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Abstract - -  Zusammenfassung 

Fast Algorithms for the Conjugate Periodic Function. Two fast algorithms for the approximate 
computation of the conjugate periodic function are described. They are based on the fast Fourier 
transform and enable us to reduce the expenses to O(N log N) operations compared with O(N 2) 
operations for Wittich's classical method. The second algorithm, for which an ALGOL 60 procedure 
is listed, allows to evaluate the conjugate function on the even (or odd) numbered lattice points 
separately. (This feature is important for some applications.) 

Schnelle Algorithmen f'ur die Konjugierte einer periodischen Funktion. Es werden zwei schnelle 
Algorithmen fiir die angen~iherte Berechnung der Konjugierten einer periodischen Funktion be- 
schrieben. Ihre Grundlage ist die schnelle Fourier-Transformation. Gegen/iber der klassischen 
Methode von Wittich wird der Rechenaufwand yon O (N 2) Operationen auf O (N log N) Operationen 
vermindert. Der zweite Algorithmus, fiir den eine ALGOL 60-Prozedur angegeben wird, erlaubt es, 
die Konjugierte separat auf den geraden (oder ungeraden) Gitterpunkten auszuwerten. (Diese 
Eigenschaft ist in gewissen Anwendungen wichtig.) 

1. Introduction 

Several numerical methods for conformal mappings and some computational 
techniques in related areas of applied complex analysis require the approximate 
construction of the conjugate periodic function K X  (defined in Section 2) of a 
given real 2 re-periodic function X. With Wittich's classical method [6, pp. 74--80] 
one needs 2 N samples x k : = X (tk) at equidistant lattice points tg: = k ~ / N  and N 2 
real multiplications to get 2 N approximate values Yk of K X  (tk). (We are neglecting 
additions.) But the same values Yk may be obtained by first constructing the 
normalized trigonometric polynomial T interpolating X at the lattice points t k 
and then evaluating the conjugate trigonometric polynomial K T  at these points 
t k [6]. Because conjugation in frequency space is trivial, one needs essentially 
only two fast Fourier transforms (FF  7) for the realization of this method, which, 
e.g., has been applied in [12, 13]. Thus, the costs are cut down to about 
�89 N logz N - N  complex multip!ications if, e.g., N is a power of 2. Hence, this 
algorithm allows to work with large values of N, while former computations were 
limited to small ones [6]. It will be mentioned briefly by Henrici [11], too, who 
proposed it to the author in 1974. But here we present some additional details in 
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Sections 3 and 4. Moreover, we will need later the furmulas upon which this 
algorithm is based. 

As is easy to see from the structure of Wittich's matrix, the even (odd) numbered 
components of the vector y ~ R zn only depend on the odd (even) numbered 
components of x ~ N2 N. Niethammer [14] has taken advantage of this fact when 
applying the nonlinear SOR method to the discretized Theodorsen integral equa- 
tion. In Section 6 we state a fast algorithm, based on the F F T  too, for this 
separate discrete conjugation on even or odd, respectively, lattice points. With 
this algorithm we need �89 N log2 N - � 8 9  N complex multiplications to get either the 
even or the odd numbered components of y. For  the operation count we assume 
again that N is a power of 2; however, the algorithm works for any even 
positive N. An ALGOL 60 procedure for it is listed in Section 9. 

In Section 7 we discuss the advantages if X is a (2 n/m)-periodic function or an 
even function. Here too, the frequency space approach easily leads to general 
results, which surpass those of Gekeler [9]. 

The fast algorithms described in this paper are stable and relatively indifferent 
to rounding errors. However, discretization errors must be watched if X is not a 
sufficiently smooth function. Fortunately, in the last case a modification based 
upon the theory of attenuation factors [8] often yields good results. For  this we 
refer to a subsequent paper [10]. 

