
NASA Contractor Report 198198 NASA-CR- 198198

ICASE Report No. 95-58 19960002576
p

ICASE
FAST ALGORITHMS FOR VISUALIZING FLUID

MOTION IN STEADY FLOW ON UNSTRUCTURED
GRIDS

S. K. Ueng
K. Sikorski

Kwan-Liu Ma ._-..........

i r f,.",._.\f

! !
Li ,: ,'.::

ContractNo. NAS1-19480 ._

August 1995

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

NASA Technical Ubr

3 1176 01423 1246

Fast Algorithms for Visualizing Fluid Motion
in Steady Flow on Unstructured Grids

S.K. Ueng t and K. Sikorski Kwan-Liu Ma t

Department of Computer Science ICASE, Mail Stop 132C

University of Utah NASA Langley Research Center

Salt Lake City, Utah 84112 Hampton, Virginia 23681

Abstract

The plotting of streamlines is an effective way of visualizing fluid motion in steady flows. Ad-

ditional information about the flowfield, such as local rotation and expansion, can be shown

by drawing in the form of a ribbon or tube. In this paper, we present efficient algorithms for

the construction of streamlines, streamribbons and streamtubes on unstructured grids. A spe-

cialized version of the Runge-Kutta method has been developed to speed up the integration of

particle paths. We have also derived closed-form solutions for calculating angular rotation rate

and radius to construct streamribbons and streamtubes, respectively. According to our analysis

and test results, these formulations are two to four times better in performance than previous

numerical methods. As a large number of traces are calculated, the improved performance could
be significant.

?This research was supported in part by the National Aeronautics and Space Administration under NASA

contract NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science and
Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.

1 Introduction

Streamlines, streamribbons and streamtubes are very powerful techniques for visualizing steady

vector fields. A streamline is the path of a massless particle which is released in a steady flow.

The plotting of the particle paths produces a streamline picture, which is of both qualitative

and quantitative value to the engineer. Streamline pictures allow the engineer to visualize fluid

motion and to locate regions of high and low velocity and, from these, zones of high and low

pressure.

Given a fluid flow with velocity field ff(:_(t)), a streamline is an integral curve of g. That is, a

streamline can be calculated by solving the following equation:

d (t)
- (1)

where t is a parameter along the streamline and is not to be confused with time [11].

A streamribbon can show the translation, angular rotation, and rates of shear deformation of

the flow. Ideally, it is constructed by tracing a set of streamlines originated from multiple seed

locations on a straight line segment. That is, the path swept by the deformable line segment

becomes a streamribbon. Volpe [12]constructs a streamribbon in this fashion by tracing a large

number of adjacent streamlines. However, the number of streamlines needed to form smooth

ribbon surfaces could be tremendous and the corresponding computational cost would be high.

In practice, the construction of streamribbons is simplified, though some information such as

shear deformation would be lost. In [4], a streamribbon is generated by computing only a

few streamlines and creating polygons between adjacent streamlines to form the surface of the

streamribbon. This method still requires complicated algorithms to deal with the convergence,

the divergence and the splitting of streamribbons. Darmofal and Haimes [2],Ma and Smith

[7], and Pargendarm [9] use one streamline and vectors normal to the local velocity to form a

streamribbon. In this way, the resulting ribbons only show the translation and angular rotation

of the flow. We adopt Darmofal and Haimes' algorithm by using two parallel edges to form a

streamribbon. First, a streamline is generated to serve as the first edge of the streamribbon. A

normal vector is calculated at each point of the streamline by rotating a constant length vector

about the streamline. Then the second edge of the streamribbon is formed by connecting the
end points of the normal vectors.

Formally, a streamtube is defined as the surface formed by all streamlines passing through

a given closed curve in the flow [11]. Streamtubes are used to visualize expansion, contraction

and deformation of the flow. In [2],a streamtube is created by connecting the circular crossflow

sections along a streamline. The radius of a cross flow section is determined by the local cross

flow expansion rate. A streamtube constructed in this manner does not reveal the deformation

of the flow. Again, this is a technique more computationally feasible and we adopt it in this

work. In [7], to visualize both flow convection and diffusion, statistical dispersion of the fluid

elements about a streamline is computed by using added scalar information about the root mean

square value for the vector field and its Larangian time scale. The result defines the radius of the

cross flow section and also forms a tube-like surface. Schroeder et. al. [10] introduce a technique

called Stream Polygon for visualizing local deformation of the flow.

