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Abstract

An algorithm is introduced for the rapid evaluation at appropriately chosen nodes
on the two-dimensional sphere S2 in R3 of functions specified by their spherical har-
monic expansions (known as the inverse spherical harmonic transform), and for the
evaluation of the coefficients in spherical harmonic expansions of functions specified
by their values at appropriately chosen points on S2 (known as the forward spherical
harmonic transform). The procedure is numerically stable and requires an amount of
CPU time proportional to N(log N) log(1/ε), where N is the number of nodes in the
discretization of S2, and ε is the precision of computations. The performance of the
algorithm is illustrated via several numerical examples.

1 Introduction

Spherical harmonic expansions are a well-understood and widely used tool of applied math-
ematics; they are encountered, inter alia, in weather and climate modeling, in the repre-
sentation of gravitational, topographic, and magnetic data in geophysics, in the numerical
solution of certain partial differential equations, etc. The role of spherical harmonic expan-
sions in the solution of the Laplace equation in three dimensions is similar to the role played
by Fourier series expansions in two dimensions.

The spherical harmonic expansion of a function f in L2(S2) is the series of the form

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

αm
l P

|m|
l (cos θ) eimϕ, (1)

where (θ, ϕ) are the standard spherical coordinates on the two-dimensional sphere S2 in R3,
0 ≤ θ < π and 0 ≤ ϕ < 2π, and Pm

l is the associated Legendre function of degree l and order

m. While the functions {P |m|
l (cos θ) eimθ} constitute a basis of L2(S2) that is orthogonal,

that is, ∫ 1

−1
P
|m|
k (x) P

|m|
l (x) dx = 0 (2)
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when l 6= k, their norms are not equal to 1; in fact, they are so badly normalized as to be
virtually unusable in numerical calculations (see Subsection 2.1 below for a detailed discus-
sion of the associated Legendre functions). Therefore, it is customary to replace expansions
of the form (1) with expansions of the form

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

αm
l P

|m|
l (cos θ) eimϕ, (3)

where P
|m|
l denotes the normalized version of the associated Legendre function P

|m|
l , defined

on [−1, 1] via the formula

P
|m|
l (x) = (−1)|m|

√√√√2l + 1

2

(l − |m|)!
(l + |m|)!

P
|m|
l (x), (4)

so that ∫ 1

−1

(
P
|m|
l (x)

)2

dx = 1. (5)

In numerical practice, the series (3) is truncated after a finite number of terms, leading
to expressions of the form

f(θ, ϕ) ∼
N∑

l=0

l∑
m=−l

αm
l P

|m|
l (cos θ) eimϕ; (6)

(6) is viewed as an approximation to the function f , and N is called the order of the
expansion (6). Obviously, the expansion (6) contains (N + 1)2 terms; the order N required
to obtain a prescribed accuracy of the approximation is determined by the complexity of the
function f .

Frequently, the need arises to evaluate the coefficients in an expansion of the form (6)
for a function f given by a table of its values at a collection of appropriately chosen nodes
on S2; conversely, given the coefficients in (6), one often needs to evaluate f at a collection
of points on S2. The former is usually called the forward spherical harmonic transform, and
the latter is known as the inverse spherical harmonic transform. A standard discretization
of S2 is the “tensor product,” consisting of all pairs of the form (θk, ϕj), with equispaced
nodes θ0, θ1, . . . , θN−1, θN discretizing the interval [0, π], defined by the formula

θk =
π(k + 1/2)

N + 1
, (7)

and equispaced nodes ϕ0, ϕ1, . . . , ϕ2N−1, ϕ2N discretizing the interval [0, 2π], defined by the
formula

ϕj =
2π(j + 1/2)

2N + 1
. (8)

This leads immediately to numerical schemes for both the forward and inverse spherical
harmonic transforms costing O(N3) operations. Indeed, given a function f defined on S2 by
the formula (6), one can rewrite (6) in the form

f(θ, ϕ) =
N∑

m=−N

eimϕ
N∑

l=|m|
αm

l P
|m|
l (cos θ). (9)
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For a fixed value of θ, each of the inner sums in (9) contains no more than N + 1 terms,
and there are 2N+1 such sums (one for each value of m); since the inverse spherical harmonic
transform involves N + 1 values θ0, θ1, . . . , θN−1, θN , the cost of evaluating all inner sums
in (9) is O(N3). Once all inner sums have been evaluated, evaluation of each outer sum
costs O(N) operations (since each of them contains 2N + 1 terms), and there are O(N2)
such sums to be evaluated, leading to O(N3) CPU time requirements for the evaluation of
all outer sums in (9). The cost of the evaluation of the whole inverse spherical harmonic
transform (in the form (9)) is the sum of the costs for the inner and outer sums, and is
also O(N3); a virtually identical calculation shows that the cost of evaluating of the forward
harmonic transform is also O(N3).

A trivial modification of the scheme described in the preceding paragraph uses the Fast
Fourier Transform to evaluate the outer sums in (9), roughly halving the CPU time require-
ments of the whole procedure. Several other considerations (see, for example, [2]) can be used
to reduce the CPU time requirements by a further factor of four or so, but there is no simple
trick for reducing the asymptotic CPU time requirements of the whole spherical harmonic
transform (either forward or inverse) below N3. In this paper, we introduce algorithms
for both forward and inverse spherical harmonic transforms with CPU time requirements
proportional to N2(log N) log(1/ε), where ε is the precision of computations.

The algorithm of this paper is a procedure for the rapid evaluation of the inner sums in
expressions of the form (9). It is based principally on two observations, as follows:

1. The differential equations defining the functions P
m
l with arbitrary positive integer m

are very close to the differential equations defining the functions P
1
l and P

2
l .

2. There exist fast algorithms for decomposing functions into and reconstructing functions
from sums of the forms

f(x) =
N∑

l=0

p1
l P

1
l (x), (10)

f(x) =
N∑

l=0

p2
l P

2

l (x). (11)

We use the connections between the functions P
m
l with arbitrary positive integer m

and the functions P
1
l and P

2
l , to apply rapidly to arbitrary vectors the matrices converting

between expansions of the forms (10) and (11) and expansions of the form

f(x) =
N∑

l=0

pm
l P

m
l (x). (12)

This step utilizes the observation made in [4], that the N × N matrix of eigenvectors of
the sum of a diagonal matrix and a semiseparable matrix (see Subsection 2.4 below for the
definition of a semiseparable matrix) can be applied to an arbitrary vector of length N for a
cost proportional to N(log N) log(1/ε) operations, where ε is the precision of computations.

During the last several years, the interest in fast transforms has been growing, stimulated
by the combination of recent progress in fast algorithms of various kinds with the impor-
tance of the Fast Fourier Transform in computational mathematics, electrical engineering,
etc., and by the success of various types of multilevel computational techniques. In partic-
ular, several prior attempts have been made to construct numerically stable fast spherical
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harmonic transforms. It is not the purpose of this paper to provide an exhaustive survey of
literature on the subject; we refer the reader to the publications [10], [9], [15], [13], [12] for
details.

The structure of this paper is as follows. In Section 2, we summarize a number of facts
(from both mathematical and numerical analysis) to be used in the rest of the paper; all
of the content of Section 2 is either well-known or follows easily from well-known facts. In
Section 3, we build the analytical apparatus to be used in the construction of the algorithms
of this paper. Section 4 contains an informal description of the algorithm, and in Section 5
the procedure is described in detail. The performance of the scheme is illustrated with
numerical examples in Section 6, and Section 7 contains a discussion of possible applications
of the approach of this paper in other environments.

2 Mathematical and Numerical Preliminaries

In this section, we summarize several facts from mathematical and numerical analysis. Please
note that in this section and throughout this paper, the variable x always takes arbitrary
values in [−1, 1], θ takes values in [0, π], and ϕ takes values in [0, 2π]. We will always use
the term “eigenvector” to mean “normalized eigenvector.”

