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Abstract: — The numerically stable version of fast recursive least squares (NS-FRLS) algorithms 
represent a very important load of calculation that needs to be reduced. Its computational complexity is 
of 8L operations per sample, where L is the finite impulse response filter length. We propose an algorithm 
for adaptive filtering, while maintaining equilibrium between its reduced computational complexity and 
its adaptive performances. We present a new (M-SMFTF) algorithm for adaptive filtering with fast 
convergence and low complexity. It is the result of a simplified FTF type algorithm, where the adaptation gain 
is obtained only from the forward prediction variables and using a new recursive method to compute the 
likelihood variable. This algorithm presents a certain interest, for the adaptation of very long filters, like 
those used in the problems of echo acoustic cancellation, due to its reduced complexity, its numerical 
stability and its convergence in the presence of the speech signal. Its computational complexity is of 6L 
and this is considerably reduced to 2L+4P when we use a reduced P-size (P<<L) forward predictor. 
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1  Introduction 
In general the problem of system identification 
involves constructing an estimate of an unknown 
system given only two signals, the input signal and a 
reference signal. Typically the unknown system is 
modelled linearly with a finite impulse response 
(FIR), and adaptive filtering algorithms are 
employed to iteratively converge upon an estimate 
of the response. If the system is time-varying, then 
the problem expands to include tracking the 
unknown system as it changes over time [1]-[3]. 
There are two major classes of adaptive algorithms. 
One is the least mean square (LMS) algorithm, 
which is based on a stochastic gradient method. The 
LMS algorithm has been extensively studied, and 
many theoretical results on its transient and steady 
state performances have been obtained [3]. The 
LMS algorithm has a computational complexity of 
O(L), L is the FIR filter length. The other class of 
adaptive algorithm is the recursive least-squares 
(RLS) algorithm which minimizes a deterministic 
sum of squared errors [4]. The RLS algorithm 
solves this problem, but at the expense of increased 
computational complexity of O(L2). A large number 
of fast RLS (FRLS) algorithms have been developed 
over the years, but, unfortunately, it seems that the 
better a FRLS algorithm is in terms of 

computational efficiency, the more severe is its 
problems related to numerical stability [4]. Fast 
versions of these algorithms, namely, the fast 
Kalman [5], the fast a posteriori error sequential 
technique (FAEST) [6], and fast transversal filter 
(FTF) [7] algorithms, are derived from the RLS by 
the introduction of forward and backward 
predictors. The FRLS algorithm shows a complexity 
of O(L). Several numerical solutions of stabilization, 
with stationary signals, are proposed in the literature 
[8]–[13]. Another way of reducing the complexity 
of the fast RLS (FRLS) algorithm has been 
proposed in [14], [15]: When the input signal can be 
accurately modelled by a predictor of order P, the 
fast Newton transversal filter (FNTF) avoids 
running forward and backward predictors of order L, 
which would be required by a FRLS algorithm. The 
required quantities are extrapolated from the 
predictors of order P (P<<L). Thus, the complexity 
of the FNTF falls down to (2L+12P) multiplications 
instead of 8L. Further complexity reduction in the 
prediction part calculation of the FNTF algorithm 
can be achieved by using fast backward prediction 
based algorithm (FPLS) [16]. The computational 
requirement of this latter algorithm is 
(2L+5P+1.5P2).  Recently, the simplified FTF-type 
algorithm [17] developed for use in acoustic echo 
cancellers. This algorithm derived from the FTF 
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algorithm where the adaptation gain is obtained only 
from the forward prediction variables. The 
computational complexity of this algorithm is 7L 
when used with a full size predictor which is less 
complex than the original numerically stable 8L 
FTF algorithm.  