In this paper, we present efficient algorithms to compute streamlines, streamribbons and

streamtubes on unstructured grids. Our algorithms are mainly based on those developed in

[2]. Several new computational techniques are derived and used to improve performance. These

new computational techniques include a specialized version of Runge-Kutta method, a simpler

procedure to compute the angular rotation rate of the flow and an explicit solution for calcu-

lating the radius of streamtube. The overview of our algorithms is described in Section 2. The

new computational techniques are derived in Section 3. Data structures used and the memory

requirements for using the algorithms are described in Section 4. Finally, we present some ex-

perimental results using three different data sets to demonstrate the time efficiency of the new

particle tracing algorithm.

2 Overview of the Algorithms

In this paper, we assume that all cells are linear tetrahedra. Other types of cells have to be

decomposed into tetrahedra in preprocessing stages. In a tetrahedral cell, the three components

of the vector field are linear functions of the physical coordinates. Their interpolation functions

can be formulated as:

Ul(X, y, z) = alx . bly . ClZ . dl,

u2(x,y,z) = a2x . b2y . c2z . d2, (2)

u3(x, y, z) = azx + b3y + c3z + d3.

where ui, i = 1,2, 3, are the three components of vector field; ai, hi,c4,di, i = 1, 2, 3, are the coef-

ficients of the interpolation functions; x, y, z are the physical coordinates. The above equations

can be re-written in a concise form:

= i (3)

al bl cl

B -- a2 b2 c2 (4)

a3 53 c3

z = [dl d2d3]T (5)

When calculating a streamline, it is necessary to find the cell in which this streamline enters

at each time step. A method is given in [6] to solve this problem. In this method, the physical

coordinates of the point calculated at each time step are transformed into the canonical coor-

dinates as shown in Figure 1. Then the canonical coordinates are used to determine the cell

which the streamline enters. Since the cells are linear tetrahedra, the transformation functions

of the canonical coordinates are linear functions of the physical coordinates. That is, we use the

2

Transformation

::_

PhysicalCoordinates CanonicalCoordinates

Figure 1: Coordinate System Transformation

following formulation to convert the physical coordinates into the canonical coordinates:

" = n+f_ (6)

(7)

where :_ is a physical coordinate vector, f is the canonical coordinate vector of _, and

rll r12 r13

R -- r21 r22 7"23 (8)

r31 r32 r33

= [kl (9)
To obtain rij and ki, we can solve the following linear system:

xx Yl Zl 1 rll r12 r13 [0 0 0

Z2 Y2 Z2 1 r21 r22 r23 _-- [1 0 0 (10)

x3 Y3 z3 1 r31 r32 r_ 0 1 0

x4 y4 z4 1 kl k2 k3 0 0 1

where xi, yi and zi are the physical coordinates of each node of the the cell.

2.1 Streamline Construction

Given an initial point in a physical domain, a streamline can be calculated by solving Equa-

tion 1. The 4th order Runge-Kutta method is applied to integrate the equation stepwise. After

calculating a point of the streamline, Equation 7 is used to transform the physical coordinates

of the point into the canonical coordinates. If all the three components of the canonical coordi-

nates are between 0.0 and 1.0, this point is still inside the current cell where the computation of

the point takes place. The coefficients of the interpolation functions of the current cell are still

valid for next step integration. Otherwise, a searching for a new cell which contains the point

is started according to the canonical coordinates. After finding the new cell, the computation

of next position can be performed. This pattern of calculation is repeated until the streamline

reaches a physical boundary or the number of time steps exceeds a pre-defined limit.