2. The Conjugate Periodic Function 

Let L 2 [0, 2 n] denote the space of real valued 2 n-periodic square integrable 
functions. We recall the 

Definition: For  X ~ L 2 [0, 2 n] the function Y: = K X defined by 

2re t--17 
l_l__p V. y X(z) cot dz (1) Y ( t ) : = K X ( t ) : = 2 r r  " o 2 

is called the conjugate function of X. The operator K will be refered to as 
conjugation operator. (The integral in (1) is a Cauchy principal value Lebesgue 
integral.) 

Properties of K: 

(i) K X ~ L z [0, 2 n], i.e. K is a linear operator mapping L2 [0, 2 n] into itself 
[22, p. 128]. 

(ii) If ao, al, a 2 . . . . .  b a, b 2 . . . .  are the real Fourier coefficients of X, then K X  has 
the real Fourier coefficients 0, - b  1, - b 2 ,  . . . ,  al, a 2 . . . .  [22, p. 128]. 

(iii) If % k=0,  +_ 1, +_2, ... are the complex Fourier coefficients of X, then K X  
has the complex Fourier coefficients - i sign (k) % k = 0, + 1, +_ 2, ..., where 

i :_..= V ~ "  

(iv) The operator norm [[ K l[ of K equals 1. 



F a s t  A l g o r i t h m s  fo r  the  C o n j u g a t e  Pe r iod i c  F u n c t i o n  81 

(v) K is skrew-symmetric: (KX1,  X2) = - ( X 1 ,  KX2)  if (.,.) denotes the usual 
inner product in L 2 [-0, 2 z]. 

3. Discrete Conjugation 

The simple form of the conjugation operator K when transformed into the space 
of Fourier coefficients and the efficiency of the fast Fourier transform (FFT) 
motivate the following algorithm for the approximate computation of K X: 

We discretize [-0, 2rc] by 2 N  equidistant lattice points t k :=  k rc/N and let 
Xk :=  X(tk)~ k = 0  . . . .  ,2 N - 1 .  Applying the real discrete Fourier transform FRN 
to 

x : =  (Xo, . . . ,  x2  N -  1) ~ 

yields the coefficients ao, ..., aN, bl, ..., bN- 1 of the trigonometric polynomial 

N - 1  
ao aN T ( t ) ' =  ~ - +  ~ (a m cos rot+bin sin mt) + ~ -  cos X t (2) 

m = l  

that interpolates X at the points tk: 

T (tk) = X (tk), k = 0, ..., 2 N -  1. (3) 

Due to  property (ii) of K the conjugate trigonometric polynomial K T is 

N - 1  
�9 a N . K r ( t )=  ~ (-bin cos mr+am sm m t ) + ~ -  sin N t .  

m = l  

At least if X is a sufficiently smooth function and N is large, we may expect that 
K Tis a good approximation to K X  and, in particular, that 

K T ( t k ) ~ g x  (tk), k=0 ,  ..., 2 N - 1. (4) 

These values K T (tk) can be computed simultaneously by an inverse real discrete 
Fourier transform (FfN)- 1. 

Let Yk :=  K T(tk), k=0 ,  ..., 2 N -  1, and y :=(Yo, ..., Y2N-1) T. Then the discrete 
conjugation x ~ y is a composition of three linear mappings of N 2N into itself: 

~ R  F2N 
x l '(ao, ...,aN;b1 . . . .  ,bN-1) T 

T ~fN (5) 

(F~N) -1 
Y* [ (0, - b ~  . . . . .  --bN_ i, 0; al, . . . ,  a N - l )  r 

Hence, it is itself such a mapping. The corresponding matrix 

K 2 N :  ( F f N )  - 1  R R = K 2  N F 2  N (6) 

is called Wittich's matrix. It is a discrete analogue of the conjugation operator K. 
Its elements are [-6, p. 76] 
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f 
0 if j - k  even, 

(K2N)kj: 1 ( k - j ) ~  if j - k  odd, 
t . N  -c~ 2----N~ 

(k,j=0,  ..., 2 N - 1 ) .  Note that K is a skew-symmetric circulant Toeplitz matrix, 
which has zeros in a chessboard layout. 

