), while the mean search cost was 17.0. The “Ran-

dom” data represented 10,000 &letter words randomly

generated from a IO-symbol alphabet in a tree of 56,886

nodes. Subsequent lines in the table describe search dis-

tances 1 through 4. This simple experiment shows that

searching for near neighbors is relatively efficient, search-

ing for distant neighbors grows more expensive, and that a

simple probabilistic model accurately predicts the time on

the real data.

7. Conclusions

Sections 3 and 4 used old techniques in a uniform pre-

sentation and analysis of multikey Quicksort and ternary

search trees. This uniform framework led to the code in

later sections.

Multikey Quicksort leads directly to Program 1 and its

tuned variant, which is competitive with the best known

algorithms for sorting strings. This does not, however,

exhaust the application of the underlying algorithm. We

believe that multikey Quicksort might also be practical in

multifield system sorts, such as that described by Linder-

man [12]. One might also use the algorithm to sort inte-

gers, for instance, by comparing them byte-by-byte.

Section 5 shows that ternary search trees provide an

efficient implementation of string symbol tables, and Sec-

tion 6 shows that the structures can quickly answer more

advanced queries. Ternary search trees are particularly

appropriate when search keys are long strings, and they

have already been incorporated into a commercial system.

Advanced searching algorithms based on ternary search

trees are likely to be useful in practical applications, and

they present a number of interesting problems in the analy-

sis of algorithms.

Acknowledgments

We are grateful for the helpful comments of Raffaele

Giancarlo, Doug McIlroy. lan Munro and Chris Van Wyk.

369

References

1. Appel, A.W. and Jacobson, G.J. The World’s Fastest

Scrabble Program. Communications of the ACM 31,

5 (May 1988), 572-578.

2. Bentley, J.L. and McIlroy, M.D. Engineering A Sort

Function. Software-Practice and Experience 23, 1

(1993), 1249-1265.

3. Bentley, J.L., McElroy, M.D., and Knuth, D.E. Pro-

gramming Pearls: A Literate Program. Communica-

tions of the ACM 29,6 (June 1986), 47 l-483.

4. Bentley, J.L. and Saxe, J.B. Algorithms on Vector

Sets. SIGACT News II,9 (Fall 1979), 36-39.

5. Clampett, H.A. Jr. Randomized Binary Searching

with Tree Structures. Communications of the ACM 7,

3 (March 1964), 163-165.

6. Dijkstra, E.W. A Discipline of Programming.

Prentice-Hall, Englewood Cliffs, NJ, 1976.

7. Flajolet, P. and Puech, C. Partial Match Retrieval of

Multidimensional Data. Journal of the ACM 33, 2

(April 1986), 371-407.

8. Floyd, R.W. and Rivest, R.L. Expected Time Bounds

for Selection. Communications of the ACM 18, 3
(March 1975), 165172.

9. Hoare, C.A.R. Quicksort. Computer Journnl 5, 1

(April 1962), 10-15.

10. Kemighan, B.W. and Ritchie, D.M. The C Program-

ming Language, Second Edition. Prentice-Hall,

Englewood Cliffs, NJ, 1988.

11. Knuth, D.E. The Art of Computer Programming, vol-

ume 3: Sorting and Searching. Addison-Wesley,

Reading, MA, 1975.

12. Linderman, J.P. Theory and Practice in the Construc-

tion of a Working Sort Routine. Bell System Techni-

cal Journal 63, 8 (October 1984), 1827- 1843,

13. Manber, U. and Baeza-Yates, R. An Algorithm for

String Matching with a Sequence of Don’t Cares.

Information Processing Letters 37, 3 (February 1991),

133-136.

14. Manber, U. and Myers, G. Suffix Arrays: A New

Method for On-Line String Searches. SIAM Journal

on Computing 22 (1993), 935-948.

15. McIlroy, P.M., Bostic, K., and McIlroy, M.D. Engi-

neering Radix Sort. Computing Systems 6, 1 (1993),

5-27.

16. Mehlhom, K. Data Structures and Algorithms 1:

Sorting and Searching. Springer-Verlag, Berlin,

1984.

17. Mehlhom, K. Dynamic Binary Search. SIAM Jour-

nal on Computing 8,2 (May 1979), 175-198.

18. Munro, J.I. and Raman, V. Sorting Multisets and

Vectors In-Place. Proceedings of the Second Work-

shop on Algorithms and Data Structures, Springer

Verlag Lecture Notes in Computer Science 519

(1991), 473-480.

19. Rivest, R.L. Partial-Match Retrieval Algorithms.

SIAM Journal on Computing 5, 1 (1976), 19-50.

20. Schoenhage, A.M., Paterson, M., and Pippenger, N.

Finding the Median. Journal of Computer and Sys-

tems Sciences 13 (1976), 184- 199.

2 1. Sedgewick, R. Implementing Quicksort Programs.

Communications of the ACM 21, 10 (October 1978),

847857.

22. Sedgewick, R. Quicksort With Equal Keys. SIAM J.

Comp 6,2 (June 1977) 240-267.

23. Sedgewick, R. The Analysis of Quicksort Programs.

Acta Informatica 7 (1977), 327-355.

24. Sleator, D.D. and Tarjan, R.E. Self-Adjusting Binary

Search Trees. Journal of the ACM 32, 3 (July 1985),

652-686.

25. Vaishnavi, V.K. Multidimensional Height-Balanced

Trees. IEEE Transactions on Computers C-33, 4

(April 1984), 334-343.

26. van Emden, M.H. Increasing the Efficiency of Quick-

sort. Communications of the ACM 13, 9 (September

1970), 563-567.

27. Wegner, L.M. Quicksort for Equal Keys. IEEE

Transactions on Computers C-34, 4 (April 1985),

362-367.