2.1 Spherical Harmonics and Associated Legendre Functions

In this subsection, we summarize a number of properties of spherical harmonics and associ-
ated Legendre functions; all of these can be found, for example, in [1].

The coefficients in the spherical harmonic expansion (6) of a function f in L2(S2) are
given by the formula

αm
l =

∫ π

0

∫ 2π

0
P
|m|
l (cos θ) e−imϕ f(θ, ϕ) sin θ dϕ dθ. (13)

For the forward spherical harmonic transform of order N , we have to compute the coef-
ficients (13) from the values f(θk, ϕj), where θ0, θ1, . . . , θN−1, θN are defined in (7), and
ϕ0, ϕ1, . . . , ϕ2N−1, ϕ2N are defined in (8). For a cost of O(N2 log N), we use the Fast Fourier
Transform to obtain the 2(2N + 1)(N + 1) values gm(θk) and hm(θk) (m = −N , −N + 1,
. . . , N − 1, N ; k = 0, 1, . . . , N − 1, N) of the functions gm and hm defined on [0, π] by the
formulae

gm(θ) =
2N∑
j=0

cos(m ϕj) f(θ, ϕj), (14)

hm(θ) =
2N∑
j=0

sin(m ϕj) f(θ, ϕj). (15)

We then evaluate the coefficients (13) via the formula

αm
l =

∫ π

0
P
|m|
l (cos θ) gm(θ) sin θ dθ − i

∫ π

0
P
|m|
l (cos θ) hm(θ) sin θ dθ. (16)
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To evaluate the integrals in (16), we have to convert the values fm(cos θk) into the
coefficients pm

m, pm
m+1, . . . , pm

N−1, pm
N in expansions of functions fm on [−1, 1] of the form

fm(x) =
N∑

l=m

pm
l P

m

l (x), (17)

pm
l =

∫ 1

−1
P

m
l (x) fm(x) dx, (18)

where m is any integer with 0 ≤ m ≤ N .
The principal purpose of this paper is the construction of a “fast” scheme for computing

the coefficients (18) from the values fm(cos θk), and for computing the inverse of this trans-
formation, that is, for computing the values fm(cos θk) of the function fm defined in (17)
from the coefficients (18).

For any nonnegative integers l and m with m ≤ l, the associated Legendre function Pm
l

on [−1, 1] is defined by the formula

Pm
l (x) = (−1)m

√
1− x2

m dm

dxm
Pl(x), (19)

where Pl is the Legendre polynomial of degree l. Obviously, Pm
l is a polynomial when m is

even and a polynomial multiplied by
√

1− x2 when m is odd.
For any nonnegative integer m, we define the differential operator Lm by the formula

Lm(f)(x) = − d

dx

(
(1− x2)

d

dx
f(x)

)
+

m2

1− x2
f(x) (20)

for any function f on [−1, 1] with a continuous second derivative. For any nonnegative
integers l and m with m ≤ l, the function P

m
l satisfies the differential equation

Lm

(
P

m

l

)
(x) = l(l + 1) P

m

l (x), (21)

where the differential operator Lm is defined in (20).
For any integers l and m with 0 ≤ m ≤ l and l > 0,

(2l + 1) x Pm
l (x) = (l + m) Pm

l−1(x) + (l −m + 1) Pm
l+1(x). (22)

For any nonnegative integers l and m with 1 ≤ m ≤ l,∫ 1

−1
P

m

l (x)
1

1− x2
P

m

l (x) dx =
2l + 1

2m
. (23)

Lemma 2.1 Suppose that l and m are even integers such that 2 ≤ m ≤ l. Then, there exist
l/2 real numbers ξ0, ξ1, . . . , ξl/2−2, ξl/2−1 such that

P
m

l (x) =
l/2−1∑
k=0

ξk P
2

2k+2(x). (24)
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Lemma 2.2 Suppose that l and m are integers such that m is even, l is odd, and 2 ≤ m < l.
Then, there exist (l − 1)/2 real numbers ξ0, ξ1, . . . , ξ(l−1)/2−2, ξ(l−1)/2−1 such that

P
m
l (x) =

(l−1)/2−1∑
k=0

ξk P
2
2k+3(x). (25)

Lemma 2.3 Suppose that l and m are integers such that m is odd, l is even, and 1 ≤ m < l.
Then, there exist l/2 real numbers ξ0, ξ1, . . . , ξl/2−2, ξl/2−1 such that

P
m
l (x) =

l/2−1∑
k=0

ξk P
1
2k+2(x). (26)

Lemma 2.4 Suppose that l and m are odd integers such that 1 ≤ m ≤ l. Then, there exist
(l + 1)/2 real numbers ξ0, ξ1, . . . , ξ(l+1)/2−2, ξ(l+1)/2−1 such that

P
m
l (x) =

(l+1)/2−1∑
k=0

ξk P
1
2k+1(x). (27)

2.2 Chebyshev Polynomials

In this subsection, we cite the existence of a fast algorithm for computing with Chebyshev
polynomials.

For any nonnegative integer k, we define Tk to be the Chebyshev polynomial of degree k
of the first kind, defined by the formula

Tk(cos θ) = cos(kθ) (28)

for any real θ, and Uk to be the Chebyshev polynomial of degree k of the second kind, defined
by the formula

Uk(cos θ) =
sin((k + 1)θ)

sin θ
(29)

for any real θ.
The following observation cites the relationship between the Fast Fourier Transform and

expansions in series of Chebyshev polynomials.

Observation 2.5 Suppose that N ≥ 0 is an integer, c0, c1, . . . , cN−1, cN , and u0, u1, . . . ,
uN−1, uN are real numbers, and f and g are the functions on [−1, 1] defined by the formulae

f(x) =
N∑

k=0

ck Tk(x), (30)

g(x) =
N∑

k=0

uk

√
1− x2 Uk(x). (31)

Then, there exists an algorithm which uses O(N log N) operations to convert the coeffi-
cients c0, c1, . . . , cN−1, cN into the values f(x0), f(x1), . . . , f(xN−1), f(xN), and to convert
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the coefficients u0, u1, . . . , uN−1, uN into the values g(x0), g(x1), . . . , g(xN−1), g(xN), where
the sampling locations x0, x1, . . . , xN−1, xN are defined by the formula

xk = cos

(
π(k + 1/2)

N + 1

)
. (32)

Moreover, there exists an algorithm which uses O(N log N) operations to convert the values
f(x0), f(x1), . . . , f(xN−1), f(xN) into the coefficients c0, c1, . . . , cN−1, cN , and to convert
the values g(x0), g(x1), . . . , g(xN−1), g(xN) into the coefficients u0, u1, . . . , uN−1, uN (see,
for example, [14]).

2.3 Associated Legendre Functions of Low Orders

In this subsection, we summarize certain simple relationships between Chebyshev polynomi-
als and associated Legendre functions of orders 1 and 2. These relationships are a straight-
forward consequence of formulae 7.112.1, 8.339.1, 8.339.2, 8.700.1, 8.752.1, 8.826.1, 8.828.1,
8.832.2, and 8.911.4 of [7].