In this paper, we propose more complexity 
reduction of the simplified FTF-type algorithm by 
using a new recursive method to compute the 
likelihood variable. The computational complexity 
of the proposed algorithm is 6L and this 
computational complexity can be significantly 
reduced to (2L+4P) when used with a reduced P-
size forward predictor. The M-SMFTF of the 
proposed algorithm outperforms the classical 
adaptive algorithms because of its convergence 
speed which approaches that of the RLS algorithm 
and its computational complexity which is slightly 
greater than the one of the NLMS algorithm. We 
describe the NLMS and numerically stable FRLS 
(NS-FRLS) algorithms. More complexity reduction 
for simplified FTF-type (M-SMFTF) algorithm is 
proposed. At the end, we present some simulation 
results of the M-SMFTF algorithm. 

2  Adaptive Algorithms  
The main identification block diagram of a linear 
system with finite impulse response (FIR) is 
represented in Fig.1.  

 
Fig.1: Main block diagram of an adaptive filter 

The output a priori error nL,ε  of this system at 
time n is: 

nnnL yd ˆ, −=ε                         (1) 
where  is the model filter output, 

 is a vector containing the 
last L samples of the input signal , 

 is the coefficient 
vector of the adaptive filter and L is the filter 
length. The desired signal from the model is: 

nLnLny ,
T

1,ˆ xw −=

[ T
11, ...,,, +−−= LnnnnL xxxx ]

]
nx

[ T
1,1,21,11, ...,,, −−−− = nLnnnL wwww

                      (2) nLLoptnn vd ,
T

, xw+=

where  represents 

the unknown system impulse response vector and 
 is a stationary, zero-mean, and independent 

noise sequence that is uncorrelated with any other 
signal. The superscript 

[ ]T,2,1,, ...,,, LoptoptoptLopt www=w

nv

T describes transposition. 
The filter is updated at each instant by feedback 
of the estimation error proportional to the 
adaptation gain, denoted as , and according 
to:  

nL,g

nLnLnLnL ,,1,, εgww += −                  (3) 

The different algorithms are distinguished by 
the gain calculation.  

2.1 The NLMS Algorithm 
Algorithms derived from the gradient [3], for 
which the optimization criterion corresponds to a 
minimization of the mean-square error. For the 
normalized LMS (NLMS) algorithm, the 
adaptation gain is given by: 

nL
nx

nL cL ,
0,

, xg
+

=
π

µ                    (4)              

where µ  is referred to as the adaptation step and  
is a small positive constant used to avoid division by 
zero in absence of the input signal. The stability 
condition of this algorithm is 0<

0c

µ <2 and the fastest 
convergence is obtained for µ = 1 [18]. The power 

nx,π of input signal can alternatively be estimated 
using the following recursive equation [19]: 

2
1,, )1( nnxnx xγπγπ +−= −                  (5) 

where γ  is a forgetting factor ( L/1≈γ ). The 
computational complexity of the NLMS algorithm is 
2L multiplications per sample.  

2.2 The NS-FRLS Algorithm 
The filter  is calculated by minimizing the 
weighted least squares criterion according to [1]: 

nL,w

(∑
=

− −=
n

i
iL

T
nLi

in
n dJ

1

2
,,)( xww λ )              (6) 

where λ denotes the exponential forgetting factor 
(0<λ≤1). The adaptation gain is given by: 

⎪⎩

⎪
⎨
⎧

=
−

FRLS;~
RLS;

,,

,
1
,

,
nLnL

nLnL
nL

k

xR
g

γ
                 (7) 

T
,,1,

1
,,, nLnLnL

n

i

T
iLiL

in
nL xxRxxR +== −

=

−∑ λλ         (8) 

where  is an estimate of the correlation nL,R
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matrix of the input signal vector. The variables 
nL,γ  and nL,

~k  respectively indicate the likelihood 
variable and normalized Kalman gain vector. This 
latter is calculated, independently of the filtering 
part , by a FRLS algorithm using 
forward/backward linear prediction analysis over 
the signal  [1]. The calculation complexity of a 
FRLS algorithm is of order L. This reduction of 
complexity, compared to that of RLS algorithms, 
which have a complexity of order L

nL,w

nx

2, have made 
all FRLS algorithms numerically unstable. 