The multiplication of x E ~2 N by K2 N can also be considered as an application of 
the trapezoidal rule to the singular integral (1). Before the rediscovery of the fast 
Fourier transform [-5] multiplication by Wittich's matrix was one of several 
methods [cf. 6, pp. 74--85] commonly used for the numerical computation of 
conjugate periodic functions. Since every other element of K 2 N is 0, and every ele- 
ment appears twice (with different sign) in each row, this operation requires N z 
real multiplications. 

On the other hand, if N is even, the real discrete Fourier transform FfN and its 
inverse (FfN)-1 can be reduced to a complex FF T F N of half as much complex data 
(cf. [2, 4] and Section 6). These reductions require only �89 N complex multiplications 
each. (We assume that multiplications by 2 or �89 and all additions are neglected and 
that the values cos tk and sin tk have been stored.) If N is a power of 2, the 
complex F F T  costs � 8 9  complex multiplications [-1]. If N is a 
power of 4 or 8, this number can even be cut down [1]. Thus we can execute the 
discrete conjugation (5) in N log2 N - N +  1 complex multiplications. Note that 
one could work with an F F T  program that yields the coefficients only in reverse 
binary order [17]. On the other hand, N needs not be a power of 2 [18, 19]. 

For example, this simple but fast conjugation algorithm has been applied by 
P. Henrici's students Jeltsch [12] and Lundwall-Skaar [13]. 

Chawla and Ramakrishnan [3] have proposed a correction term improving the 
trapezoidal rule for integrals of the type (!)" However, it turns out that this correc- 
tion term vanishes for the Yk considered here. 

4. Complex Notation 

In complex notation, the real valued trigonometric polynomial T defined in (2) 
[and characterized by (3) and a vanishing sin (N 0-term] is 

N 

T(t)= y'  (7) 
m = - N  

where the prime indicates that the terms corresponding to m = -  N and m = N  
are to be taken with weight �89 and where 

c,~=�89 C_m=e,., m=0,  . . . ,N ,  (8) 

if bo : = bN : = 0. The complex vector 

c := (Co, ..., r N- 1), with C2s_ k := c_ k (k= 1, ..., N), 
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may be obtained by a complex discrete Fourier transform F2 N applied to x, i.e. 
c=F2N x. In view of property (iii) of the conjugation operator K, we get instead 
of(6) 

K2N=F2~  c (9) K2NF2N, 

where, with w 2 N :=  exp (i re~N), 

1 kj 
(F2N)k j ' =  ~ W2N (k,j---0, ... 2 N -  1), 

F2~ v = 2 NFfN, (10) 

KcN : = diag (0, - i . . . .  , - i, 0, i . . . .  ,0-  

Thus - -  as for any circulant matrix [21, Section 17.6J - -  the columns of F2~ are 
an orthogonal basis of eigenvectors for Wittich's matrix K 2 s, which has N - 1  
eigenvalues - i ,  N - 1  eigenvalues + i, and two zero eigenvalues. In particular, 
the spectral norm il K2 N ]1 equals 1. 

Of course, the direct implementation of (9) with the FF T is only about half as 
efficient as the real version (6). 

5. Conjugation on Even or Odd Lattice Points 

Since Wittich's matrix K 2 N features zeros in a chessboard layout including zeros 
in the diagonal, the odd (even) numbered components of y = K 2 N x only depend 
on the even (odd) numbered components of x. In fact, if we let 

X r : =  (X1, X 3, . - . ,  X 2 N - 1 )  T, X n "=  (Xo, X2, . . . ,  E2N_2)  T, 

and  define the permutation matrix P2 N by 

//x"'~ 
P2NX=\x'  ] '  

then 

where 

P 0 P2NK2• 2 N = ( L  N -Ls r~  OJ' 
(11) 