We define the function Λ on [0, ∞) by the formula

Λ(z) =
Γ
(
z + 1

2

)
Γ(z + 1)

, (33)

where Γ is the Euler gamma function.
For any integer n ≥ 1 and l, k = 0, 1, . . . , n− 2, n− 1, we define the entry An,1,+

l,k of the
n× n matrix An,1,+ by the formulae

An,1,+
l,k = − 4l + 3

2(2k + 2l + 3)(2k − 2l − 1)
Λ (k − l) Λ

(
2k + 2l + 1

2

)
(34)

·
√

4(l + 1)(2l + 1)

4l + 3

when k ≥ l, and
An,1,+

l,k = 0 (35)

otherwise (when k < l).
For any integer n ≥ 1 and l, k = 0, 1, . . . , n− 2, n− 1, we define the entry An,1,−

l,k of the
n× n matrix An,1,− by the formulae

An,1,−
l,k = − 4l + 5

2(2k + 2l + 5)(2k − 2l − 1)
Λ (k − l) Λ

(
2k + 2l + 3

2

)
(36)

·
√

4(l + 1)(2l + 3)

4l + 5

when k ≥ l, and
An,1,−

l,k = 0 (37)

otherwise (when k < l).
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For any integer n ≥ 1 and k, l = 0, 1, . . . , n− 2, n− 1, we define the entry Bn,1,+
k,l of the

n× n matrix Bn,1,+ by the formulae

Bn,1,+
k,l = 2

2k + 1

π
Λ (l − k) Λ (l + k + 1)

√
4l + 3

4(l + 1)(2l + 1)
(38)

when k ≤ l, and
Bn,1,+

k,l = 0 (39)

otherwise (when k > l).
For any integer n ≥ 1 and k, l = 0, 1, . . . , n− 2, n− 1, we define the entry Bn,1,−

k,l of the
n× n matrix Bn,1,− by the formulae

Bn,1,−
k,l = 4

k + 1

π
Λ (l − k) Λ (l + k + 2)

√
4l + 5

4(l + 1)(2l + 3)
(40)

when k ≤ l, and
Bn,1,−

k,l = 0 (41)

otherwise (when k > l).
For any integer n ≥ 1, l = 0, 1, . . . , n− 2, n− 1, and k = 0, 1, . . . , n− 1, n, we define

the entry An,2,+
l,k of the n× (n + 1) matrix An,2,+ by the formulae

An,2,+
l,k =

(
4 +

2k (6(l + 1)(2l + 3)− 2(2k − 1)(2k + 1))

(2k + 2l + 3)(2k − 2l − 3)
Λ (k − l − 1) (42)

· Λ

(
2k + 2l + 1

2

)) √
4l + 5

8(l + 1)(l + 2)(2l + 1)(2l + 3)

when k ≥ l + 1, and

An,2,+
l,k = 4

√
4l + 5

8(l + 1)(l + 2)(2l + 1)(2l + 3)
(43)

otherwise (when k < l + 1).
For any integer n ≥ 1, l = 0, 1, . . . , n− 2, n− 1, and k = 0, 1, . . . , n− 1, n, we define

the entry An,2,−
l,k of the n× (n + 1) matrix An,2,− by the formulae

An,2,−
l,k =

(
4 +

(2k + 1) (6(l + 2)(2l + 3)− 8k(k + 1))

(2k + 2l + 5)(2k − 2l − 3)
Λ (k − l − 1) (44)

· Λ

(
2k + 2l + 3

2

)) √
4l + 7

8(l + 1)(l + 2)(2l + 3)(2l + 5)

when k ≥ l + 1, and

An,2,−
l,k = 4

√
4l + 7

8(l + 1)(l + 2)(2l + 3)(2l + 5)
(45)

otherwise (when k < l + 1).
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For any integer n ≥ 1, k = 0, 1, . . . , n− 1, n, and l = 0, 1, . . . , n− 2, n− 1, we define
the entry Bn,2,+

k,l of the (n + 1)× n matrix Bn,2,+ by the formulae

Bn,2,+
k,l =

2(l + 1)(2l + 3)− 8k2

π
Λ (l − k + 1) Λ (l + k + 1) (46)

·
√

4l + 5

8(l + 1)(l + 2)(2l + 1)(2l + 3)

when k = 0,

Bn,2,+
k,l = 2

2(l + 1)(2l + 3)− 8k2

π
Λ (l − k + 1) Λ (l + k + 1) (47)

·
√

4l + 5

8(l + 1)(l + 2)(2l + 1)(2l + 3)

when 0 < k ≤ l + 1, and
Bn,2,+

k,l = 0 (48)

otherwise (when k > l + 1).
For any integer n ≥ 1, k = 0, 1, . . . , n− 1, n, and l = 0, 1, . . . , n− 2, n− 1, we define

the entry Bn,2,−
k,l of the (n + 1)× n matrix Bn,2,− by the formulae

Bn,2,−
k,l =

4(l + 2)(2l + 3)− 4(2k + 1)2

π
Λ (l − k + 1) Λ (l + k + 2) (49)

·
√

4l + 7

8(l + 1)(l + 2)(2l + 3)(2l + 5)

when k ≤ l + 1, and
Bn,2,−

k,l = 0 (50)

otherwise (when k > l + 1).
The following four lemmas are proven via mechanical, but rather tedious manipulations

of formulae 7.112.1, 8.339.1, 8.339.2, 8.700.1, 8.752.1, 8.826.1, 8.828.1, 8.832.2, and 8.911.4
of [7].

The following lemma provides explicit expressions for the matrix Bn,1,+ converting co-
efficients in linear combinations of associated Legendre functions of order 1 of odd degrees
into coefficients in linear combinations of even Chebyshev polynomials of the second kind,
scaled by

√
1− x2, and for the matrix An,1,+ converting the latter into the former.

Lemma 2.6 Suppose that n ≥ 1 is an integer, q = (q0, q1, . . . , qn−2, qn−1)
T is a real vector,

and f is the function on [−1, 1] defined by the formula

f(x) =
n−1∑
l=0

ql P
1

2l+1(x). (51)

Then,

f(x) =
n−1∑
k=0

uk

√
1− x2 U2k(x), (52)
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where u = (u0, u1, . . . , un−2, un−1)
T is the real vector defined by the formula

u = Bn,1,+ q, (53)

and Bn,1,+ is defined in (33), (38), and (39). Furthermore,

q = An,1,+ u, (54)

where An,1,+ is defined in (33), (34), and (35).

The following lemma provides explicit expressions for the matrix Bn,1,− converting co-
efficients in linear combinations of associated Legendre functions of order 1 of even degrees
into coefficients in linear combinations of odd Chebyshev polynomials of the second kind,
scaled by

√
1− x2, and for the matrix An,1,− converting the latter into the former.

Lemma 2.7 Suppose that n ≥ 1 is an integer, q = (q0, q1, . . . , qn−2, qn−1)
T is a real vector,

and f is the function on [−1, 1] defined by the formula

f(x) =
n−1∑
l=0

ql P
1

2l+2(x). (55)

Then,

f(x) =
n−1∑
k=0

uk

√
1− x2 U2k+1(x), (56)

where u = (u0, u1, . . . , un−2, un−1)
T is the real vector defined by the formula

u = Bn,1,− q, (57)

and Bn,1,− is defined in (33), (40), and (41). Furthermore,

q = An,1,− u, (58)

where An,1,− is defined in (33), (36), and (37).

The following lemma provides explicit expressions for the matrix Bn,2,+ converting co-
efficients in linear combinations of associated Legendre functions of order 2 of even degrees
into coefficients in linear combinations of even Chebyshev polynomials of the first kind, and
for the matrix An,2,+ converting the latter into the former.

Lemma 2.8 Suppose that n ≥ 1 is an integer, p = (p0, p1, . . . , pn−2, pn−1)
T is a real vector,

and f is the function on [−1, 1] defined by the formula

f(x) =
n−1∑
l=0

pl P
2
2l+2(x). (59)

Then,

f(x) =
n∑

k=0

ck T2k(x), (60)
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where c = (c0, c1, . . . , cn−1, cn)T is the real vector defined by the formula

c = Bn,2,+ p, (61)

and Bn,2,+ is defined in (33), (46), (47), and (48). Furthermore,

p = An,2,+ c, (62)

where An,2,+ is defined in (33), (42), and (43).