The numerical stability is achieved by using a 
control variable, called also a divergence 
indicator nξ  [11], theoretically equals to zero. Its 
introduction in an unspecified point of the 
algorithm modifies its numerical properties. It is 
obtained by using some redundant formulae of 
the FRLS algorithms.This variable is given by: 

⎩
⎨
⎧
≠
=

−=
practical0

theory0f
,, nLnLn rrξ          (9) 

])1[( 10 f
,

f
,

f
, nLsnLsnL rrr µµ +−=           (10a) 

   10 ≤≤ sµ                    (10b) 

where ( nLr , , 0f
,nLr  and 1f

,nLr ) are the backward a 
priori prediction errors calculate differently in 
tree ways. We define three backward a priori 
prediction errors, theoretically equivalents, which 
will be used to calculate the likelihood 
variable nL,γ , the backward prediction error 
variance nL,β and the backward prediction . 
We introduce these variables into the algorithm, 
and we use suitably the scalar parameters 

 and

nL,b

),,( bµµµ βγ
sµ , in order to obtain the 

numerical stability. For appropriate choices, we 
selected the following control parameters: 

1,0 === bµµµ βγ ; sµ =0.5             (11) 

It can be shown that the variance of the 
numerical errors in the backward predictor, with 
the assumption of a white Gaussian input signal, 
is stable under the following condition [11]: 

5.32
11

74
54

+
−=

+
+

>
LL

Lλ             (12a) 

These conditions can be written in another 
simpler form: 

L2/11−=λ                         (12b) 

The resulting stabilized FRLS (NS-FRLS) 
algorithms have a complexity of 8L; it is given in 
Table 1.  

Table1: NS-FRLS (8L) algorithm 
Initialization: : ; ; 100/2

0 LE xσ≥ 00,00,0, ;;1 EE L
L

LL === βλαγ

LLLLL 0
~

0,0,0,0, ==== kbaw . 
Variables available at the discrete-time index n: 

1,1,1,1,1,1,1, ;;;;
~

;; −−−−−−− nLnLnLnLnLnLnL wkba βαγ  
New information: , . nx nd
- Prediction Part: 
Modeling of ,  nx Lnx −

1,
T

1,, −−−= nLnLnnL xe xa ; 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

−−−
+
+

+
+
+

1,1,

,

1,,1

,
,1

1
~

0
~

~
~

nLnL

nL

nLnL

nL
nL

e

k ak
k

k
λα

; 

1,1,,1,,
~

−−− += nLnLnLnLnL e kaa γ ; 2
,1,1,, nLnLnLnL e−− += γλαα  

nLnLLnnL xr ,
T

1,, xb −− −= ; +
+−= nLnLnL kr ,11,

0f
,

~
λβ ; +

+−−
+−= nLnLnL

L
nL kr ,11,1,

11f
,

~
αγλ  

])1[( 1f
,

0f
,, nLsnLsnLn rrr µµξ +−−= ; 

nnLnL rr ξµγγ += ,, ;  nnLnL rr ξµββ += ,, ; n
b

nL
b

nL rr ξµ+= ,, ; 