X(streamlin e
x(i-1) x(i)

Figure 2: Example of Streamribbon Construction

2.2 Streamribbon Construction

A streamribbon has two edges as we have described. The first edge of a streamribbon is con-

structed by calculating a streamline, and the second edge is generated by connecting the end

points of the normal vectors of the streamline. The normal vectors are calculated by rotating

a constant length vector about the streamline at each point of the streamline. The constant

length vector can be any vector which is orthogonal to the streamline at the initial point. The

surface of the streamribbon is then formed by connecting the end points of the normal vectors

and their corresponding points on the streamline. An example is depicted in Figure 2. The angle

of rotating the constant length vector is governed by:

dO 1 _.

d--7 = _(w._ (11)

= curl(g) (12)

g
y _ (13)

Ilgll

where 0 is the rotation angle. Equations 11 and 1 are solved stepwise when constructing a

streamribbon.

2.3 Streamtube Construction

A streamtube is created by generating a streamline and by connecting the circular crossflow

sections along the streamline. The radius of a streamtube is governed by the following ordinary

differential equation:

1 dr 1 V
r dt - -2 T " g (14)

du'

VT-g = V-g--_---xvx, (15)

du I

where r is the streamtube radius, VT- g is the local cross flow divergence, and _ represents the

change of velocity magnitude along the streamline. Equations 1, 11 and 14 are solved stepwise

when constructing a streamtube. Equation 1 is used to calculate the center of the streamtube,

while Equations 11 and 14 are used to calculate the angle of rotation and the radius of the

streamtube. Figure 3 contains an example of constructing a streamtube.

Streamline

CircularCrossflowSection

Figure 3: Example of Streamtube Construction

3 New Computational Methods

In order to construct streamlines, streamribbons and streamtubes, we need to solve the ODE's

mentioned in the previous sections. Based on the interpolation functions of linear tetrahedral

cells, we have developed specialized ODE solvers to speed up our algorithms.

3.1 A Specialized Version of the Runge-Kutta Method for Stream-
line Construction

By combining Equations 1 and 3 the governing equation of a streamline can be formulated as:

d (t)
dt - f(_,,t) = B_, + d (16)

The 4th order Runge-Kutta method is applied to solve this ODE:

1

:_(t + h) = _(t) + _(F1 + 2/'2 + 2F3 + F4) (17)

F_ = hf(_,t) (18)

F2 = hf(_+ F_/2,t + h/2) (19)

F3 = hf(_+ F2/2,t + h/2) (20)

F4 = hf(_ + F3,t + h) (21)

where h is the time step size. By substituting Equations 16 and 3 into the right hand sides,

Equations 18 - 21 can be expanded as:

['1 = hf(_,,t)

= h(8 +d)
F2 = hf(_ + F1/2,t + h/2)

= h(B(_ + F,/2) + d)

= (h2B/2 + h)(B_ + d)

F3 = hf(_+ F2/2, t + h/2)

= h(B(_, + F2/2) + d)

5

= (h3B_/4+ h_B/2+ _)(8_+d)
F4 = hf(_, + F3,t + h)

= h(B(_+F3)+d)
= (h4_/4+h3B_/2+h_B+h)(B_+d)

By using these equations, the Runge-Kutta method shown in Equation 17 can be expressed as:

1

_(t + h) = _(t) + _(Fa + 2F2 + 2F3 + F4)

(hB) 2 (hB) 3 (hB) 4

= (I+hB+ 2-T-.+ 3---U.+ 4---U.)x(t)
_B (_B)_ (hB)_

+h(I + -_. + 3-----7-.+ 4----U)_

= Ha_(t) + H2d (22)

= Ha_(t) + _ (23)

Since B and d are constants, Ha and d_ can be calculated by using Horner's algorithm [3].

Hereafter the computations of the 4th order Runge-Kutta method require only a matrix-vector

multiplication and a vector-vector addition.

3.2 Explicit Solution for the Angular Rotation Rate

The angular rotation rate is governed by the ODE formulated in Equation 11. Since the velocity

if is linear within a cell, the curl of ff is a constant vector. According to Equation 3, we have:

= curl(if)

= Vxif

= v ×(B_+d)

[1_- b3-c2 ca-a3 a2- bl

Then Equation 11 can be solved analytically:

dO 1 _.