1 (2 k - 2 j +  1) 7r 
(LN)kj := (K2 s)2 k+ 1, 2 j = ~  - cot 2 N , (k , j=0  . . . .  , N -  1). (12) 

Hence, y = K 2 N x is equivalent to P2 s Y = (P2 N K2 s P2 N) P2 N x, or, 

y " =  - L ~ x ' ,  (13a) 

y' = L Nx''. (13b) 

In some applications [14 3 it is essential that these two linear transformations can 
be executed separately. However, (13 a) and (13 b) only define slow algorithms 
requiring �89 N 2 real multiplications. In the next section we will present fast 
algorithms instead. 

6* 
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6. A Fast Algorithm for the Conjugation on Even or Odd Lattice Points 

Since L is a circulant Toeplitz matrix too, there exists a factorization analogous 
to (9), i.e. FN L F/~ 1 is a diagonal matrix, which easily can be obtained explicitely 
[21, Section 17.6]. We will use an algorithmic approach to derive it and add another 
more complicated factorization, which will allow to capitalize the fact that 
x', x", y', y" are real vectors. 

We let 

c' : = F N x', c" : = F N x", c : = F 2 N x, 

and again w 2 N : = exp (i ~/N). As is well-known, see e.g. [4], the FF T itself is 
based on the fact that 

1 [  t, - k  t k t Ck=:~Ck +W:N Ck), Ck+N=�89 ' k=0,  --WzNCk) . . . . .  N - - l ,  

or in matrix notation, 

C")  

where 
WN := diag (1, w2 N, w~ N . . . .  , W~ 1). 

Hence, 

FZN: �89  (IIN N -W~jWH'~ ( o N  FON) P2N' 

F21~P2N (FoN1 f~Ol) (~N ~W;) �9 
If I~ denotes the N • N-matrix 

I~ := diag (0, 1, 1,...,  1), 
then 

(14) 

(15 a) 

(15 b) 

2N\IN - - W U  WN �9 

Using (9) and (15), we get from (11) 

(0 
L N F~ 1 I~v WN FN ' 

o r ,  

LN =- -- i FIe ~ I~ W N FN, (16 a) 

5 r =  i F ~ I I ~ W g F  N. (16b) 

Thus, L N has the eigenvalues 0 and - iw~N, k=  1 . . . . .  N - 1 .  The columns of 
F~ 1 are the corresponding right-hand eigenvectors. They are also left-hand 
eigenvectors, but the correspondence to the non-vanishing eigenvalues is in reverse 
order. Moreover, 

T - -  1 L N L N - F ~  ~ I~ W~ WNFN=FTv I*wF N, (17) 
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i.e. the matrix L T L N has rank N - 1  and N - 1  eigenvalues 1. In particular, 
spectral norm and spectral radius of L N are 1. 

It would be easy to deduce from (16) similar factorization formulas containing the 
real transform F~ instead of F N. But it is more rewarding to remember the trick 
to reduce F R to FC/2 [2, p. 65; 4]. Assume that N is even, and n :=  N/2 .  For any 
x' e N N we can compute (c) 0) 

, 2 . , n PN (18) C~ C'l "= G N x '  where G N : =  Fn 

by one single F F  T F n only. (Here, c~, c~, c~ are vectors, not components of c'.) 
In fact, if 

' d '  ' ' 
x ' l / / :=  PN X ,  := F.  (x2 + i xl),  (19) 

then we get c~, c~ eC"  from 
t 1 t t i , c 2 =g  (d + R  n d'), c, = - g  (d -Rn  d'), (20) 

where the bar indicates conjugation of complex numbers, and Rn is the reversion 
operator:  

d o for k = 0 ,  
( R n d ) k : =  d ,_  k for k = l , . . . , n - 1 .  