The following lemma provides explicit expressions for the matrix Bn,2,− converting co-
efficients in linear combinations of associated Legendre functions of order 2 of odd degrees
into coefficients in linear combinations of odd Chebyshev polynomials of the first kind, and
for the matrix An,2,− converting the latter into the former.

Lemma 2.9 Suppose that n ≥ 1 is an integer, p = (p0, p1, . . . , pn−2, pn−1)
T is a real vector,

and f is the function on [−1, 1] defined by the formula

f(x) =
n−1∑
l=0

pl P
2
2l+3(x). (63)

Then,

f(x) =
n∑

k=0

ck T2k+1(x), (64)

where c = (c0, c1, . . . , cn−1, cn)T is the real vector defined by the formula

c = Bn,2,− p, (65)

and Bn,2,− is defined in (33), (49), and (50). Furthermore,

p = An,2,− c, (66)

where An,2,− is defined in (33), (44), and (45).

Observation 2.10 Suppose that n ≥ 1 is an integer. Then, there exists an algorithm which
uses O(n log(n/ε)) operations to apply to an arbitrary vector any of the matrices An,1,+,
Bn,1,+, An,1,−, Bn,1,−, An,2,+, Bn,2,+, An,2,−, and Bn,2,− defined in (33)–(50), where ε is the
precision of computations (see [3]).

2.4 Semiseparable Matrices

For any integer n > 0, a semiseparable real n × n matrix S is a matrix whose entry Sj,k is
given by the formulae

Sj,k = aj bk (67)

when j ≤ k, and
Sj,k = ak bj (68)
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when j > k, where a = (a0, a1, . . . , an−2, an−1)
T and b = (b0, b1, . . . , bn−2, bn−1)

T are real
vectors.

Matrices of the form
G = D + S, (69)

where D is a diagonal real matrix and S is a semiseparable real matrix, will be encountered
repeatedly throughout this paper. The matrix U of eigenvectors of the matrix G in (69) will
be particularly important; U is orthogonal and diagonalizes G, so that

UT G U = Λ, (70)

where Λ is a diagonal real matrix.
The principal numerical tool of this paper is the following observation, made in [8] and [4].

Observation 2.11 The matrices U and UT in (70) can be applied to an arbitrary vector of
length N for a cost of O(N(log N) log(1/ε)) operations, where ε is the precision of compu-
tations.

Remark 2.12 Strictly speaking, only the numerical apparatus behind Observation 2.11
is constructed in [4]. However, the observation itself is stated explicitly in a very similar
environment in [8]. In our implementation, we used a minor modification of the apparatus
in [4], to be reported at a later date.

3 Analytical Apparatus

In this section, we construct the principal analytical tools used in this paper.
In Subsection 3.1, we observe that when the function P

m
l is represented as a linear

combination of functions P
1
j or P

2
j (depending on whether m is even or odd), the Sturm-

Liouville problem (21) becomes an eigenvector problem for the matrix G in (69). Thus,
according to Observation 2.11, there exists an algorithm that uses O (N(log N) log(1/ε))
operations to apply the matrices U and UT in (70) to arbitrary vectors of length N , where
ε is the precision of computations.

In Subsection 3.2, we observe that the problem of evaluating expansions of the form (12)
can be reduced to the problem of evaluating expansions of the forms (10) and (11), via the
matrices U and UT in (70). These matrices can be applied to arbitrary vectors efficiently,
due to Observation 2.11.

3.1 Associated Legendre Differential Equations in Terms of Asso-
ciated Legendre Functions of Low Orders

For any even integers n and m with 2 ≤ m ≤ n, and for j, k = 0, 1, . . . , n/2 − 2, n/2 − 1,
we define the entry Gn,m

j,k of the n/2× n/2 matrix Gn,m by the formula

Gn,m
j,k =

∫ 1

−1
P

2
2j+2(x) Lm

(
P

2
2k+2

)
(x) dx, (71)

12



where the differential operator Lm is defined in (20).
For any odd integer n and even integer m with 2 ≤ m < n, and for j, k = 0, 1, . . . ,

(n− 1)/2− 2, (n− 1)/2− 1, we define the entry Gn,m
j,k of the (n− 1)/2× (n− 1)/2 matrix

Gn,m by the formula

Gn,m
j,k =

∫ 1

−1
P

2
2j+3(x) Lm

(
P

2
2k+3

)
(x) dx, (72)

where the differential operator Lm is defined in (20).
For any even integer n and odd integer m with 1 ≤ m < n, and for j, k = 0, 1, . . . ,

n/2− 2, n/2− 1, we define the entry Gn,m
j,k of the n/2× n/2 matrix Gn,m by the formula

Gn,m
j,k =

∫ 1

−1
P

1
2j+2(x) Lm

(
P

1
2k+2

)
(x) dx, (73)

where the differential operator Lm is defined in (20).
For any odd integers n and m with 1 ≤ m ≤ n, and for j, k = 0, 1, . . . , (n + 1)/2 −

2, (n + 1)/2− 1, we define the entry Gn,m
j,k of the (n + 1)/2× (n + 1)/2 matrix Gn,m by the

formula

Gn,m
j,k =

∫ 1

−1
P

1
2j+1(x) Lm

(
P

1
2k+1

)
(x) dx, (74)

where the differential operator Lm is defined in (20).
The following lemma states that the coefficients in the expansion of the function P

m

l in

terms of either the functions P
1

j or the functions P
2

j (depending on whether m is even or
odd) are the entries in an eigenvector of the matrix Gn,m.

Lemma 3.1 Suppose that m and n are integers such that 1 ≤ m ≤ n.
Then, when m and n are both even, l(l + 1) is an eigenvalue of the matrix Gn,m defined

in (71), for any even integer l with m ≤ l ≤ n, and the coordinates ξ0, ξ1, . . . , ξn/2−2, ξn/2−1

of the corresponding eigenvector are the coefficients in the expansion

P
m

l (x) =
n/2−1∑
k=0

ξk P
2

2k+2(x). (75)

When m is even and n is odd, l(l+1) is an eigenvalue of the matrix Gn,m defined in (72),
for any odd integer l with m < l ≤ n, and the coordinates ξ0, ξ1, . . . , ξ(n−1)/2−2, ξ(n−1)/2−1

of the corresponding eigenvector are the coefficients in the expansion

P
m
l (x) =

(n−1)/2−1∑
k=0

ξk P
2
2k+3(x). (76)

When m is odd and n is even, l(l+1) is an eigenvalue of the matrix Gn,m defined in (73),
for any even integer l with m < l ≤ n, and the coordinates ξ0, ξ1, . . . , ξn/2−2, ξn/2−1 of the
corresponding eigenvector are the coefficients in the expansion

P
m

l (x) =
n/2−1∑
k=0

ξk P
1

2k+2(x). (77)

13



When m and n are both odd, l(l +1) is an eigenvalue of the matrix Gn,m defined in (74),
for any odd integer l with m ≤ l ≤ n, and the coordinates ξ0, ξ1, . . . , ξ(n+1)/2−2, ξ(n+1)/2−1

of the corresponding eigenvector are the coefficients in the expansion

P
m

l (x) =
(n+1)/2−1∑

k=0

ξk P
1

2k+1(x). (78)

Proof. We outline the proof in the case that m and n are both even; the proofs in the other
three cases are similar.

Substituting (24) into (21) and using (2) and (5), we obtain from (71) that the numbers
ξ0, ξ1, . . . , ξl/2−2, ξl/2−1 from (24), along with the numbers ξl/2 = 0, ξl/2+1 = 0, . . . , ξn/2−2 =
0, ξn/2−1 = 0 when l < n, are the coordinates of the eigenvector of Gn,m with corresponding
eigenvalue l(l + 1), giving the expansion (75). 2

The following lemma states that Gn,m is the sum of a diagonal matrix and a semiseparable
matrix and provides expressions for the entries of Gn,m.