1,,1,,
~~~

−
+
+

+ += nLnLnLnL k bkk ; 1,2
,,

1,
, )( −

−

−
= nL

nL
L

nL

nL
nL r

γ
λα

λα
γ γ ; 

nLnL
b

nLnLnL r ,,,1,,
~
kbb γ+= − ; 2

,,1,, )( βγλββ nLnLnLnL r+= − ; 
- Filtering Part: 

nLnLnnL d ,
T

1,, xw −−=ε ;  nLnLnLnLnL ,,,1,,
~
kww γε+= −  

Note that numerical stabilization of the algorithm 
limits the range of the forgetting factor λ (condition 
(12)) and consequently their convergence speed and 
tracking ability. 

2.3 The M-SMFTF Algorithm  
We propose a new (M-SMFTF) algorithm for 
adaptive filtering with fast convergence and low 
complexity. We present more complexity 
reduction of the simplified FTF-type algorithm by 
using a new recursive method to compute the 
likelihood variable. The simplified FTF-type 
algorithm [17] derived from the FTF algorithm 
where the adaptation gain is obtained only from 
the forward prediction variables and the 
likelihood variable is given by using the 
definition directly: 

nLnL
nL

,
T

,
, ~1

1
xk+

=γ                  (13) 

 The backward prediction variables, which are 
the main source of the numerical instability in the 
FRLS algorithms [8], [9], [11] and [12], are 
completely discarded. By using only forward 
prediction variables and adding a small 
regularization constant  and a leakage factorac η , 
we obtain a robust numerically stable adaptive 
algorithm that shows the same performances as 
FRLS algorithms. 

By taking the expression of normalized 
Kalman gain:  
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⎥
⎦

⎤
⎢
⎣

⎡
−

+⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−− 1,1,

,

1,

, 1
~

0

0

~

nLnL

nL

nL

nL e
ak

k
λα

 

⎥
⎦

⎤
⎢
⎣

⎡−
− −

− 1
1,

1,

, nL

nL

nLr b
λβ

   (14) 

and if we discard all backward prediction 
variables from (14) and use only the forward 
variables to compute the normalized Kalman 
gain:  

⎥
⎦

⎤
⎢
⎣

⎡
−

+⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−− 1,1,

,

1,

, 1
~

0

*

~

nLnL

nL

nL

nL e
ak

k
λα

       (15a) 

1,1,,1,,
~

−−− += nLnLnLnLnL e kaa γ             (15b) 

This algorithm is not very robust with 
nonstationarity input signal like speech signals. 
The first difficulty comes from 1,, −= nLnL λαα → 0. 
This convergence to zero puts FTF algorithms 
and their numerically stable versions in very 
difficult situations. Instability may occur since we 
are trying to perform numerical divisions by very 
small values. To guard against this possibility, 
like it is often done with the NLMS algorithm, we 
append a small positive constant  to the 
denominator 

ac

1,

,

−nL

nLe
λα

→
anL

nL

c
e

+−1,

,

λα
           (16) 

The second difficulty is that the forward predictor 
is locked over its last values. It is known that the 
FRLS algorithms were developed in the 
prewindowing case and all vectors are initialised 
by zero so that the algorithm starts adapting. In 
these conditions, when the input signal vanishes 
and reappears after a long period of time, the 
algorithm may diverge because of these nonzero 
values of the predictor. In other words, the 
algorithm is not well initialised when the signal 
reappears. In such conditions, it might be 
preferable to have the forward predictor  
return back to zero by doing the following 
operation: 

nL,a

nL,a → nL,aη                   (17) 

where η  is a close to one constant often called the 
leakage factor [13]. 
Let us replace the quantity (*), that has not been 
used in nL,

~k  of (15a), by the variable , we 
obtain:  

nLc ,

⎥
⎦

⎤
⎢
⎣

⎡
−+

+⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−− 1,1,

,

1,,

, 1
~

0~

nLanL

nL

nLnL

nL

c
e

c ak
k

λα
    (18) 

