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Abstract 

We present theoretical algorithms for sorting and 

searching multikey data, and derive from them practical C 

implementations for applications in which keys are charac- 

ter strings. The sorting algorithm blends Quicksort and 

radix sort; it is competitive with the best known C sort 

codes. The searching algorithm blends tries and binary 

search trees; it is faster than hashing and other commonly 

used search methods. The basic ideas behind the algo- 

rithms date back at least to the 1960s but their practical 

utility has been overlooked. We also present extensions to 

more complex string problems, such as partial-match 

searching. 

1. Introduction 

Section 2 briefly reviews Hoare’s [9] Quicksort and 

binary search trees. We emphasize a well-known isomor- 

phism relating the two, and summarize other basic facts. 

The multikey algorithms and data structures are pre- 
sented in Section 3. Multikey Quicksort orders a set of II 

vectors with k components each. Like regular Quicksort, it 

partitions its input into sets less than and greater than a 

given value; like radix sort, it moves on to the next field 

once the current input is known to be equal in the given 

field. A node in a ternary search tree represents a subset of 

vectors with a partitioning value and three pointers: one to 

lesser elements and one to greater elements (as in a binary 

search tree) and one to equal elements, which are then pro- 

cessed on later fields (as in tries). Many of the structures 

and analyses have appeared in previous work, but typically 

as complex theoretical constructions, far removed from 

practical applications. Our simple framework opens the 

door for later implementations. 

The algorithms are analyzed in Section 4. Many of the 

analyses are simple derivations of old results. 

Section 5 describes efficient C programs derived from 

the algorithms. The first program is a sorting algorithm 

Fast Algorithms for Sorting and Searching Strings 

that is competitive with the most efficient string sorting 

programs known. The second program is a symbol table 

implementation that is faster than hashing, which is com- 

monly regarded as the fastest symbol table implementa- 

tion. The symbol table implementation is much more 

space-efficient than multiway trees, and supports more 

advanced searches. 

In many application programs, sorts use a Quicksort 

implementation based on an abstract compare operation, 

and searches use hashing or binary search trees. These do 

not take advantage of the properties of string keys, which 

are widely used in practice. Our algorithms provide a nat- 

ural and elegant way to adapt classical algorithms to this 

important class of applications. 

Section 6 turns to more difficult string-searching prob- 

lems. Partial-match queries allow “don’t care” characters 

(the pattern “so.a”, for instance, matches soda and sofa). 

The primary result in this section is a ternary search tree 

implementation of Rivest’s partial-match searching algo- 

rithm, and experiments on its performance. “Near neigh- 

bor” queries locate all words within a given Hamming dis- 

tance of a query word (for instance, code is distance 2 

from soda). We give a new algorithm for near neighbor 

searching in strings, present a simple C implementation, 

and describe experiments on its efficiency. 

Conclusions are offered in Section 7. 

2. Background 

Quicksort is a textbook divide-and-conquer algorithm. 

To sort an array, choose a partitioning element, permute 
the elements such that lesser elements are on one side and 

greater elements are on the other, and then recursively sort 

the two subarrays. But what happens to elements equal to 

the partitioning value? Hoare’s partitioning method is 

binary: it places lesser elements on the left and greater ele- 

ments on the right, but equal elements may appear on 

either side. 
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Algorithm designers have long recognized the desir- 

irbility and difficulty of a ternary partitioning method. 

Sedgewick [22] observes on page 244: “Ideally, we would 

llke to get all [equal keys1 into position in the file, with all 
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the keys with a smaller value to their left, and all the keys 

with a larger value to their right. Unfortunately, no 

efficient method for doing so has yet been devised....” 

Dijkstra [6] popularized this as “The Problem of the Dutch 

National Flag’ ’ : we are to order a sequence of red, white 

and blue pebbles to appear in their order on Holland’s 

ensign. This corresponds to Quicksort partitioning when 

lesser elements are colored red, equal elements are white, 

and greater elements are blue. Dijkstra’s ternary algorithm 

requires linear time (it looks at each element exactly once), 

but code to implement it has a significantly larger constant 

factor than Hoar-e’s binary partitioning code. 

Wegner 1271 describes more efficient ternary partition- 

ing schemes. Bentley and McIlroy [2] present a ternary 

partition based on this counterintuitive loop invariant: 

= < ? > = 
+ e 9 # 
a b c d 

The main partitioning loop has two inner loops. The first 

inner loop moves up the index 13: it scans over lesser ele- 

ments, swaps equal elements to a, and halts on a greater 

element. The second inner loop moves down the index c 

correspondingly: it scans over greater elements, swaps 

equal elements to d, and halts on a lesser element. The 
main loop then swaps the elements pointed to by b and c, 

increments b and decrements c, and continues until b and 

c cross. (Wegner proposed the same invariant, but main- 

tained it with more complex code.) Afterwards, the equal 

elements on the edges are swapped to the middle of the 

array, without any extraneous comparisons. This code par- 

titions an n-element array using n - 1 comparisons. 