On the other hand, for the inverse mapping G~ 1 : c'o ~ x'  we use the formulas 

d' = c~ + i c~, (21 a) 
/ 

X ~  
N 

xl  = Re (F21 d'), xl = Im (F~- 1 d'), x' = PN ( ) (21 b) 

The mentioned algorithm for F~ utilizes the factorization (15 a) (with 2 N replaced 
by N) to compute c ' = F N x ' ,  but the evaluation of (18) needed in (15a) is 
realized according to (19) and (20). Finally, the real coefficients are easily ob- 
tained from (8): 

' ' ' k = 0 , . . ,  n. (22) ak : = 2 Re % b~ : = - 2 Im Ck, 

(Note that only [n/2] + 1 of the components of c' are required for that.) Similarly, 
! l ,  t for the inverse transform x ' = F [ v  1 c'=(FR) -1 (ao . . . .  , an, bl ,  ...,b'n-1) r we work 

with (8), (15 b), and (21). 

Since the evaluation of (18) and the corresponding inverse transform G~ ~ can 
be done very efficiently, we are inclined to rewrite (13 a), using (16 b) and (15), in 
the form 

y,, r , (23) = - - L N x  = - - i F ~ l  I~  ~ , W~, F N x = G Tv 1 ", M u G N x ,  

where 
< 

M'N := -- Jg Wn - Wn I ,  -- WH/I" 

If we further define 

V n := diag (1, 2 n W 2  N ,  W 2  N ,  " " " ,  W 2  N ) ,  
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then 

and 

/ v  
H -i 2 ~ ; n  

1<-2 

o) 
iV.  ' 

zdJ 
0) 

F~ ~ . (24) 

With M} in this form it is easy to implement the multiplication of c~ = G N X' by M) 
efficiently, cf. Section 9. Note that 

M'NC'~ F , y ~ ]  e [F,(N")] 2, 

i.e. both halves of this vector are complex transforms of a real vector. Thus, 
again, it is sufficient to compute only about half of the components, namely 
(M'N C'o)k, k = 0, ..., [N/4], N -  [N/4] - 1, ..., N -  1 ; only N complex multiplications 
are needed for that. (Here we assume again that the elements of V and V 2 have 
been stored. In a computer program, cf. Section 9, one would rather compute these 
cosine and sine values recursively. There are several methods to do that efficiently 
[16].) 

The odd numbered components of y are computed similarly: According to (13 b), 
(16 a), and (15) 

y' = L N x ,  = - i F[~ 1 I~ W N F N x" = G~ 1 M~ GN x", (25) 

where M;~ may be written in the form 

[ (  I , , - V 2 2 )  ( ~  O ) ( I , ,  V 2 2 ~ ] ( O n  O ) ( 2 6 )  
MN : = 1 -- V2 in j -- i i# n V2 In J J  Vn . 

According to (25), (23) and G~ 1 = n  G~ [cf. (10)], the matrices m~v and M} are 
related to each other by v,-m(~/r"~u-- -Mu. '  

A l g o r i t h m :  To evaluate T , --L u x compute c~ = G u x' [defined by (18)] using for- 
mulas (19) and (20), then multiply c~ by M} written in the form (24), and 
finally let 

r o t ! �9 / t d k . = (M u Co) k + t (M u Co)" + k, k = 0 . . . . .  n -  1, (27 a) 

y~ :=Re(F; td ' ) ,  yT:=Im(F21d' ) ,  - L u x  :=Pu\y~]. (27b) 

The computation of L N x" is done  analogously except that M} is replaced by 
M~ defined in (26). 

For the computation of either one of r , x" - L u x  orL  u w e n e e d o n l y � 8 9 1 8 9  
complex multiplications. So, for the evaluation of both, i.e. for the calculation of 
all components of K 2 N x, we need N loga N -  N multiplications; thus, the total 
expenses are the same as with the method sketched in Section 3, which, however, 
does not allow to compute y' (or y") if x' (or x", respectively) is unknown. Actually, 
in numerical experiments with programs coded similarly for both methods and 
containing the same complex base 2 F F T  procedure, the central processor time 
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used up was the same for N = 64, while for larger N the above new algorithm was 
even slightly faster. 