= _(w.

fo a dOdt = 1_. [h
grit

dt -_w . Jo

o1_1- olol= _. (_lhl+_lo)l_

h_ _(h) _(01
O(h)= 0(0)+ _- •(ll,_(h)l-------r_+ 111'_(0)1-----_)

where 8(0) is the rotation angle at the previous time step, O(h) is the rotation angle at the current

time step, if(h) is the velocity at the current time step, and if(0) is the velocity at the previous

time step. This closed form solution is used to compute the rotation angle of the normal vector

about the streamline. The only unknown values involved in this solution are if(h) and its velocity

magnitude. Since if(h) can be calculated by using Equation 3, the major cost of this solution is

reduced to a matrix-vector multiplication.

3.3 Explicit Solution for the Radius of Streamtube

The governing equation of streamtube radius is shown in Equation 14. This ODE can be solved

analytically:

ldr = 1 [hr -2 .v VT" gdt

ifoln(_) - ln(_o)=_ v_. _dt

ln(rh) = ln(r0) + (V-ffdt- _x, dt)

From Equations 3 and 1, the divergence of ff is:

V. ff = aa + b2+ c3 (24)

and

dz' = u'dt (25)

Therefore,

_1 fo h du'ln(rh) = ln(r0) + _((al + b2 + c3)h- u,)
1

rh = roexp(_(a,+ b_+ c3)h- ln(u'h)+ ln(u'0))

1
#

rh = roexp(_(al + b2+ c3)h) u-_-° (26)
Uh

Equation 26 is used to compute the radius of streamtube, where rh is the streamtube radius at
! #

the current time step, r0 is the radius at the previous time step, u o and uh are the magnitudes

of velocity at the previous step and the current step. Since the magnitude of velocity at current

step has been calculated when computing the angle of rotation, there is no unknown value in the

right hand side of this equation. The cost of calculating rh composes only a few multiplications.

3.4 Integration Step Size

The value of h is crucial for integration of particle paths. In [1], Buning suggested to choose

this time step size based on the cell size and the inverse of velocity magnitude. Darmofal [2]

used a similar method to determine the value of h for tracing particle paths, but for constructing

streamribbons, h is further restricted by the angle of rotation to produce a smoother ribbon

surface. In our current implementation, h is fixed for the entire streamline. A default step size is

determined for the overall domain by using Buning's method at the preprocessing stage, though

h can be interactively modified.

4 Data Structures

To implement the above methods, the major data structures are composed of a list of cell records

and a list of node records. To further speed up the construction of streamlines, streamribbons

and streamtubes, at the expense of more memory space, we precompute and store the coefficients

of the vector field interpolation function, coordinate transformation function, and the specialized

Runge-Kutta method during the preprocessing stage.

As a result, a cell record has three coefficient matrices, four node numbers and four cell

numbers. The four node numbers are indices of nodes that comprise this tetrahedral cell. The

four cell numbers are indices of cells that are adjacent to this cell. The values stored in a node

record include the physical coordinates of the node as well as the vector field on the node. After

the preprocessing stage, node records become redundant and can be deleted since the cell records

contain all the information needed for performing the particle tracing.

Using our tracing method, each cell record takes

(3 matrices + 4 node indices + 4 cell indices)

= (3×(4×3) + 4 +4)×4 bytes

= 176 bytes

For a typical 500,000-cell data, about 88 megabytes are needed. If memory becomes a problem,

the matrices for the interpolation and the transformation functions can be computed on the fly,

but the curl and divergence for each cell then must be stored at the expense of much less memory

space, and the memory requirement for each cell becomes 96 bytes.

In order to compare the performance of the new algorithms with the conventional Runge-Kutta

methods, we have also implemented the second and the fourth order Runge-Kutta methods.

Similarly, to accelerate the tracing as much as possible, the matrices for the interpolation and

transformation functions are precomputed and stored. Therefore, each cell record takes

(2 matrices + 4 node indices + 4 cell indices)

= 128 bytes

However, the list of node records is needed during the tracing stage. On the other hand, without

storing these two matrices, the memory requirement becomes only 32 bytes per cell record, and

24 bytes per node record. To cope with the high memory requirements for visualizing on unstruc-

tured grids, some divide-and-conquer strategies must be taken to make possible visualization of

large data sets such as those with millions of cells.