Quicksort has been extensively analyzed by authors 

including Hoare [9], van Emden [26), Knuth Ill], and 

Sedgewick [23]. Most detailed analyses involve the har- 

monic numbers H, = z ,4i<n l/i. 

Theorem 1. [Hoare] A Quicksort that partitions 

around a single randomly selected element sorts n dis- 

tinct items in 2&I,, + O(n) = 1.3861~ lg n expected 

comparisons. 

A common variant of Quicksort partitions around the 

median of a random sample. 

Theorem 2. [van Emden] A Quicksort that partitions 

around the median of 2t + 1 randomly selected ele- 

ments sorts n distinct items in 2nH,, / (H2t+2 -H,+, ) 

+ 0 (n) expected comparisons. 

By increasing t, we can push the expected number of com- 

parisons close to n lg 17 + O(n). 

The theorems so far deal only with the expected perfor- 
mance. To guarantee worst-case performance, we partition 

&g 31 41 31 1 59 41 59 26 53 53 
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Figure 1. Quicksort and a binary search tree 

around the true median, which can be computed in cn com- 

parisons. (Schoenhage, Paterson and Pippenger [20] give a 

worst-case algorithm that establishes the constant c =3; 

Floyd and Rivest [II] give an expected-time algorithm with 

c = 3/2.) 

Theorem 3. A Quicksort that partitions around a 

median computed in cn comparisons sorts n elements 

in cn lg n f O(n) comparisons. 

The proof observes that the recursion tree has about lg n 

levels and does at most cn comparisons on each level. 

The Quicksort algorithm is closely related to the data 

structure of binary search trees (for more on the data struc- 

ture, see Knuth [I 11). Figure 1 shows the operation of 

both on the input sequence “3 1 41 59 26 53”. The tree on 

the right is the standard binary search tree formed by 

inserting the elements in input order. The recursion tree on 

the left shows an “ideal partitioning” Quicksort: it parti- 

tions around the first element in its subarray and leaves ele- 

ments in both subarrays in the same relative order. At the 
first level, the algorithm partitions around the value 3 1, and 

produces the left subarray “26” and the right subarray 

“41 59 53”, both of which are then sorted recursively. 

Figure 1 illustrates a fundamental isomorphism 

between Quicksort and binary search trees. The (unboxed) 

partitioning values on the left correspond precisely to the 

internal nodes on the right in both horizontal and vertical 

placement. The internal path length of the search tree is 

the total number of comparisons made by both structures. 

Not only are the totals equal, but each structure makes the 

same set of comparisons. The expected cost of a success- 

ful search is, by definition. the internal path length divided 

by n. We combine that with Theorem 1 to yield 

Theorem 4. [Hibbard] The average cost of a success- 

ful search in a binary search tree built by inserting ele- 

ments in random order is 2H,, + 0( I ) = 1.386 lg n 

comparisons. 

An analogous theorem corresponds to Theorem 2: we can 

reduce the search cost by choosing the root of a subtree to 
be the median of 2t + 1 elements in the subtree. By anal- 

ogy to Theorem 3, a peri‘cctly balanced subtree decreases 
the search time to about lg IZ. 
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3. The Algorithms 

Just as Quicksort is isomorphic to binary search trees, 

so (most-significant-digit) radix sort is isomorphic to digi- 

tal search tries (see Knuth [ 111). These isomorphisms are 

described in this table: 

This section introduces the algorithm and data structure in 

the middle row of the table. Like radix sort and tries, the 

structures examine their input field-by-field, from most 

significant to least significant. But like Quicksort and 

binary search trees, the structures are based on field-wise 

comparisons, and do not use array indexing. 

We will phrase the problems in terms of a set of n vec- 

tors, each of which has k components. The primitive oper- 

ation is to perform a ternary comparison between two com- 

ponents. Munro and Raman [ 18) describe an algorithm for 

sorting vector sets in-place, and their references describe 

previous work in the area. 

Hoare [9] sketches a Quicksort modification due to P. 

Shackleton in a section on “Multi-word Keys”: “When it 

is known that a segment comprises all the items, and only 

those items, which have key values identical to a given 

value over the first n words, in partitioning this segment, 

comparison is made of the (n + 1 )th word of the keys.” 

Hoare gives an awkward implementation of this elegant 

idea; Knuth [ 1 I] gives details on Shackleton’s scheme in 

Solution 5.2.2.30. 

A ternary partitioning algorithm provides an elegant 

implementation of Hoare’s multikey Quicksort. This 

recursive pseudocode sorts the sequence s of length n that 

is known to be identical in components 1 ..d- 1; it is origi- 

nally called as sort(s, n, 1). 

sort(s, n, 6) 
if n I 1 or d > k return; 

choose a partitioning value v; 

partition s around value v on component d to form 

sequences s,, s=, s, of sizes 12~. 17 =, n ,; 

sort(s., n,, 4; 
sol-Q=, II=, d+ 1); 

SOrt(S>, n,. 6); 

The partitioning value can be chosen in many ways, from 

computing the true median of the specified component to 

choosing a random value in the component. 