7. Conjugation of Functions With Additional Symmetries 

Now, let us assume that x is 2 M-periodic, m : =  N/M being an integer. Then 
c := F 2 N x satisfies 

0, /=1  . . . .  , M - l ;  k = 0  . . . .  , m - l ,  
C2Mk+l= Ck, / = 0 ;  k=0 ,  .., r n -  1, 

where ~ : = F 2 M 2 ,  s  o . . . .  ,X2M_I) r. Since KcN is diagonal, the vector 
d :=  K2cN c is of the same type, and y=K2Nx=F2~ d is also 2 M-periodic. Its 
2 M'first components ~ :=  (Yo, ..., Y2 M-1) satisfy 

~=F2~ Kc2M F2M 2 =K2M s (28) 

Hence, the conjugation K2N is just reduced to one in •2M and we can apply the 
methods of Sections 3 and 6 to compute it efficiently. Hereby the expenses are 
nearly reduced by a factor of m (if m << M). 

Note that - -  for any divisor M of N - -  this reduction is related to a partition of 
Wittich's matrix K 2 N: 

K2N= Am A1 "" Am-1 . 

2 A3 ... A1 

where A1, ..., A m are 2 M x 2 M-matrices, and 

(29 a) 

~ A k =  K2 M. (29 b) 
k=l  

Next, in addition, suppose that 2 is an even function, i.e. YCzM_k=2k, k--- 1, ..., M. 
Then the real discrete Fourier transform F~M yields bl . . . . .  bM-1 =0, and for 
the conjugate function we get to . . . . .  tiM=0, i.e. ~ is an odd function: 

Yo-----YM =0, YM-k = --Yk, k = l , . . . , M .  

There is a modified real FFT algorithm [4] that capitalizes these symmetries and 
nearly halves the expenses (if M is large). Unfortunately, this algorithm is un- 
stable, creating rounding errors proportional to M. This fact - -  not pointed out 
in [4-] - -  limits the application of this algorithm to the case where the mantissa of 
the computer is longer than really needed for a particular practical problem. 
Another modification by Ziegler [20] is difficult to implement and causes 
probably much overhead. 

For  the transformations L and L T it would also be possible to state fast algorithms 
taking advantage of an even (or odd) function s But here too, the idea used in [4] 
would cause instability. 
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8. Accuracy and Stability 

Rounding Errors and Stability 

The complex F F T F  N and the transforms GN, M} and M~ are all very stable with 
respect to rounding errors. In fact, F N and G N are up to a scale factor unitary, 
and every matrix in their factorization corresponding to the F F T algorithm [16] 
has this property too. Moreover, it is easy to deduce from (17), (23), and (25) that 

II M~, II = Jl M;} II = 1. (30) 

Finally, the number of arithmetic operations performed is relatively small. So, 
the algorithms described in Sections 3 and 6 are very stable both with respect to 
perturbation of data and rounding errors. 

Discretisation Errors 

If the given function X is not sufficiently smooth or if N is not sufficiently large, 
the trigonometric polynomial T(defined by (2) or (7)) may be a poor approximation 
to X. Then K T is a poor approximation to K X. Even at the lattice points, where 
T interpolates X, K T may deviate much from K X. A very simple but competitive 
error bound in terms of the (complex) Fourier coefficients Ck of X was given by 
Gaier [7]: Assuming that the Fourier series of X converges absolutely and point- 
wise he showed that 

fi:=IC-NI+ICNI+2 z [Ckl 
Ik]>N 

is a bound both for the uniform norms 11 x -  T I1~ and II K X - K  T I[~. Likewise 
[7], 

f f : = N  • IC~ l+  Y~ Ikl ICkl 
Ik l>N Ikl>N 

is a bound for the norms [1X'-  T' I]oo and It ( K X ) ' - ( K  T)' [l~ if this bound fi' 
exists and X is continuously differentiable. Actually, these bounds are solely 
based on the well-known formula 

"?o9 

Ck= S Ck+2Nj 
j =  - -  oO 

explaining the so-called aliasing effect, cf. e.g. [4]. 