Lemma 3.2 Suppose that m and n are integers such that 1 ≤ m ≤ n.
Then, the matrix Gn,m defined in (71)–(74) has the form

Gn,m = D + S, (79)

where D is a diagonal matrix and S is a semiseparable matrix.
When m and n are both even, D is the diagonal n/2 × n/2 matrix with the diagonal

entries D0,0, D1,1, . . . , Dn/2−2,n/2−2, Dn/2−1,n/2−1 defined by the formula

Dk,k = (2k + 2)(2k + 3), (80)

and S is the semiseparable n/2× n/2 matrix with the entry Sj,k defined by the formulae

Sj,k = aj bk (81)

when j ≤ k, and
Sj,k = ak bj (82)

otherwise (when j > k), where the numbers a0, a1, . . . , an/2−2, an/2−1 and b0, b1, . . . ,
bn/2−2, bn/2−1 are defined by the formulae

ak =

√
(2k + 1)(2k + 2)(2k + 3)(2k + 4)(4k + 5)

8 · 15
, (83)

bk = (m2 − 4)

√√√√ 15(4k + 5)

2(2k + 1)(2k + 2)(2k + 3)(2k + 4)
. (84)

When m is even and n is odd, D is the diagonal (n − 1)/2 × (n − 1)/2 matrix with
the diagonal entries D0,0, D1,1, . . . , D(n−1)/2−2,(n−1)/2−2, D(n−1)/2−1,(n−1)/2−1 defined by the
formula

Dk,k = (2k + 3)(2k + 4), (85)
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and S is the semiseparable (n − 1)/2 × (n − 1)/2 matrix with the entry Sj,k defined by the
formulae

Sj,k = aj bk (86)

when j ≤ k,
Sj,k = ak bj (87)

otherwise (when j > k), where the numbers a0, a1, . . . , a(n−1)/2−2, a(n−1)/2−1 and b0, b1, . . . ,
b(n−1)/2−2, b(n−1)/2−1 are defined by the formulae

ak =

√
(2k + 2)(2k + 3)(2k + 4)(2k + 5)(4k + 7)

14 · 15
, (88)

bk = (m2 − 4)

√√√√ 7 · 15(4k + 7)

8(2k + 2)(2k + 3)(2k + 4)(2k + 5)
. (89)

When m is odd and n is even, D is the diagonal n/2 × n/2 matrix with the diagonal
entries D0,0, D1,1, . . . , Dn/2−2,n/2−2, Dn/2−1,n/2−1 defined by the formula

Dk,k = (2k + 2)(2k + 3), (90)

and S is the semiseparable n/2× n/2 matrix with the entry Sj,k defined by the formulae

Sj,k = aj bk (91)

when j ≤ k, and
Sj,k = ak bj (92)

otherwise (when j > k), where the numbers a0, a1, . . . , an/2−2, an/2−1 and b0, b1, . . . ,
bn/2−2, bn/2−1 are defined by the formulae

ak =

√
(2k + 2)(2k + 3)(4k + 5)

30
, (93)

bk = (m2 − 1)

√√√√ 15(4k + 5)

2(2k + 2)(2k + 3)
. (94)

When m and n are both odd, D is the diagonal (n + 1)/2 × (n + 1)/2 matrix with the
diagonal entries D0,0, D1,1, . . . , D(n+1)/2−2,(n+1)/2−2, D(n+1)/2−1,(n+1)/2−1 defined by the for-
mula

Dk,k = (2k + 1)(2k + 2), (95)

and S is the semiseparable (n + 1)/2 × (n + 1)/2 matrix with the entry Sj,k defined by the
formulae

Sj,k = aj bk (96)

when j ≤ k, and
Sj,k = ak bj (97)
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otherwise (when j > k), where the numbers a0, a1, . . . , a(n+1)/2−2, a(n+1)/2−1 and b0, b1, . . . ,
b(n+1)/2−2, b(n+1)/2−1 are defined by the formulae

ak =

√
(2k + 1)(2k + 2)(4k + 3)

6
, (98)

bk = (m2 − 1)

√√√√ 3(4k + 3)

2(2k + 1)(2k + 2)
. (99)

Proof. We outline the proof in the case that m and n are both even; the proofs in the other
three cases are similar.

We define the entry Dj,k of the n/2× n/2 matrix D by the formula

Dj,k =
∫ 1

−1
P

2
2j+2(x) L2

(
P

2
2k+2

)
(x) dx, (100)

where the differential operator L2 is defined in (20), and we define the entry Sj,k of the
n/2× n/2 matrix S by the formula

Sj,k =
∫ 1

−1
P

2

2j+2(x)
m2 − 4

1− x2
P

2

2k+2(x) dx. (101)

We now show that Gn,m = D + S, D is diagonal, and S is semiseparable.
Combining (71), (100), (101), and (20), we obtain the decomposition (79).
Substituting (21) into (100), and using (2) and (5), we observe that the matrix D is

diagonal, with the diagonal entries given by (80).
In order to obtain the formulae (81)–(84), we define the entry Mj,k of the infinite-

dimensional matrix M , for j, k = 0, 1, 2, . . . , by the formula

Mj,k =
∫ 1

−1
P

2

2j+2(x)
m2 − 4

1− x2
P

2

2k+2(x) dx, (102)

and observe that the entry (M−1)j,k of the inverse M−1 of the matrix M is given by the
formula

(M−1)j,k =
∫ 1

−1
P

2
2j+2(x)

1− x2

m2 − 4
P

2
2k+2(x) dx, (103)

since M represents the operator acting on functions on [−1, 1] by multiplication by the factor

m2 − 4

1− x2
, (104)

whereas M−1 represents the operator acting on functions on [−1, 1] by multiplication by the
inverse factor

1− x2

m2 − 4
. (105)

Using (2), (5), (22), and (103), we observe that M−1 is tridiagonal. So, M is the inverse
of a tridiagonal matrix, and, as such, M is semiseparable (see, for example, [6]). But, for
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j, k = 0, 1, . . . , n/2 − 2, n/2 − 1, (101) and (102) show that Sj,k = Mj,k, so that S is also
semiseparable.

Integrating by parts a few times, while using (2), (5), and (19), together with (101),
yields explicit expressions for the leftmost entries S0,0, S0,1, . . . , S0,n/2−2, S0,n/2−1 of S. Com-
bining (2), (5), (23), and (101) yields explicit expressions for the diagonal entries S0,0, S1,1,
. . . , Sn/2−2,n/2−2, Sn/2−1,n/2−1 of S. Combining all of these explicit expressions with the fact
that S is semiseparable, we obtain the formulae (81)–(84). 2

3.2 Associated Legendre Expansions of Arbitrary Orders and As-
sociated Legendre Expansions of Low Orders

Lemmas 3.3, 3.4, 3.5, and 3.6 of this subsection follow immediately from Lemma 3.1.
Lemma 3.3 states that the matrix of eigenvectors of the matrix Gn,m in (79) converts

the coefficients in the expansion of a function f in terms of the functions P
m

m, P
m

m+2, . . . ,
P

m

n−2, P
m

n into the coefficients in the expansion of the function f in terms of the functions

P
2

2, P
2

4, . . . , P
2

n−2, P
2

n. Lemma 3.3 states, moreover, that the adjoint of the matrix of
eigenvectors converts the latter coefficients into the former coefficients.