Ternary search trees are isomorphic to this algorithm. 

Each node in the tree contains a split value and pointers to 

low and high (or left and right) children; these fields per- 

\ : 
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Figure 2. A ternary search tree for 12 two-her words 

form the same roles as the corresponding fields in binary 

search trees. Each node also contains a pointer to an equal 

child that represents the set of vectors with values equal to 

the split value. If a given node splits on dimension d, its 

low and high children also split on d, while its equal child 

splits on d + 1. As with binary search trees, ternary trees 

may be perfectly balanced, constructed by inserting ele- 

ments in random order, or partially balanced by a variety 

of schemes. 

In Section 62.2, Knuth [ 11) builds an optimal binary 

search tree to represent the 31 most common words in 

English; twelve of those words have two letters. Figure 2 

shows the perfectly balanced ternary search tree that results 

from viewing those words as a set of n = 12 vectors of k = 2 
components. The low and high pointers are shown as solid 

lines, while equal pointers are shown as dashed lines. The 

input word is shown beneath each terminal node. This tree 
was constructed by partitioning around the true median of 

each subset. 

A search for the word “is” starts at the root, proceeds 

down the equal child to the node with value “s”, and stops 

there after two comparisons. A search for “ax” makes 

three comparisons to the first letter (“a”) and two compar- 

isons to the second letter (“x”) before reporting that the 

word is not in the tree. 

This idea dates back at least as far as 1964; see, for 

example, Clampett [5]. Prior authors had proposed repre- 

senting the children of a trie node by an array or by a 

linked list; Clampett represents the set of children with a 

binary search tree: his structure can be viewed as a ternary 

search tree. Mehlhom [ 171 proposes a weight-balanced 

ternary search tree that searches, inserts and deletes ele- 

ments in a set of n strings of length k in I?( Jog n + k) 

time; a similar structure is described in Section 1X6.3 of 

Mehlhom’s text [ 161. 

Bentley and Saxe [4] propose a perfectly balanced ter- 

nary search tree structure. The value of each node is the 

median of the set of elements in the relevant dimension; 

the tree in Figure 1 was constructed by this criterion. 

Bentley and Saxe present the structure as a holution to a 
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problem in computational geometry; they derive it using 
the geometric design paradigm of multidimensional 
divide-and-conquer. Ternary search trees may be built in a 
variety of ways, such as by inserting elements in input 
order or by building a perfectly balanced tree for a com- 
pletely specified set. Vaishnavi [25] and Sleator and Tar- 
jan [24] present schemes for balancing ternary search trees. 

4. Analysis 

We will start by analyzing ternary search trees, and 
then apply those results to multikey Quicksort. Our first 
theorem is due to Bentley and Saxe [4]. 

Theorem 5. [Bentley and Saxe] A search in a perfectly 
balanced ternary search tree representing n k-vectors 
requires at most Llg n] + k scalar comparisons, and 
this is optimal. 

Proof Sketch. For the upper bound, we start with n 
active vectors and k active dimensions; each compari- 
son halves the active vectors or decrements the active 
dimensions. For the lower bound, consider a vector set 
in which all elements are equal in the first k - 1 dimen- 
sions and distinct in the k’” dimension. n 

Similar search times for the suffix tree data structure are 
reported by Manber and Myers [ 141. 

We will next consider the multikey Quicksort that 
always partitions around the median element of the subset. 
This theorem corresponds to Theorem 3. 

Theorem 6. If multikey Quicksort partitions around a 
median computed in cn comparisons, it sorts n k- 

vectors in at most cn( lg II + k) scalar comparisons. 

Proof. Because the recursion tree is perfectly bal- 
anced, no node is further than [lg nJ f k from the root 
by Theorem 5. Each level of the tree contains at most n, 
elements, so by the linearity of the median algorithm, 
at most cn scalar comparisons are performed at each 
level. Multiplication yields the desired result. n 

A multikey Quicksort that partitions around a randomly 
selected element requires at most I?( 2H ,, + k + O( 1)) com- 
parisons, by analogy with Theorem 1. We can further 
decrease that number by partitioning around a sample 
median. 

Theorem 7. A multikey Quicksort that partitions 
around the median of 2r + 1 randomly selected ele- 
ments sorts n k-vectors in at most 2nH,, / 

(H Z,+2 -H,+ , ) + 0( kn) expected scalar comparisons. 

Proof Sketch. Combine Theorem 2 with the observa- 
tion that equal elements strictly decrease the number of 
comparisons. The additive cost of O(kn) accounts for 
inspecting all k keys. w 

By increasing the sample size t, one can reduce the 
time to near n lg n + O(kn). (Munro and Raman [ 181 
describe an in-place vector sort with that running time.) 