The bound fl confirms that our approach is appropriate if X is analytic on a suffi- 
ciently wide strip S~ : = {z : I Im z J < c~}, since 

fl <_ 2 Coth ~ e-~N max ] X (z)[ 
z ~ Sct  

in this case E7]. However, in other circumstances the discretization error might 
be milch smaller if we approximated X by elements of another family of functions 
(e.g. splines) that is more appropriate than the family of trigonometric poly- 
nomials of degree N. In [10] we will apply attenuation factors [8] to realize 
this idea. 
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9. An ALGOL 60 Procedure for the Second Algorithm 

The following ALGOL procedure CON JUG is an implementation of the al- 
gorithm described in Section 6. The 2 N-th roots of 1 needed, w~ u, k = 1, ..., [N/4]  
are computed according to a difference equation also used by Reinsch [-15, p. 435] 
and described in [16]. It is assumed that a code procedure COMFFT for the 
complex fast Fourier transform without scale factor 1/n, i. e. for n F,,  and for the in- 
verse transform F~ -1 is available. (E. g., this could be Singleton's [-181 procedure 
FF Tfor the inverse transform; to implement n F n one had to apply it to the conjugate 
complex data and to conjugate the resulting Fourier coefficients.) Of course, if 
this code procedure COMFFT requires that n is a power of 2, then the same 
restriction holds for the parameter N of CONJ UG. If COMFF T includes scaling, 
as e.g. Reinsch's procedure FOUCOM [15, p. 435], the scaling factor FAC in 
CON JUG must be modified: FAC := N/8.0. 

"PROCEDURE" CONJUG (NLONG, EVEN) TRANS: (A, B) ; 
"VALUE" NLONG, EVEN ; 
"INTEGER" NLONG ; "BOOLEAN" EVEN ; "ARRAY �9 A, B ; 
"COMMENT" CONJUGATION OF THE SUBSEQUENCE CORRESPONDING TO THE EVEN, 

IF EVEN = "TRUE', OR ODD, IF EVEN = "FALSE', RESPECTIVELY, 
NUMBERED POINTS OF A 2N-PERIODIC ORIGINAL SEQUENCE, 
WHERE N = ABS(NLONG) IS EVEN. 
IF NLONG > 0, THE SUBSEQUENCE MUST BE STORED IN A[0:N-]], 
WHILE H[0:N§ IS ONLY USED INTERNALLY. IF NLONG < 0, 
THE SUBSEQUENCE MUST BE STORED ALTERNATELY IN A[0:N§ 
AND B[0:N+2-]], AND THESE ARRAYS NEED NOT BE LARGER. 
THE RESULT TAKES THE PLACE OF THE GIVEN SUBSEQUENCE. 
EXTERNAL PROCEDURE: COMFFT ; 

"BEGIN" 
�9 INTEGER" K, K2, N, NH, NH], NK, NV ; 
"REAL" AR, AI, BR, BI, CK], CK2, DC], DS], FAC, FR, FI, GR, GI, 

H, R, SKI, SK2, TWO ; 

"PROCEDURE" COMFFT (N, ANA, A, B) ; 
�9 VALUE" N, ANA ; 
"INTEGER" N ; "BOOLEAN" ANA ; "ARRAY" A, B ; 
"COMMENT" IF ANA, COMFFT YIELDS THE COMPLEX DISCRETE FOURIER 

TRANSFORM (ANALYSIS) OF THE SAMPLES A[K] + I * B[K), 
K=0(])N-]. THE USUAL SCALE FACTOR ]/N IS SUPPRESSED. 
IF ~ANA, COMFFT YIELDS THE INVERSE COMPLEX DISCRETE 
FOURIER TRANSFORM (SYNTHESIS) OF THE COEFFICIENTS 
A[K] + I * H[K], K=0(])N-]. 
THE RESULT TAKES THE PLACE OF THE GIVEN DATA ; 