5 Test Results

To study the performance of our algorithms, we compare experimentally our specialized Runge-

Kutta method (SRK4) with both the conventional second and fourth-order Runge-Kutta methods

(RK2 and RK4) for integrating particle paths. To derive fair measurements, as described in

previous section, all the needed matrices are precomputed and stored for the implementation

of each method. Three data sets are used for our tests. The first data set was generated

analytically; it contains 68,921 nodes uniformly positioned in a cubic domain, in which there are

totally 320,000 tetrahedra. The vector field on a node is determined by evaluating three linear

functions:

ul(x,y,z) = -0.5x - 6.0y,

us(x,y,z) = 6.0x - 0.5y,

u3(x,y,z) = -2.0z + 20.5.

The second data set is the blunt fin data set obtained from the National Aerodynamic Simula-

tion Facility at the NASA Ames Research Center. This data set was from a computational fluid

dynamics simulation of air flow over a flat plate with a blunt fin rising from the plate [5]. The

flow is symmetrical about a plane through the center of the fin, so only one half of the complete

geometry is present. Note that originally the computational grid was a single, curvilinear, struc-

tured block grid. We converted it into an unstructured grid by splitting each hexahedron into six

tetrahedra. The resulting unstructured grid contains 224,874 tetrahedral cells and 40,960 nodes.

We obtained the third data set from the NASA Langley Research Center. It was from a

computational fluid dynamics simulation of transonic flow about an ONERA-M6 wing with free-

stream Mach-number 0.84 and 3.06 degrees angle of attack [8]. There are 287,962 tetrahedral

cells and 53,961 nodes in this data set.

On each data set, one hundred seed points are randomly selected. Then, streamlines are

constructed by using these seed points. The streamline constructions are stopped when either

the streamlines reach domain boundaries or the number of time step exceeds a predefined limit

(e.g. 1,500).

Since the major function evaluations of all the three methods are of the same kind, i.e. matrix-

vector multiplication, we can predict their performance by calculating the number of function

evaluations used in these methods. For a single step integration, only one function evaluation is

9

tl_ I I I I I

R.K4
RK2

5 SR.K4

i

0 i i i i

0 20 40 60 80 i00

Numberof Streamlines

Figure 4: Timing of Constructing Streamlines on Data Set 1

required by using the SRK4 method while four function evaluations are needed if the RK4 method

is applied and two function evaluations are performed if the RK2 method is used. Theoretically,

the SRK4 method should be faster than the RK2 method by a factor of 2.0, and faster than the

RK4 method by a factor of 4.0.

The testing results for the three data sets are shown in Figure 4, Figure 5, and Figure 6.

Numbers are seconds and the measurements were performed on a Sun Sparcl0 Model 51 (50MHz).

Only the core of the integration algorithms was measured. The test results agree with our

analysis; the SRK4 method is always the fastest method while the RK4 is the slowest one.

The average cost of computing a single step integration by using these three methods are

listed in Table 1. Note that now the time unit used is microsecond. According to the data

listed in Table 1, the speed-up achieved by using the SRK4 method is slightly higher than 2.0

when compared with the RK2 method but may be lower than 4.0 when compared with the RK4

method. The lower speed-up numbers and the differences between different data sets could be due

to both the timing calculations and the overhead for fetching the coefficients of the interpolation

functions, etc.