We will now turn from sorting to analogous results 
about building ternary search trees. We can build a tree 
from scratch in the same time bounds described above: 
adding “bookkeeping” functions (but no additional primi- 
tive operations) augments a sort to construct a tree as well. 
Given sorted input, the tree can be built in O(kn) compar- 
isons. 

Theorem 6 describes the worst-case cost of searching 
in a totally balanced tree. The expected number of com- 
parisons used by a successful search in a randomly built 
tree is 2H,, + k + 0( 1); partitioning around a sample 
median tightens that result. 

5. 

Theorem 8. The expected number of comparisons in a 
successful search in a ternary search tree built by parti- 
tioning around the median of 2t + 1 randomly selected 
elementsis2H,/(H2,+z-H,+,)+k+O(l). 

Proof Sketch. Use Theorem 7 and the isomorphism 
between trees and sort algorithms. n 

String Programs 

The ideas underlying multikey Quicksort and ternary 
search trees are simple and old, and they yield theoretically 
efficient algorithms. Their utility for the case when keys 
are strings has gone virtually unnoticed, which is unfortu- 
nate because string keys are common in practical applica- 
tions. In this section we show how the idea of ternary 
recursive decomposition, applied character-by-character on 
strings, leads to elegant and efficient C programs for sort- 
ing and searching strings. This is the primary practical 
contribution of this paper. 

We assume that the reader is familiar with the C pro- 
gramming language described by Kemighan and Ritchie 
[lo]. C represents characters as small integers, which can 
be easily compared. Strings are represented as vectors of 
characters. The structures and theorems that we have seen 
so far apply immediately to sets of strings of a fixed length. 
Standard C programs, though, use variable-length strings 
that are terminated by a null character (the integer zero). 

We will now use multikey Quicksort in a C function to 
sort strings.* The primary sort function has this declara- 
tion: 

void ssortlmainichar *x[l, int n) 

It is passed the array x of n pointers to character strings; 
its job is to permute the pointers so the strings occur in lex- 

* The program (and other related content) is available at 

http://www.cs.princeton.edu/-x-s/strings. 
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icographically nondecreasing order. We will employ an 

auxiliary function that is passed both of those arguments, 

and an additional integer depth to tell which characters 

are to be compared. The algorithm terminates either when 

the vector contains at most one string or when the current 

depth “runs off the end” of the strings. 

The sort function uses these supporting macros. 

#define swap(a, b) { char *t=x[aI; \ 
x[al=x[b]; x[bJ=t; 1 

#define i2c(i) x[iI [depth] 

The swap macro exchanges two pointers in the array and 

the i2c macro (for “integer to character”) accesses char- 

acter depth of string x [ i I . A vector swap function 

moves sequences of equal elements from their temporary 

positions at the ends of the array back to their proper place 

in the middle. 

void vecswap(int i, int j, int n, char *x[]) 
( while (n-- s 0) { 

swap(i. jr; 
i++; 
j++; 

The complete sorting algorithm is in Program 1; it is 

similar to the code of Bentley and McIlroy [2]. The func- 

tion is originally called by 

void ssortlmain(char *XL], int n) 
l ssortl(x, n, 0); } 

After partitioning, we recursively sort the lesser and 

greater segments, and sort the equal segment if the corre- 

sponding character is not zero. 

We can tune the performance of Program 1 using stan- 

dard techniques such as those described by Sedgewick 

[21]. Algorithmic speedups include sorting small subar- 

rays with insertion sort and partitioning around the median 

of three elements (and on larger arrays, the median of three 

medians of three) to exploit Theorem 7. Standard C cod- 

ing techniques include replacing array indices with point- 

ers. This table gives the number of seconds required to 

sort a /usr/dict/words file that contains 12,275 

words and 696,436 characters. 

The third column reports the time of the system qsort 

function, and the fourth column reports the time of Pro- 

gram 1. Our simple code is always as fast as the (general- 

purpose but presumably highly tuned) system function, and 

sometimes much faster. The fifth column reports the time 

void ssortl(char *XL], int n, int depth) 
{ int a, b. c, d, r, v; 

if (n <= 1) 
return; 

a = randO % n; 
swap (0, a) ; 
v = i2c(O); 
a=b=l; 
c = d = n-l; 
for (;;) I 

while (b <= c && (r = i2c(b)-v) <= 0) I 
if (r == 0) { swap(a, b); a++: ) 
b++; 

I 
while (b <= c && (r = i2c(c)-v) P= 0) { 

if (r == 0) { swap(c, d); d--; ) 
c--; 

if (b > c) break; 
swap(b. c); 
b++; 
c--; 

1 
r = minta, b-a); vecswap(0, b-r, r, x); 
r = min(d-c, n-d-l); vecswaptb, n-r, r. x); 
r = b-a: ssortl(x, r, depth); 
if (i2c(r) != 0) 

ssortl(x + r, a + n-d-l. depth+l); 
r = d-c; ssortl(x + n-r. r. depth): 

Program 1. A C program to sort strings 

of our tuned sort, which is always substantially faster than 

the simple version. As a benchmark, the final column 

describes the run time of the highly tuned radix sort of 

McIlroy, Bostic and McIlroy [ 151; it is the fastest string 

sort that we know. 