"CODE" 0 ; 

N := ABS(NLONG) ; 
NH := N -~ 2 ; NH] := NH - ] ; 
"IF �9 NLONG > 0 "THEN" 
"BEGIN " 

"FOR �9 K := 0 "STEP" ] "UNTIL �9 NH]. "DO �9 
"BEGIN " 

K2 := 2 * K ; 
A[K] := A[K2] ; 
B!K] := A[K2+]] ; 

END K ; 
"END" NLONG>0 ; 
"COMMENT" COMPLEX FFT WITHOUT SCALE FACTOR ; 
"IF" NH > ] "THEN �9 COMFFT (NH, "TRUE', A, B) ; 
"COMMENT" CONJUGATION IN FREQUENCY SPACE ; 
NV := NH--'. 2 ; 
"IF" NV > 0 "THEN" H := 2.0*ARCTAN(].0)/NH "ELSE" H := .0 ; 
R := 2.0 * SIN(H/2.0) ; R := - R * R ; 
DC] := -0.5 * R ; DS] := SIN(H) ; 
CK] := ].0 ; SK] := .0 ; 
FAC := 0.5 / N ; TWO := 2.0 ; 
H := 2.0 * EAC * (A[0] - B[0]) ; 
"IF" ~ EVEN "THEN" 
"BEGIN " 

DS] := - DS] ; H : = - H ; TWO := - TWO ; 
END ; 
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A[0] := H ; E l 0 ]  := - H ; 

"FOR" K := ] �9 ] "UNTIL" NV "DO" 
"BEGIN �9 

DC] : = R * CKI + DC] ; CK] := CK] + DC] ; 

DS] := R * SKI + DS] ; SKI := SKI + DS] ; 

CK2 := (CK] -SK]) * (CK] + SKI) ; 
SK2 := TWO * SKI * CK] ; 

NK := NH - K ; 

FR := A[K] + A[NK] ; 
GI := A[NK] - A[K] ; 

FI : = B [K] - B [NK] ; 

GR := B[NK] + E[K] ; 

AR := FR * CK] - FI * SK] ; 

AI := FI * CK] + FR * SKI ; 

ER := GR * CK] - GI * SKI ; 

BI := GI * CK] + GR * SKI ; 

FR := AR * CK2 - AI * SK2 ; 

FI := AI * CK2 + AR * SK2 

GR := BR * CK2 + Ei * SK2 ; 
GI := BI * CK2 - BR * SK2 

"IF �9 EVEN "THEN" 

"BEGIN " 

GR : = AI - GR ; GI : = AR + GI ; 

FR := BI - FR ; FI := BR + FI ; 

END EVEN 

"ELSE " 

"BEGIN " 

H 1= GR + AI ; GR := GI - AR ; GI := H ; 

H := FR + BI ; FR := FI - ER ; FI := H ; 
"END" ODD ; 

AR := GR + GI ; AI := GR - GI ; 
BR := FR + FI '; BI := FR - FI ; 

A[K] := (AR - 8I) * FAC ; 

A[NK] := (AR + BI) * FAC ; 

B[K] := (BR + AI) * FAC ; 
B[NK] := (BR- AI) * FAC ; 

"END K ; 
�9 COM~IENT" INVERSE COMPLEX FFT ; 

"IF �9 NH > ] "THEN" COMFFT (NH, "FALSE', A, B) ; 
"IF �9 NLONG. > 0 "THEN" 

"BEGIN " 

"FOR" K := NH] "STEP" -] "UNTIL" 0 "DO �9 

"BEGIN " 

K2 := 2 * K ; 

A[K2+I] := B[K] ; 

A[K2] := A[K] ; 

"END ~ K ; 

"END" LONGA ; 

END CONJUG ; 
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