Some visualization results generated by using the algorithms described in this paper are pre-

sented in Figure 7, 8 and 9. Figure 7 (a) shows streamribbons visualization of the analytical

data set. From this image, we can see the streamribbons spiral toward a critical point which is

a saddle point in the vector field. The streamribbons are shaded using colors according to the

velocity magnitudes. In Figure 7 (b), an image of streamtubes visualization is shown for the

same data set and using the same initial seed points. This image reveals not only rotation of the

10

{_ i I I i l

l_K4 -B--

RK2

5 SBK4 "--

4

"Iime

(see) :_

2

1

0 1 I t I

20 40 60 80 100

Numberof Streamlines

Figure 5: Timing of Constructing Streamlines on Data Set 2

(_ 1 I I I I

BK4
R.K2

5 SBK4 "*--

Time

(sec) a

2

1

0 I I I I

0 20 40 60 80 100

Numberof Streamlines

Figure 6: Timing of Constructing Streamlines on Data Set 3

11

exec. time (in/_s) SRK4 RK2 RK4

Analytical data 10.31 22.20 32.81
Blunt Fin data 9.92 21.33 34.37

ONERA-M6 Wing data 9.00 20.90 32.62

Table 1: Execution Time of a Single Time Step

flow but also expansion and contraction of the flow.

Figure 8 (a) and (b) show the streamribbon and streamtube visualization of the blunt fin data

set. For both images, the view is selected such that the blunt fin is laid down toward the viewer

and the plane surface becomes orthogonal to the viewing direction. From these two images, some

interesting flow movements are revealed near the leading edge of the fin and the plane.

Figure 9 (a) and (b) display the streamribbon and the streamtube visualization of the ONERA-

M6 wing data set. The images show the formation of a wing tip vortex caused by the flow

expanding around the wing tip due to pressure differences between the upper and lower surfaces

of the wing.

6 Conclusions

The fourth order Runge-Kutta method is the fundamental procedure for constructing streamlines.

A new computational method has been derived to speed up the Runge-Kutta method. A closed

form formula is deduced to compute the angular rotation rate of flow for making streamribbons.

We have also derived an explicit solution for computing the radius of streamtube that is governed

by an ordinary differential equation. The performance of the new methods were measured by

using three different data sets on a Sun Sparcl0. The test results match our analytic predictions.

The speed-up currently achieved can be significant resulting in better interaction when tracing

a large number of particles in a large data space.

While we have improved particle tracing calculations, the use of parallel processing can further

speed up the tracing of a significantly large number of particles. In addition, for data sets that do

not fit into the main memory of an average workstation, the design of out-of-core or distributed-

memory parallel algorithms is needed just to make visualization possible. We are currently

designing an out-of-core particle tracing algorithm.

Acknowledgments

This work has been supported in part by the NSF/ACERC. Thanks go to Dimitri Mavriplis for

the Wing data set, and the NAS program at NASA Ames Research Center for the Blunt-Fin

data set. Thanks also go to David Darmofal and the anonymous Visualization '95 Conference

reviewers who provided many useful suggestions on ways to improve the manuscript.

12

References

[1] BUNING, P. Sources of Error in the Graphical Analysis of CFD Results. Journal of Scientific

Computing 3, 2 (1988), 149-164.

[2] DARMOFAL, D., AND HAIMES, R. Visualization of 3-D Vector Fields: Variations on a

Stream, January. 1992. AIAA Paper No. 92-0074, AIAA 30th Aerospace Science Meeting

and Exhibit.

[3] GOLUB, G. H., AND VAN LOAN, C. F. Matrix Computations. The John Hopkins University

Press, 1989.

[4] HULTQUIST, J. P. M. Constructing Stream Surfaces in Steady 3D Vector Fields. In

Proceedings of Visualization '92 (1992), IEEE Computer Society, pp. 171-178.

[5] HUNG, C.-M., AND BUNING, P. Simulation of Blunt-Fin Induced Shock Wave and Turbu-

lent Boundary Layer Separation, January. 1984. AIAA Paper No. 84-0457, AIAA Aerospace

Science Conference.

[6] LOHNER, R., AND AMBROSIANO, J. A Vectorized Particle Tracer for Unstructured Grids.

Journal of Computational Physics 91 (1990), 22-31.

[7] MA, K.-L., AND SMITH, P. Cloud Tracing in Convection-Diffusion Systems. In Proceedings

of Visualization '93 Conference (October 1993), pp. 253-260.