We also ran the four sorts on two data sets of library 

call numbers used in the DIMACS Implementation Chal- 

lenge.* We extracted from each file the set of unique keys 

(about 86,000 in each file), each of which is a card number 

(“LAC 59.7 K - -- 24-1976”, for instance); the keys had 

an average length of 22.5 characters. On the MIPS 

machines, our tuned sort was twenty percent faster than the 

radix sort; on the Intel machines, it was a few percent 

slower. Multikey Quicksort might prove faster than radix 

sort in other contexts, as well. 

The primary challenge in implementing practical radix 

sorts is the case when the number of distinct keys is much 

less than the number of bins (either because the keys are all 

equal or because there are not many of them). Multikey 

Quicksort may be thought of as a radix sort that gracefully 

adapts to handle this case, at the cost of- slightly more work 

when the bins are all full. 

We turn now to implementing a string symbol table 

with the ternary search trees depicted in Figure 2. Each 

node in the tree is represented by this C structure: 

ia We retrieved the DIMACS library call numba data sets from 
http://theory.stanford.edu/-csilvers;libdata/. 



int searchl(char *s) 

( Tar P; 
p = root; 
while (p) ( 

if (*s < p->splitchar) 
p = p->lokid; 

else if (*s == p->splitchar) I 
if (*s++ == 0) 

return 1; 
p = p->eqkid; 

) else 
p = p->hikid; 

return 0; 

number of branches taken over all possible successful 

searches in the tree. The results are presented in this table: 

Input 
Order 

Balanced 
Tournament 
Random 
Dictionary 
Sorted 
Reversed 

Nodes 

285,807 
285,807 
285,807 
285,807 
285,807 
285,807 

Branches 
Lo Eq Hi Total 

4.39 9.64 3.91 17.94 
5.04 9.64 4.62 19.30 
5.26 9.64 5.68 20.58 
0.06 9.64 31.66 41.36 
0 9.64 57.72 67.36 

37.40 9.64 0 47.04 

Program 2. Search a ternary search tree 

Tptr insertl(Tptr p, char *s) 

c if (p == 0) { 
p = (Tptr) malloc(sizeof(Tnode)); 
p->splitchar = *s; 
p->lokid = p->eqkid = p->hikid = 0; 

1 
if (*s < p-zplitchar) 

p->lokid = insertl(p->lokid, s); 
else if (*s == p->splitchar) { 

if (*s != 0) 
p->eqkid = insertl(p->eqkid, ++s); 

) else 

The rows describe six different methods of inserting 

the strings into the tree. The first column immediately sug- 

gests this theorem. 

Theorem 11. The number of nodes in a ternary search 

tree is constant for a given input set, independent of the 

order in which the nodes are inserted. 

Proof. There is a unique node in the tree correspond- 

ing to each unique string prefix in the set. The relative 

positions of the nodes within the tree can change as a 

function of insertion order, but the number of nodes is 
p->hikid = insertl(p->hikid, s); 

return P; 
invariant. n 

I Notice that a standard search trie (without node com- 

Program 3. Insert into a ternary search tree 

typedef struct tnode *Tptr; 
typedef struct tnode ( 

paction) would have exactly the same number of nodes. In 

this data set, the number of nodes is only about 41 percent 

of the number of characters. 

char splitchar; 
Tptr lokid, eqkid, hikid; 

) Tnode; 

The value stored at the node is spli tchar, and the three 

pointers represent the three children. The root of the tree is 

declared to be Tptr root;. 

Program 2 returns 1 if string s is in the tree and 0 oth- 

erwise. It starts at the root, and moves down the tree. The 

lokid and hikid branches are obvious. Before it takes 

a eqkid branch, it returns 1 if the current character is the 

end-of-string character 0. After the loop, we know that we 

ran off the tree while still looking for the string, so we 

return 0. 

Program 3 inserts a new string into the tree (and does 

nothing if it is already present). We insert the string s 

withthecode root = insertlroot, s). The first if 
statement detects running off the end of the tree; it then 

makes a new node, initializes it, and falls through to the 

standard case. Subsequent code takes the appropriate 

branch, but branches to eqkid only if characters remain 

in the string. 

We tested the search performance on the same dictio- 

nary used for testing sorting. We inserted each of the 

72,275 words into the tree. and then measured the average 

The average word length (including delimiter charac- 

ters) is 696,436/72,275 = 9.64 characters. The average 

number of equal branches in a successful search is pre- 

cisely 9.64, because each input character is compared to an 

equal element once. The balanced tree always chooses the 

root of a subtree to be the median element in that collec- 

tion. In that tree, the number of surplus (less and greater) 

comparisons is only 8.30 (about half the worst-case bound 

of 16 of Theorem 5), so rhe total number of comparisons is 

just 17.94. 