Lemma 3.3 Suppose that n and m are even integers such that 2 ≤ m ≤ n, pm = (pm
0 , pm

1 ,
. . . , pm

n/2−2, pm
n/2−1)

T is a real column vector such that pm
(n−m)/2+1 = 0, pm

(n−m)/2+2 = 0, . . . ,
pm

n/2−2 = 0, pm
n/2−1 = 0, and f is the function defined on [−1, 1] by the formula

f(x) =
(n−m)/2∑

j=0

pm
j P

m
2j+m(x). (106)

Then,

f(x) =
n/2−1∑

l=0

p2
l P

2

2l+2(x), (107)

where p2 = (p2
0, p2

1, . . . , p2
n/2−2, p2

n/2−1)
T is the real vector defined by the formula

p2 = U pm, (108)

and U is an n/2× n/2 matrix of eigenvectors of the symmetric matrix Gn,m in (79), with

P
m
2j+m(x) =

n/2−1∑
l=0

Ul,j P
2
2l+2(x) (109)

for j = 0, 1, . . . , (n−m)/2− 1, (n−m)/2. Moreover,

pm = UT p2. (110)

Lemmas 3.4, 3.5, and 3.6 are analogues of Lemma 3.3 for different conditions on m and
n.
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Lemma 3.4 Suppose that n and m are integers such that m is even, n is odd, 2 ≤ m <
n, pm = (pm

0 , pm
1 , . . . , pm

(n−5)/2, pm
(n−3)/2)

T is a real column vector such that pm
(n−m+1)/2 =

0, pm
(n−m+3)/2 = 0, . . . , pm

(n−5)/2 = 0, pm
(n−3)/2 = 0, and f is the function defined on [−1, 1] by

the formula

f(x) =
(n−m−1)/2∑

j=0

pm
j P

m
2j+m+1(x). (111)

Then,

f(x) =
(n−3)/2∑

l=0

p2
l P

2

2l+3(x), (112)

where p2 = (p2
0, p2

1, . . . , p2
(n−5)/2, p2

(n−3)/2)
T is the real vector defined by the formula

p2 = U pm, (113)

and U is an (n − 1)/2 × (n − 1)/2 matrix of eigenvectors of the symmetric matrix Gn,m

in (79), with

P
m

2j+m+1(x) =
(n−3)/2∑

l=0

Ul,j P
2

2l+3(x) (114)

for j = 0, 1, . . . , (n−m− 3)/2, (n−m− 1)/2. Moreover,

pm = UT p2. (115)

Lemma 3.5 Suppose that n and m are integers such that m is odd, n is even, 1 ≤ m <
n, pm = (pm

0 , pm
1 , . . . , pm

n/2−2, pm
n/2−1)

T is a real column vector such that pm
(n−m+1)/2 =

0, pm
(n−m+3)/2 = 0, . . . , pm

n/2−2 = 0, pm
n/2−1 = 0, and f is the function defined on [−1, 1]

by the formula

f(x) =
(n−m−1)/2∑

j=0

pm
j P

m
2j+m+1(x). (116)

Then,

f(x) =
n/2−1∑

l=0

p1
l P

1

2l+2(x), (117)

where p1 = (p1
0, p1

1, . . . , p1
n/2−2, p1

n/2−1)
T is the real vector defined by the formula

p1 = U pm, (118)

and U is an n/2× n/2 matrix of eigenvectors of the symmetric matrix Gn,m in (79), with

P
m
2j+m+1(x) =

n/2−1∑
l=0

Ul,j P
1
2l+2(x) (119)

for j = 0, 1, . . . , (n−m− 3)/2, (n−m− 1)/2. Moreover,

pm = UT p1. (120)
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Lemma 3.6 Suppose that n and m are odd integers such that 1 ≤ m ≤ n, pm = (pm
0 , pm

1 ,
. . . , pm

(n−3)/2, pm
(n−1)/2)

T is a real column vector such that pm
(n−m)/2+1 = 0, pm

(n−m)/2+2 = 0, . . . ,
pm

(n−3)/2 = 0, pm
(n−1)/2 = 0, and f is the function defined on [−1, 1] by the formula

f(x) =
(n−m)/2∑

j=0

pm
j P

m
2j+m(x). (121)

Then,

f(x) =
(n−1)/2∑

l=0

p1
l P

1

2l+1(x), (122)

where p1 = (p1
0, p1

1, . . . , p1
(n−3)/2, p1

(n−1)/2)
T is the real vector defined by the formula

p1 = U pm, (123)

and U is an (n + 1)/2 × (n + 1)/2 matrix of eigenvectors of the symmetric matrix Gn,m

in (79), with

P
m

2j+m(x) =
(n−1)/2∑

l=0

Ul,j P
1

2l+1(x) (124)

for j = 0, 1, . . . , (n−m)/2− 1, (n−m)/2. Moreover,

pm = UT p1. (125)

4 Informal Description of the Algorithm

In this section, we outline a “fast” algorithm for the conversion of the values f0, f1, . . . ,
fN−1, fN of the function f tabulated at the nodes x0, x1, . . . , xN−1, xN , defined by the
formula

xk = cos

(
π(k + 1/2)

N + 1

)
, (126)

into the coefficients p0, p1, . . . , pN−m−1, pN−m in the expansion

f(x) =
N−m∑
l=0

pl P
m

l+m(x). (127)

(The inverse procedure of converting the coefficients p0, p1, . . . , pN−m−1, pN−m into the
values f0, f1, . . . , fN−1, fN is quite similar, so we omit its description.)

The procedure consists of four steps, described briefly below. Since the procedure when
m is odd is virtually the same as when m is even, we describe the procedure only for the
case that m is even. For definitiveness, we assume also that N is even.

1. We separate f into its even and odd parts f+ and f−, defined by the formulae

f+(x) =
f(x) + f(−x)√

2
, (128)
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f−(x) =
f(x)− f(−x)√

2
. (129)

All subsequent processing is performed separately for f+ and f−. Since the procedures for
f+ and f− are virtually identical, we describe only the procedure for the even part f+.

2. Using the Fast Fourier Transform as in Observation 2.5, we convert the values f+
0 , f+

1 ,
. . . , f+

N−1, f+
N of the function f+, defined in (128), at the points x0, x1, . . . , xN−1, xN , defined

in (126), into the coefficients c0, c1, . . . , cN/2−1, cN/2 in the expansion

f+(x) =
N/2∑
k=0

ck T2k(x). (130)

3. Using Lemma 2.8 and Observation 2.10, we convert the coefficients c0, c1, . . . , cN/2−1, cN/2

in the expansion (130) into the coefficients p2
0, p2

1, . . . , p2
N/2−2, p2

N/2−1 in the expansion

f+(x) =
N/2−1∑

l=0

p2
l P

2
2l+2(x). (131)

4. Using Lemmas 3.2 and 3.3 and Observation 2.11, we convert the coefficients p2
0, p2

1, . . . ,
p2

N/2−2, p2
N/2−1 in the expansion (131) into the coefficients pm

0 , pm
1 , . . . , pm

(N−m)/2−1, pm
(N−m)/2

in the expansion

f+(x) =
(N−m)/2∑

l=0

pm
l P

m

2l+m(x). (132)

Remark 4.1 Clearly, Step 1 takes O(N) operations. As per Observation 2.5, Step 2
takes O(N log N) operations. As per Observation 2.10, Step 3 takes O(N log(N/ε)) op-
erations, where ε is the precision of computations. As per Observation 2.11, Step 4 takes
O(N(log N) log(1/ε)) operations, where ε is the precision of computations used in this step.
All together, Steps 1–4 take O(N(log N) log(1/ε)) operations.