[8] MAVRIPLIS, D. Unstructured Mesh Algorithms for Aerodynamic Calculations. In Proceed-

ings of the 13th Int. Conference on Numerical Methods in Fluid Dynamics (1992), Springer-

Verlag, pp. 62-68.

[9] PAGENDARM, H.-G., AND WALTER, B. Feature Detection from Vector Quantities in

a Numerically Simulated Hypersonic Flow Field in Combination with Experimental Flow

Visualization. In Proceedings of Visualization '9_ (1994), IEEE Computer Society, pp. 117-

123.

[10] SCHROEDER, W. J., VOLPE, C. R., AND LORENSEN, W. E. The Stream Polygon: A

Technique for 3D Vector Field Visualization. In Proceedings of Visualization '91 (1991),

IEEE Computer Society, pp. 126-132.

[11] VENNARD, J., AND STREET, R. Elementary Fluid Mechanics. John Wiley & Sons, Inc.,
1975.

[12] VOLPE, G. Streamlines and Streamribbons in Aerodynamics, January 1989. AIAA Paper

No. 89-0140, AIAA 27th Aerospace Science Meeting.

13

(a)

(b)

Figure 7: Streamribbon and Streamtube Visualization of the Analytical Data Set.

14

(a)

(b)

Figure 8: Streamribbon and Streamtube Visualization of the Blunt-Fin Data Set.

15

(a)

(b)

Figure 9: Streamribbon and Streamtube Visualization of the ONERA M6 Wing Data Set,

16

Form Approved

REPORT DOCUMENTATION PAGE OMBNo.0704-0188
PubTicreportingburdenfor thiscollectionof informationis estimatedto average1 hourperresponse,includingthetime for reviewinginstructionssearchingexisting datasources,
gatheringand maintaining the data needed,andcompletingandreviewingthecollectionof information.Sendcommentsregardingthisburdenestimateor any otheraspectofthis
collectionof information.includingsuggestionsfor reduclngthisburden,to WashingtonHeadquartersServices,Directoratefor InformationOperationsand Reports 1215Jefferson
DavisHighway,Suite 1204. Arlington.VA 22202-4302,andto the Officeof Managementand Budget,PaperworkReductionProject(0704-0188),Washington,DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1995 Contractor Report

4. TITLEANDSUBTITLE S. FUNDINGNUMBERS

FAST ALGORITHMS FOR VISUALIZING FLUID MOTION IN

STEADY FLOW ON UNSTRUCTURED GRIDS C NASI-19480

WU 505-90-52-01

6. AUTHOR(S)

S. K. Ueng
K. Sikorski
Kwan-Liu Ma

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Institute for Computer Applications in Science and Engineering REPORTNUMBER
Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001 ICASE Report No. 95-58

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

National Aeronautics and Space Administration AGENCYREPORTNUMBER

Langley Research Center NASA CR-198198

Hampton, VA 23681-0001 ICASE Report No. 95-58

II.SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report

To appear in the Proceedings of the Visualization '95 Conference

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 60, 61

13. ABSTRACT (Maximum 200 words)

The plotting of streamlines is an effective way of visualizing fluid motion in steady flows. Additional information
about the flowfield, such as local rotation and expansion, can be shown by drawing in the form of a ribbon or tube.
In this paper, we present efficient algorithms for the construction of streamlines, streamribbons and streamtnbes

on unstructured grids. A specialized version of the Runge-Kutta method has been developed to speed up the
integration of particle paths. We have also derived closed-form solutions for calculating angular rotation rate and
radius to construct streamribbons and streamtubes, respectively. According to our analysis and test results, these
formulations are two to four times better in performance than previous numerical methods. As a large number of
traces are calculated, the improved performance could be significant.

14. SUBJECT TERMS lB. NUMBER OF PAGES

Visualization; Vector Field; Particle Tracing 18

16. PRICE CODE

A03

17.SECURITYCLASSIFICATION118.SECURITYCLASSIFICATIOE19.SECURITYCLASSIFICATION20. LIMITATION
OFREPORT OFTHISPAGE OFABSTRACT OFABSTRACT
Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribedby ANSI Std. Z39-18
298-102

.J
NASA Technical L

3 1176 01423 1246