To build the tournament tree, we first sort the input set. 

The recursive build function inserts the middle string of its 

subarray, and then recursively builds the left and right sub- 

arrays. This tree uses about eight percent more compar- 

isons than the balanced tree. The randomly built tree uses 

just fifteen percent more comparisons. 

The fourth line of the table describes inserting the 

words in dictionary order (which isn’t quite sorted due to 

capital letters and special characters). The final two lines 

describe inserting the words in sorted order and in reverse 

sorted order. These inputs slow down the search by a fac- 

tor of at most four; in a binary search tree, they slow down 

the search by a factor of over 2000. Ternary search trees 

appear to be quite robust. 
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We conducted simple experiments to see how ternary 
search trees compare to other symbol table structures 
described by Knuth [ 111. We first measured binary search, 
which can be viewed as an implementation of perfectly 
balanced binary search trees. For the same input set, 
binary search uses 15.19 string comparisons and inspects 
5 1.74 characters, on the average (the average string com- 
parison inspects 3.41 characters). On all computers we 
tested, a highly tuned binary search took about twice the 
time of Program 2 (on a tournament tree). 

The typical implementation of symbol tables is hash- 
ing. To represent n strings, we will use a chained hash 
table of size tabsize = n. The hash function is from 
Section 6.6 of Kemighan and Ritchie [lo]; it is reasonably 
efficient and produces good spread. 

int hashfunctchar *s) 

( unsigned n = 0; 
for ( ; *s; s++) 

n = 31 l n + *s; 

return n % tabsize; 

Here is the body of the search function: 

for !p = tab[hashfunc(s)l; p; p = p-)next) 
if (strcmp(s return 1i p->str) == 0) 

return 0; 

For fair timing, we replaced the string comparison function 
strcmp with inline code (so this hash and tree search 
functions used the same coding style). 

On the same dictionary, the average successful hash 
search requires 1.50 string comparisons (calls to the str- 

cmp function) and 10.17 character comparisons (a success- 
ful search requires one comparison to the stored string, and 
half a comparison to the string in front of it, which almost 
always ends on the first character). In addition, every 
search must compute the hash function, which usually 
inspects every character of the input string. 

These simple experiments show that ternary search 
trees are competitive with the best known symbol table 
structures. There are, however, many ways to improve ter- 
nary search trees. The search function in Program 2 is 
reasonably efficient; tuning techniques such as saving the 
difference between compared elements, reordering tests, 
and using registers squeeze out at most an additional ten 
percent. This table compares the time of the resulting pro- 
gram with a similarly tuned hash function: 

Machine MHZ 
Successful Unsuccessful 

TST Hash TST Hash 

MIPS R4400 150 .44 .43 .27 .39 

MIPS R4000 100 .66 .61 .42 .54 

Pentium 90 .58 .65 .38 .50 

486DX 33 2.21 2.16 1.45 1.55 

The times are the number of seconds required to perform a 
search for every word in the dictionary. For successful 
searches, the two structures have comparable search times. 
We generated unsuccessful searches by incrementing the 
first character of the word (so bat is transformed to the 
word cat, and cat is transformed to the nonword dat). 

Ternary search trees are faster than hashing for this simple 
model and others. Models for unsuccessful search are 
application-dependent, but ternary search trees are likely to 
be faster than hashing for unsuccessful search in applica- 
tions because they can discover mismatches after examin- 
ing only a few characters, while hashing always processes 
the entire key. 

For the long keys typical of some applications, the 
advantage is even more important than for the simple dic- 
tionary considered here. On the DIMACS library call 
number data sets, for instance, our program took less than 
one-fifth the time of hashing. 

The insert function in Program 3 has much room for 
improvement. Tournament tree insertion (inserting the 
median element first, and then recursively inserting the 
lesser and greater elements) provides a reasonable tradeoff 
between build and search times. Replacing the call to the 
memory allocation function ma1 lot with a buffer of 
available nodes almost eliminates the time spent in mem- 
ory allocation. Other common techniques also reduced the 
run time: transforming recursion to iteration, keeping a 
pointer to a pointer, reordering tests, saving a difference in 
a comparison, and splitting the single loop into two loops. 
The combination of these techniques sped up Program 3 by 
a factor of two on all machines we have been considering, 
and much more in environments with a slow malloc. In 
our experiments, the cost of inserting all the words in the 
dictionary is never more than about fifty percent greater 
than searching for all words with Program 2. The efficient 
insertion routine requires 35 lines of C; it can be found on 
our Web page cited earlier. 