By exploiting certain invariance properties by 
shifting the vector input signal extended to the 
order (L+1), we obtain two writing manners of 
input vector: 

[ ]TT
,,1 , LnnLnL x −+ = xx   (19a);   (19b) [ TT

1,,,1 −+ = nLnnL x xx ]
By multiplying on the left, the members of left 
and right of the expression (18) by equations 
(19a) and (19b) respectively, the following 
equality is obtained:  

anL

nL
nLnLLnnLnLnL c

e
xc

+
+=+

−
−−−

1,

2
,

1,
T

1,,,
T

,
~~

λα
kxkx    (20) 

By manipulating the relation (20), we obtain a 
new recursive formula for calculating the 
likelihood variable as given below: 

1,,

1,
, 1 −

−

+
=

nLnL

nL
nL γδ

γ
γ                      (21) 

where  

LnnL
anL

nL
nL xc

c
e

−
−

−
+

= ,
1,

2
,

, λα
δ              (22) 

The computational complexity of the M-
SMFTF algorithm is 6L, it is given in Table2. 

Table2: M-SMFTF (6L) algorithm 
Initialization::  

LLLL 0
~

0,0,0, === kaw ; ;  ;;1 00,0, EL
LL λαγ == 100/2

0 LE xσ≥
Variables available at the discrete-time index n: 

1,1,1,1,1, ;;;
~

; −−−−− nLnLnLnLnL wka αγ  

New information: , . nx nd
- Prediction Part: 

1,
T

1,, −−−= nLnLnnL xe xa ; 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−− 1,1,

,

1,,

, 1
~

0~

nLanL

nL

nLnL

nL

c
e

c ak
k

λα
; 

{ }1,1,,1,,
~

−−− += nLnLnLnLnL e kaa γη  ; 2
,1,1,, nLnLnLnL e−− += γλαα  

LnnL
anL

nL
nL xc

c
e

−
−

−
+

= ,
1,

2
,

, λα
δ ; 

1,,

1,
, 1 −

−

+
=

nLnL

nL
nL γδ

γ
γ  

- Filtering Part:
;  nLnLnLnLnL ,,,1,,

~
kww γε+= −  nLnLnnL d ,

T
1,, xw −−=ε

2.4 The RM-SMFTF Algorithm 
The Reduced size predictors in the FTF 
algorithms have been successfully used in the 
FNTF algorithms [14], [15]. By a method of 
extrapolation, the autocorrelation matrix of order 
L is built starting from an estimate of the 
autocorrelation matrix of order P (P<<L). The 
proposed algorithm can be easily used with 
reduced size prediction part. If we denote P the 
order of the predictor and L the size of adaptive 
filter, the forward predictor and the normalized 
Kalman gain are given respectively by:   
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⎥
⎦

⎤
⎢
⎣

⎡
=

−PL

nP
nL 0

,
,

a
a                          (23a) 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−

+
+⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−

−−
PL

nP

anP

nP

nLnL

nL

c
e

c 0

1
~

0~
1,

1,

,

1,,

, a
k

k
λα

    (23b) 

where P is much smaller than L. The first (P+1) 
components of the nL,

~k  are updated using the 
reduced size forward variables, the last 
components are just a shifted version of the 
(P+1)th component of nL,

~k . For this algorithm, we 
need two likelihood variables: the first one nP,γ  , 
is used to update the forward prediction error 
variance nP,α : 

1,,

1,
, 1 −

−

+
=

nPnP

nP
nP γδ

γ
γ                       (24a) 

PnnP
anP

nP
nP xc

c
e

−
−

−
+

= ,
1,

2
,

, λα
δ              (24b) 

where  is (P+1)nPc ,
th component of nL,

~k . The 
second likelihood variable nL,γ , is used to update 
the forward predictor  of order P and the 
transversal filter :  

nP,a

nL,w

1,,

1,
, 1 −

−

+
=

nLnL

nL
nL γδ

γ
γ                          (25a) 

LnnL
anP

nP
nL xc

c
e

−
−

−
+

= ,
1,

2
,

, λα
δ                 (25b) 

The computational complexity of this algorithm is 
(2L+4P); it is given in Table 3.  

Table3: RM-SMFTF (2L+4P) algorithm 
Initialization:: ; 100/2

0 PE xσ≥

00,0, ;1 EP
PP λαγ == ; ;10, =Lγ LLL 0

~
0,0, == kw ; . PP 00, =a

Variables available at the discrete-time index n: 

1,1,1,1,1, ;;;
~

; −−−−− nLnLnLnLnL wka αγ ; 

New information: , . nx nd
- Prediction Part: 

1,
T