Remark 4.2 To handle f− when m is even, we substitute Lemma 2.9 for Lemma 2.8 in
Step 3 and Lemma 3.4 for Lemma 3.3 in Step 4. For f− when m is even, we find that
p2

N/2−1 = 0 and cN/2 = 0, since, when m is even, f− is a linear combination of only N/2− 1

functions P
2
3, P

2
5, . . . , P

2
N−3, P

2
N−1 (or, equivalently, of the N/2 Chebyshev polynomials of

the first kind T1, T3, . . . , TN−3, TN−1).
To handle f+ when m is odd, we substitute Lemma 2.6 for Lemma 2.8 in Step 3 and

Lemma 3.5 for Lemma 3.3 in Step 4.
To handle f− when m is odd, we substitute Lemma 2.7 for Lemma 2.8 in Step 3 and

Lemma 3.6 for Lemma 3.3 in Step 4.
When computing the coefficients (13) in the spherical harmonic expansion (6), we tab-

ulate the function f on [−1, 1] at the same N + 1 sampling locations x0, x1, . . . , xN−1, xN

when m is odd as when m is even, even though when m is odd, f is a linear combination of

only N functions P
1
1, P

1
2, . . . , P

1
N−1, P

1
N (or, equivalently, of the N Chebyshev polynomials

of the second kind
√

1− x2 U0,
√

1− x2 U1, . . . ,
√

1− x2 UN−2,
√

1− x2 UN−1, which are
scaled by

√
1− x2).
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5 Detailed Description of the Algorithm

In this section, we describe in detail the algorithm described informally in Section 4.

Precomputations.
Comment [Compute all the data that Steps 3 and 4 require that do not depend on f .]
Compute all the data that Step 3 requires to apply fast the matrix AN/2,2,+ from Lemma 2.8
(i.e., “compress” the matrix AN/2,2,+).
Compute all the data that Step 4 requires to apply fast the adjoint of the matrix U from
Lemmas 3.2 and 3.3 (i.e., “compress” the matrix UT).

Step 1.
Comment [Convert the values f0, f1, . . . , fN−1, fN into the values f+

0 , f+
1 , . . . , f+

N−1, f+
N .]

do n = 0, . . . , N
Set f+

n = (fn + fN−n)/
√

2.
enddo

Step 2.
Comment [Convert the values f+

0 , f+
1 , . . . , f+

N−1, f+
N into the coefficients c0, c1, . . . ,

cN/2−1, cN/2 of the Chebyshev polynomials T0, T2, . . . , TN−2, TN .]
Use the Discrete Cosine Transform (see, for example, [14]) to convert the values f+

0 , f+
1 , . . . ,

f+
N−1, f+

N into the coefficients c0, c1, . . . , cN/2−1, cN/2.

Step 3.
Comment [Convert the coefficients c0, c1, . . . , cN/2−1, cN/2 of the Chebyshev polynomials
T0, T2, . . . , TN−2, TN into the coefficients p2

0, p2
1, . . . , p2

N/2−2, p2
N/2−1 of the associated Legen-

dre functions P
2
2, P

2
4, . . . , P

2
N−2, P

2
N .]

Use Observation 2.10 to apply the matrix AN/2,2,+ from Lemma 2.8 to the vector c =
(c0, c1, . . . , cN/2−1, cN/2)

T, in order to obtain the vector p2 = (p2
0, p2

1, . . . , p2
N/2−2, p2

N/2−1)
T.

Step 4.
Comment [Convert the coefficients p2

0, p2
1, . . . , p2

N/2−2, p2
N/2−1 of the associated Legendre

functions P
2
2, P

2
4, . . . , P

2
N−2, P

2
N into the coefficients pm

0 , pm
1 , . . . , pm

(N−m)/2−1, pm
(N−m)/2 of

the associated Legendre functions P
m
m, P

m
m+2, . . . , P

m
N−2, P

m
N .]

Use Observation 2.11 to apply the adjoint of the matrix U from Lemmas 3.2 and 3.3 to the
vector p2 = (p2

0, p2
1, . . . , p2

N/2−2, p2
N/2−1)

T in order to obtain the vector pm = (pm
0 , pm

1 , . . . ,

pm
N/2−2, pm

N/2−1)
T.

Comment [Only the first (N −m)/2 + 1 entries of pm interest us; the other entries vanish:
pm

(N−m)/2+1 = 0, pm
(N−m)/2+2 = 0, . . . , pm

N/2−2 = 0, pm
N/2−1 = 0.]
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6 Numerical Results

The algorithms described in this paper have been implemented in Fortran. Tables 1–8 below
report the results of applying the algorithm to functions f defined on [−1, 1] by the formulae

f(x) =
(N−m)/2∑

l=0

εl P
m

2l+m(x) (133)

when m is even and degrees are even,

f(x) =
(N−m−2)/2∑

l=0

εl P
m

2l+m+1(x) (134)

when m is even and degrees are odd,

f(x) =
(N−m−1)/2∑

l=0

εl P
m
2l+m+1(x) (135)

when m is odd and degrees are even, and

f(x) =
(N−m−1)/2∑

l=0

εl P
m

2l+m(x) (136)

when m is odd and degrees are odd; ε0, ε1, ε2, . . . are randomly generated numbers in the
interval [−1, 1]. The decomposition algorithm computes from the sample values of f the
coefficients in the representation of f as a linear combination of the functions P

m

m, P
m

m+1,
. . . , P

m
N−1, P

m
N ; the reconstruction algorithm computes the sample values of f from the

coefficients in the representation of f as a linear combination of the functions P
m
m, P

m
m+1,

. . . , P
m
N−1, P

m
N . The CPU times are in seconds. The errors are relative root-mean-square

errors.
The columns labeled “ ‘fast’ transformation” list the times taken by the algorithm to

evaluate one sum of the form (133), (134), (135), or (136).
The columns labeled “third of applying an N/2 × N/2 matrix” list the times, divided

by 3, taken to apply an N/2 × N/2 matrix once to a vector of length N/2. These times
scale quadratically with N ; the figures in parentheses are estimates used when the memory
required by direct calculations would be excessive.

Remark 6.1 The columns labeled “third of applying an N/2×N/2 matrix” give some indi-
cation of how much time current implementations of the decompositions and reconstructions
take to run; these times are believed to be reasonable estimates of how a standard package
like Spherepack (see [2]) would perform, using the “semi-naive” algorithm described in [10],
for example. Clearly, for sufficiently small N , the “slow” implementation would actually run
faster than the “fast” implementation.

The code was compiled with the Lahey-Fujitsu compiler, with optimization flag --o2,
and run on a 2.8 GHz Intel Pentium Xeon microprocessor with 512 Kb of L2 cache.
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No effort was made to optimize the precomputations. To simplify the implementation,
precomputations that take O(N2) operations were used, even though the techniques de-
scribed in [4] lead naturally to precomputations that would take only O(N log N) opera-
tions. The precomputations were run to yield approximately 6 digits of accuracy, running
all computations (including the precomputations) in double precision arithmetic.

Observation 6.2 Asymptotically, the algorithm should require a number of operations pro-
portional to N(log N) log(1/ε) to evaluate one sum of the form (133), (134), (135), or (136),
where ε ≈ 10−6. The times in the columns labeled “ ‘fast’ transformation” appear to be con-
sistent with this estimate.

7 Generalizations

The algorithm of this paper admits a number of generalizations and extensions. The list
below is not intended to be exhaustive; subjects in it are under investigation, and will be
reported at a later date.

1. Different discretizations of S2. Throughout this paper, we have assumed that the
meridians on S2 are discretized in an equispaced manner, i.e., that the points θ0, θ1, . . . ,
θN−1, θN subdivide the interval [0, π] into equal subintervals. This limitation is easily re-
moved via techniques described in [11], [16], and [5]; however, to maintain numerical stability,
the nodes have to satisfy certain quite restrictive criteria. One important collection of nodes
that does in fact lead to stable algorithms is given by the formula

θk = cos−1(xk), (137)

where x0, x1, . . . , xN−1, xN are Gaussian nodes on the interval [−1, 1] (see, for example, [2]).
Furthermore, the nodes ϕ0, ϕ1, . . . , ϕ2N−1, ϕ2N in the discretizations of the parallels on

S2 do not have to be equispaced, provided some form of the non-equispaced Fast Fourier
Transform is used; again, numerical stability requires that ϕ0, ϕ1, . . . , ϕ2N−1, ϕ2N be fairly
close to being equispaced.