The main drawback of ternary search trees compared to 
hashing is their space requirements. Our ternary search 
tree uses 285,807 16-byte nodes for a total of 4.573 mega- 
bytes. Hashing uses a hash table of 72,275 pointers, 
72,275 &byte nodes, and 696,436 bytes of text, for 1.564 
megabytes. An alternative representation of ternary search 
trees is more space-efficient: when a subtree contains a sin- 
gle string, we store a pointer to the string itself (and each 
node stores three bits telling whether its children point to 
nodes or strings). This leads to slower and more complex 
code, but it reduces the number of tree nodes from 285,807 
to 94,952, which is close to the space used by hashing. 

Ternary search trees can efficiently answer many kinds 
of queries that require linear time in a hash table. As in 
most ordered search trees, logarithmic-time searches can 
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find the predecessor or successor of a given element or 

count the number of strings in a range. Similarly, a tree 

traversal reports all strings in sorted order in linear time. 

We will see more advanced searches in the next section. 

In summary, ternary search trees seem to combine the 

best of two worlds: the low overhead of binary search trees 

(in terms of space and run time) and the character-based 

efficiency of search tries. The primary challenge in using 

tries in practice is to avoid using excessive memory for trie 

nodes that are nearly empty. Ternary search trees may be 

thought of as a trie implementation that gracefully adapts 

to handle this case, at the cost of slightly more work for 

full nodes. Ternary search trees are also easy to imple- 

ment; compare our code, for instance, to Knuth’s imple- 

mentation of “hash tries” [3] . 

Ternary search trees have been used for over a year to 

represent English dictionaries in a commercial Optical 

Character Recognition (OCR) system built at Bell Labs. 

The trees were faster than hashing for the task, and they 

gracefully handle the 34,000-character set of the Unicode 

Standard. The designers have also experimented with 

using partial-match searching for word lookup: replace let- 

ters with low probability of recognition with the “don’t 

care” character. 

6. Advanced String Search Algorithms 

We will turn next to two search algorithms that have 

not been analyzed theoretically. We begin with the vener- 

able problem of “partial-match” searching: a query string 

may contain both regular letters and the “don’t care” char- 

acter &‘.“. Searching the dictionary for the pattern 

“.o.o.o” matches the single word rococo, while the pat- 

tern “.a.a.a” matches many words, including banana, 

casaba , and pajama. 

This problem has been studied by many researchers, 

including Appel and Jacobson [ I] and Manber and Baeza- 

Yates [ 131. Rivest [ 191 presents an algorithm for partial- 

match searching in tries: take the single given branch if a 

letter is specified, for a don’t-care character, recursively 

search all branches. Program 4 implements Rivesl’s 

method in ternary search trees; it is called, for instance, by 

srchtop = 0; 
pmsearch(root, ".a.a.a"); 

Program 4 has five if statements. The first returns 

when the search runs off the tree. The second and fifth if 

statements are symmetric; they recursively search the 

lokid (or hikid) when the search character is the don’t 

care “.” or when the search string is less (or greater) than 

the splitchar. The third if statement recursively 

searches the eqkid if both the splitchar and current 

character in the query string are non-null. The fourth if 

char *srcharr[1000001; 
int srchtop; 

void pmsearch(Tptr p, char l S) 
( if (!p) return; 

nodecnt++; 
if (*s == '.‘ 11 *s < p-zsplitchar) 

pmsearch(p->lokid. s); 

if (*s == '.I 11 *s == p-xplitchar) 
if (p-xplitchar EC& *s) 

pmsearch(p->eqkid, s+l); 
if (*s == 0 && p-psplitchar == 0) 

srcharr[srchtop++l = 
(char *) p->eqkid; 

if (*s == '_' 11 *s > p->splitchar) 
pmsearch(p->hikid, s); 

) 

Program 4. Partial match search 

statement detects a match to the query and adds the pointer 

to the complete word (stored in eqkid because the 

storestring flag in Program 4 is nonzero) to the out- 

put search array srcharr. 

Rivest states that partial-match search in a trie requires 

“time about O(n(k-s)‘k) to respond to a query word with s 

letters specified, given a file of n k-letter words”. Ternary 

search trees can be viewed as an implementation of his 

tries (with binary trees implementing multiway branching), 

so we expected his results to apply immediately to our pro- 

gram, Our experiments, however, led to a surprise: 

unspecified positions at the front of the query word are dra- 

matically more costly than unspecified characters at the 

end of the word. For the same dictionary we have already 

seen, Table 1 presents the queries, the number of matches, 

and the number of nodes visited during the search in both a 

balanced tree and a random tree. 

To study this phenomenon, we have conducted experi- 

ments on both the dictionary and on random data (which 

closely models the dictionary). The page limit of these 

proceedings does not allow us to describe those experi- 

ments, which confirm the anecdotes in the above table. 

The key insight is that the top levels of a trie representing 

the dictionary have very high branching factor; a starting 

don’t-care character usually implies 52 recursive searches. 