1,, −−−= nPnPnnP xe xa ; 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

+
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−

−−
PL

nP

anP

nP

nLnL

nL

c
e

c 0

1
~

0~
1,

1,

,

1,,

, a
k

k
λα

; 

):1(
~~

1,1, PnLnP −− = kk ; )1(
~

,, += Pc nLnP k ; 

{ }1,1,,1,,
~

−−− += nPnLnPnPnP e kaa γη  ; 2
,1,1,, nPnPnPnP e−− += γλαα  

PnnP
anP

nP
nP xc

c
e

−
−

−
+

= ,
1,

2
,

, λα
δ ; 

1,,

1,
, 1 −

−

+
=

nPnP

nP
nP γδ

γ
γ ; 

LnnL
anP

nP
nL xc

c
e

−
−

−
+

= ,
1,

2
,

, λα
δ ; 

1,,

1,
, 1 −

−

+
=

nLnL

nL
nL γδ

γ
γ ; 

- Filtering Part: 

nLnLnnL d ,
T

1,, xw −−=ε ;  nLnLnLnLnL ,,,1,,
~
kww γε+= −  

2.5 Analysis Prediction Part 
We study the errors propagation in all recursive 
quantities of the prediction part of the M-SMFTF 
algorithm. Assuming that the numerical errors are 
small, the error propagation model in the 
recursive variables can be approximated by the 
following linear model [9]: 

1∆)(∆ −= nn n φFφ                  (26) 

where 
[ ]T

,
T

,,
T

, ),~(),,( nLnLnLnLn γα ∆∆∆∆=∆ kaφ        (27) 

represent the errors cumulated up until the time n 
in the forward and Kalman recursive variables, 
and the (2L+2)x(2L+2) dimensional matrix ( )nF  
given by:     

( ) ( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
=

nn
nn

n
2221

1211

FF
FF

F                  (28) 

represents the transition matrix. The system (26) 
is said to be stable, in the mean sense, if the 
eigenvalues of ( ){ }nFE , in the steady state, are all 
less than one in magnitude [9]. The operator E{.} 
denotes the expected value. 

We approximate the errors in the forward 
variables ( , ) and the Kalman variables 
(

nL,a∆ nL,α∆

1,
~

−∆ nLk , ) by the following linear first 
order models deduced from differentiating 
( ,

1, −∆ nLγ

nL,a nL,α ) and ( nL,
~k , nL,γ ) respectively: 

( ) )(~
1,

T
1,1,1,, nanLnLnLnLLnL paxkIa +∆−=∆ −−−−γη   (29a)  

                    (29b) )(1,, npnLnL ααλα +∆=∆ −

nL,
~k∆ )(~

1, nknL
k pkM +∆= −               (29c) 

              (29d) )()( 1,, npnc nLnL γ
γ γγ +∆=∆ −

where , ,  and  represent 
the perturbation terms; and where  

)(nap )(npα )(nkp )(npγ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−−

−

11

T
1

0

00

LL

Lk

I
M                   (30)  

)1()( ,,
1,

,
nLnL

nL

nLnc γδ
γ
γγ −=

−

            (31) 

In asymptotic mode and by considering the 
averaging analysis, we can write: 

 ( ) LnLnLnLL IxkI ληγη →− −−−
T

1,1,1,
~        (32) 

{ }
1

1)(E 1 −+
→ − λλ

γ nc              (33) 

By assuming that, the perturbation terms 
remain limited. We can thus say that the system is 
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numerically stable, in the mean sense, for λ  and 
η  between zero and one.  

We note that, the necessary condition of 
stability is the limit of the errors variance in the 
forward prediction. Let us calculate the 
covariance matrix of numerical errors in forward 
predictor. For that, we use the approach statistical 

. We assume that the 

components of vector  are independent 
between them and independent of the various 
theoretical variables given in the algorithm, and 
we suppose input signal Gaussian sequence, we 
obtain theses expressions: 

{ T
,,E nLnLn aaA ∆∆= }

nL,a∆

{ })()(E T
1 nnG aann ppAA += −            (34) 

( ) ( ) ( )( )21121 22 +−+−−= LG λλη         (35) 

The stability condition of equation (34) is 
given by the solution of the following inequality: 

1<G                              (36)                                                                                

This inequality is only verified for this condition: 

)2(

)2(1111
1

2

+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