2. Associated Laguerre functions. Associated Laguerre functions are defined on the
entire the half-line [0, ∞), but are very small outside of a finite interval. The Sturm-Liouville
problem that generates the associated Laguerre functions becomes an eigenvector problem for
the sum of a diagonal matrix and a semiseparable matrix when discretized using associated
Laguerre functions of low orders (very much like the associated Legendre functions).

3. Prolate Spheroidal Wave Functions. The Sturm-Liouville problem that generates the
Prolate Spheroidal Wave Functions becomes an eigenvector problem for a tridiagonal matrix
when discretized using Legendre polynomials.

4. Associated Prolate Spheroidal Wave Functions. The Sturm-Liouville problem that
generates the associated Prolate Spheroidal Wave Functions becomes an eigenvector problem
for the sum of a tridiagonal matrix and a semiseparable matrix when discretized using
associated Legendre functions of low orders.
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Table 1: Times in seconds and errors for m = N+6
2

, even degrees, reconstruction

N m “fast” trans-
formation

third of applying
an N

2
×N

2
matrix

precomp-
utation

relative
r.m.s. error

1024 515 .20E-02 .91E-03 .20E+01 .64E-07

2048 1027 .52E-02 .36E-02 .80E+01 .58E-07

4096 2051 .23E-01 .15E-01 .33E+02 .17E-06

8192 4099 .48E-01 .58E-01 .16E+03 .39E-06

16384 8195 .11E+00 .23E+00 .69E+03 .72E-06

32768 16387 .24E+00 .96E+00 .36E+04 .14E-05

65536 32771 .51E+00 (.37E+01) .14E+05 .52E-06

131072 65539 .11E+01 (.15E+02) .63E+05 .70E-05

Table 2: Times in seconds and errors for m = N+6
2

, even degrees, decomposition

N m “fast” trans-
formation

third of applying
an N

2
×N

2
matrix

precomp-
utation

relative
r.m.s. error

1024 515 .19E-02 .91E-03 .30E+01 .73E-08

2048 1027 .49E-02 .36E-02 .80E+01 .70E-08

4096 2051 .22E-01 .15E-01 .32E+02 .76E-08

8192 4099 .47E-01 .58E-01 .16E+03 .11E-07

16384 8195 .11E+00 .23E+00 .68E+03 .13E-07

32768 16387 .23E+00 .96E+00 .35E+04 .15E-07

65536 32771 .50E+00 (.37E+01) .14E+05 .20E-07

131072 65539 .12E+01 (.15E+02) .62E+05 .35E-07

25



Table 3: Times in seconds and errors for m = N−4
2

, even degrees, reconstruction

N m “fast” trans-
formation

third of applying
an N

2
×N

2
matrix

precomp-
utation

relative
r.m.s. error

1024 510 .20E-02 .91E-03 .20E+01 .77E-07

2048 1022 .53E-02 .36E-02 .90E+01 .72E-07

4096 2046 .23E-01 .15E-01 .38E+02 .65E-07

8192 4094 .49E-01 .58E-01 .17E+03 .15E-06

16384 8190 .11E+00 .23E+00 .78E+03 .41E-06

32768 16382 .24E+00 .96E+00 .34E+04 .54E-06

65536 32766 .52E+00 (.37E+01) .15E+05 .31E-06

131072 65534 .11E+01 (.15E+02) .64E+05 .41E-05

Table 4: Times in seconds and errors for m = N−4
2

, even degrees, decomposition

N m “fast” trans-
formation

third of applying
an N

2
×N

2
matrix

precomp-
utation

relative
r.m.s. error

1024 510 .19E-02 .91E-03 .20E+01 .37E-08

2048 1022 .51E-02 .36E-02 .90E+01 .79E-08

4096 2046 .22E-01 .15E-01 .38E+02 .95E-08

8192 4094 .48E-01 .58E-01 .16E+03 .11E-07

16384 8190 .11E+00 .23E+00 .77E+03 .16E-07

32768 16382 .24E+00 .96E+00 .33E+04 .15E-07

65536 32766 .51E+00 (.37E+01) .16E+05 .17E-07

131072 65534 .11E+01 (.15E+02) .62E+05 .21E-07
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Table 5: Times in seconds and errors for m = N−32
32

, odd degrees, reconstruction

N m “fast” trans-
formation

third of applying
an N

2
×N

2
matrix

precomp-
utation

relative
r.m.s. error

1024 31 .16E-02 .91E-03 .20E+01 .86E-08

2048 63 .43E-02 .36E-02 .70E+01 .20E-07

4096 127 .20E-01 .15E-01 .28E+02 .16E-06

8192 255 .43E-01 .58E-01 .11E+03 .41E-06

16384 511 .94E-01 .23E+00 .56E+03 .60E-06

32768 1023 .21E+00 .96E+00 .26E+04 .10E-05

65536 2047 .46E+00 (.37E+01) .14E+05 .14E-05

131072 4095 .10E+01 (.15E+02) .47E+05 .14E-05

Table 6: Times in seconds and errors for m = N−32
32

, odd degrees, decomposition

N m “fast” trans-
formation

third of applying
an N

2
×N

2
matrix

precomp-
utation

relative
r.m.s. error

1024 31 .15E-02 .91E-03 .20E+01 .71E-08

2048 63 .41E-02 .36E-02 .70E+01 .59E-08

4096 127 .20E-01 .15E-01 .27E+02 .82E-08

8192 255 .42E-01 .58E-01 .12E+03 .76E-08

16384 511 .92E-01 .23E+00 .55E+03 .12E-07

32768 1023 .21E+00 .96E+00 .25E+04 .13E-07

65536 2047 .45E+00 (.37E+01) .11E+05 .11E-07

131072 4095 .98E+00 (.15E+02) .46E+05 .20E-07
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Table 7: Times in seconds and errors for m = 15N
16

, odd degrees, reconstruction

N m “fast” trans-
formation

third of applying
an N

2
×N

2
matrix

precomp-
utation

relative
r.m.s. error

1024 960 .21E-02 .91E-03 .30E+01 .12E-07

2048 1920 .55E-02 .36E-02 .11E+02 .20E-07

4096 3840 .23E-01 .15E-01 .39E+02 .48E-07

8192 7680 .49E-01 .58E-01 .16E+03 .14E-06

16384 15360 .11E+00 .23E+00 .83E+03 .15E-06

32768 30720 .24E+00 .96E+00 .36E+04 .23E-06

65536 61440 .53E+00 (.37E+01) .21E+05 .12E-05

131072 122880 .11E+01 (.15E+02) .62E+05 .15E-05

Table 8: Times in seconds and errors for m = 15N
16

, odd degrees, decomposition

N m “fast” trans-
formation

third of applying
an N

2
×N

2
matrix

precomp-
utation

relative
r.m.s. error

1024 960 .20E-02 .91E-03 .30E+01 .48E-08

2048 1920 .52E-02 .36E-02 .10E+02 .74E-08

4096 3840 .23E-01 .15E-01 .38E+02 .10E-07

8192 7680 .49E-01 .58E-01 .16E+03 .11E-07

16384 15360 .11E+00 .23E+00 .81E+03 .13E-07

32768 30720 .24E+00 .96E+00 .35E+04 .18E-07

65536 61440 .51E+00 (.37E+01) .16E+05 .16E-07

131072 122880 .11E+01 (.15E+02) .60E+05 .27E-07
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