Near the end of the word, though, the branching factor 

tends to be small; a don’t-care character at the end of the 

word frequently gives just a single recursive search. For 

this very reason, Rivest suggests that binary tries should 

“branch on the first bit of the representation of each char- 

acter . . . before branching on the second bit of each”. Fla- 

jolet and Puech [7] analyzed this phenomenon in detail for 
bit tries; their methods can be extended to provide a 

detailed explanation of search costs as a function of 

unspecified query positions. 
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Pattern 

television 
tele...... 
t.l.v.s..n 
. . . . vision 
banana 
ban... 
.a.a.a 
. ..ana 
abracadabra 
.br.c.d.br. 
a..a.a.a..a 
xy . . . . . . . 
. . . . . . .xy 
45 

Matches 

1 
17 

1 

1 
I 

15 
19 
8 

1 

1 
1 
3 

3 

1 

NC 

Balanced 

18 

261 

153 

36,484 

15 

166 

2829 

14,056 

21 

244 

1127 

67 

156,145 

285,807 

:s 

Random 

24 

265 

164 

37,178 

17 

166 

2746 

13,756 

17 

266 

1104 
66 

157,449 
285,807 

Table 1. Partial match search performance 

We turn finally to the problem of “near-neighbor 

searching” in a set of strings: we are to find all words in 

the dictionary that are within a given Hamming distance of 

a query word. For instance, a search for all words within 

distance two of soda finds code, coma and 117 other 

words. Program 5 performs a near neighbor search in a 

ternary search tree. Its three arguments are a tree node, a 

string, and a distance. The first if statement returns if the 

node is null or the distance is negative. The second and 

fourth if statements are symmetric: they search the appro- 

priate child if the distance is positive or if the query char- 
acter is on the appropriate side of spli tchar. The third 

if statement either checks for a match or recursively 

searches the middle child. 

We have conducted extensive experiments on the 

efficiency of Program 5; space limits us to sketching just 

one experiment. This table describes its performance on 

two similar data sets: 

void nearsearch(Tptr p, char *s, int d) 
I if (!p / 1 d -z 0) return; 

nodecnt++; 
if (d 5 0 (( *s c p->splitchar) 

nearsearchtp->lokid, s, d); 
if (p-ssplitchar == 0) { 

if (tint) strlen(s) <= d) 
srcharr[srchtop++l = 

(char l ) p->eqkid; 
) else 

nearsearchcp->eqkid, l s ? s+l:s. 
(*s==p-bsplitchar) ? d:d-1); 

if (d > 0 11 *s > p-zsplitchar) 
nearsearchtp->hikid, s, d); 

I 

Program 5. Near neighbor search 

D 
I 

Dictionary Random 
Min Mean Max Min Mean Max I I 

0 1 9 17.0 22 1 9 17.1 22 

1 228 403.5 558 188 239.5 279 

2 1374 2455.5 3352 1690 1958.7 2155 

3 6116 8553.7 10829 7991 875 1.3 9255 

4 15389 18268.3 21603 2075 1 21537.1 21998 

The first line shows the costs for performing searches 

of distance 0 from each word in the data set. The “Dictio- 

nary” data represented the 10,451 g-letter words in the 

dictionary in a tree of 55,870 nodes. A distance-O search 

was performed for every word in the dictionary. The 

minimum-cost search visited 9 nodes (to find latticed) and 

the maximum-cost search visited 22 nodes (to find wood- 

note), while the mean search cost was 17.0. The “Ran- 

dom” data represented 10,000 &letter words randomly 

generated from a IO-symbol alphabet in a tree of 56,886 

nodes. Subsequent lines in the table describe search dis- 

tances 1 through 4. This simple experiment shows that 

searching for near neighbors is relatively efficient, search- 

ing for distant neighbors grows more expensive, and that a 

simple probabilistic model accurately predicts the time on 

the real data. 

7. Conclusions 

Sections 3 and 4 used old techniques in a uniform pre- 

sentation and analysis of multikey Quicksort and ternary 

search trees. This uniform framework led to the code in 

later sections. 

Multikey Quicksort leads directly to Program 1 and its 

tuned variant, which is competitive with the best known 

algorithms for sorting strings. This does not, however, 

exhaust the application of the underlying algorithm. We 

believe that multikey Quicksort might also be practical in 

multifield system sorts, such as that described by Linder- 

man [12]. One might also use the algorithm to sort inte- 

gers, for instance, by comparing them byte-by-byte. 

Section 5 shows that ternary search trees provide an 

efficient implementation of string symbol tables, and Sec- 

tion 6 shows that the structures can quickly answer more 

advanced queries. Ternary search trees are particularly 

appropriate when search keys are long strings, and they 

have already been incorporated into a commercial system. 

Advanced searching algorithms based on ternary search 

trees are likely to be useful in practical applications, and 

they present a number of interesting problems in the analy- 

sis of algorithms. 
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