−>
L

L
η

λ                  (37) 

We note that the lower bound of this condition is 
always smaller than the lower bound of condition 
(12) of the original numerically stable FRLS 
algorithm, which means that we can choose smaller 
values for the forgetting factor for the proposed 
algorithm and consequently have faster convergence 
rate and better tracking ability. 

3  Simulation results  
To confirm the validity of our analysis and 
demonstrate the improved numerical performance, 
some simulations are carried out. All plots show the 
mean squared modelling versus the number of 
iterations. For the purpose of smoothing the curves, 
error samples are averaged over 256 points. The 
forgetting factor λ and the leakage factorη  for the 
M-SMFTF algorithm are chosen according to (37) 
with the stationary input. The regularisation 
constant  is used to limit the dynamic of the 
adaptation gain: large values give a more robust 
algorithm to the nonstationary of the input signal, 
small values of  allow more dynamic of the 
adaptation gain and may improve the convergence 
speed. In our experiments, we have used values of 

 comparable with the input signal power. 

ac

ac

ac

3.1 Comparative performances of algorithms 
We define the norm gain-error variable  by: )(nNGE

{ }( )2
,10 Elog10)( nLnNGE g∆=           (38) 

where ( )nL
f

nLnL
d

nLnL ,,,,,
~~ kkg γγ −=∆  is gain-error 

vector,   and  are likelihood variables 
calculated by the simplified FTF-type (7L) 
algorithm  given in [17] and the proposed algorithm 
M-SMFTF (6L) respectively. We have simulated the 
algorithms to verify their correctness. The input 
signal  used in our simulation is a white Gaussian 
noise, with mean zero and variance one. The filter 
length is L=32, we run the algorithms with a 
forgetting factor 

d
nL,γ f

nL,γ

nx

λ =0.9688, the leakage factor 
η =0.98 and =0.1. In Fig.2, we give the evolution 
in decibels of the norm gain-error ; we can 
see that the round-off error signal stays constant. 
These algorithms produce exactly the same filtering 
error signal. 

ac
)(nNGE

 
Fig.2: Evolution of the norm gain-error for L=32, )(nNGE

λ =0.9688, η =0.98, =0.1, Eac 0=0.5 

3.2 Comparative performances for stationary  
       signals 
We used a stationary correlated noise with a 
spectrum equivalent to the average spectrum of 
speech, called USASI noise in the field of acoustic 
echo cancellation. This signal, with mean zero and 
variance equal to 0.32, sampled at 16 kHz is filtered 
by impulse response which represents a real impulse 
response measured in a car and truncated to 256 
samples. We compare the convergence speed and 
tracking capacity of the proposed algorithm with 
NS-FRLS and NLMS algorithms. The NLMS 
( µ =1) and NS-FRLS ( L3/11−=λ ) algorithms are 
tuned to obtain fastest convergence. The 
nonstationarity of the system to be modelled is 
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simulated by introducing a linear gain variation on 
the desired signal.  

The filter length is L=256, the forgetting factor is 
( L/11−=λ ) of the M-SMFTF algorithm. And for 
RM-SMFTF algorithm, the predictor order is P, the 
forgetting factor is ( P/11−=λ ). 

Fig.3 shows that better performances in 
convergence speed are obtained for the M-SMFTF 
algorithm. The differences in the final for 
the M-SMFTF and NS-FRLS algorithms are due to 
the use of different forgetting factors

)(nMSE

λ . It is 
observed that the proposed algorithm converges 
much faster and tracks better the variation of the 
system than both NS-FRLS and NLMS algorithms 

 

 
Fig.3: Comparative performance of the algorithms for 

USASI noise, L=256. M-SMFTF: λ =0.9961, η =0.985, 
=0.5, Eac 0=1; NS-FRLS:λ =0.9987; NLMS: µ =1;  

RM-SMFTF:P=32,λ =0.9688,η =0.9985, =0.5,Eac 0=0.2. 

In Fig.4, we compare the convergence 
performance of the NLMS algorithm and RM-
SMFTF algorithm with different values for the 
leakage η . We simulated an abrupt change in the 
impulse response at the 56320th samples. We use the 
following parameters: the predictor order is P=32, 
the forgetting factor is P/11−=λ . 

The convergence speed of RM-SMFTF is much 
faster than NLMS. We notice, for the RM-SMFTF 
algorithm, that the more η  approaches one and the 
better the speed. 

 
Fig.4: Comparative performance of the RM-SMFTF and 

NLMS for USASI noise, L=256, no output noise. 
RM-SMFTF: P=32, λ =0.9688, =0.5, Eac 0=0.2, with 

different values forη ; NLMS: µ =1. 

3.3 Comparative performances for speech 
      signals 
The input signal used in the simulations is speech 
signal, sampled at 16 kHz. We compare the 
convergence speed of the proposed algorithm with 
NS-FRLS and NLMS algorithms. We simulated an 
abrupt change in the impulse response at the 56320th 
samples.  

 

 
Fig.5: Comparative performance of the algorithms with 
speech input, L=256. M-SMFTF: λ =0.9961, η =0.96, 

=0.1, Eac 0=0.5;NS-FRLS:λ =0.9996; NLMS: µ =1; 
RM-SMFTF: P=20,λ =0.950, η =0.99, =0.1, Eac 0=1. 
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The choice of the forgetting factor for NS-FRLS 
algorithm to ensure numerical stability is 

L10/11−=λ . The forgetting factor for M-SMFTF 
algorithm is L/11−=λ , but the leakage η  and the 
constant  must be carefully chosen. For the RM-
SMFTF algorithm and the predictor order is P, the 
forgetting factor is (

ac

P/11−=λ ). 
In Fig.5, we can see that the initial convergence 

is almost the same for both M-SMFTF and NS-
FRLS algorithms. But the M-SMFTF achieves 
better re-convergence after the abrupt change in the 
impulse response. From this plot, we observe that 
the re-convergence of RM-SMFTF is again faster 
than NLMS. 
Different simulations have been done for different 
sizes L and P, and all these results show that there is 
no degradation in the final steady-state of the 
reduced size predictor algorithm even for P<<L. The 
convergence speed and tracking capability of the 
reduced size predictor algorithm can be adjusted by 
changing the choice of the parameters 

)(nMSE

λ ,η  and . ac

4  Conclusion 
We have developed algorithms for adaptive 
filtering. We have proposed a new (M-SMFTF) 
algorithm for adaptive filtering with fast 
convergence and low complexity. We have 
presented more complexity reduction of simplified 
FTF type algorithm by using a new recursive 
method to compute the likelihood variable. The 
computational complexity of the M-SMFTF 
algorithm is 6L operations per sample and this 
computational complexity can be significantly 
reduced to (2L+4P) when used with a reduced P-
size (P<<L) forward predictor. This can be very 
interesting for long filters. The low computational 
complexity of the M-SMFTF when dealing with 
long filters and it a performance capabilities render 
it very interesting for applications such as acoustic 
echo cancellation. The proposed algorithm 
outperforms the classical adaptive algorithms 
because of its convergence speed which approaches 
that of the RLS algorithm and its computational 
complexity which is slightly greater than the one of 
the NLMS algorithm. The simulation has shown that 
the performances of proposed algorithm are better 
than those of the normalized least mean square 
algorithm. 
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