
 

 

 

 

 

warwick.ac.uk/lib-publications 
 

 

 

 

 

Manuscript version: Author’s Accepted Manuscript 

The version presented in WRAP is the author’s accepted manuscript and may differ from the 

published version or Version of Record. 

 

Persistent WRAP URL: 

http://wrap.warwick.ac.uk/132840                                  

 

How to cite: 

Please refer to published version for the most recent bibliographic citation information.  

If a published version is known of, the repository item page linked to above, will contain 

details on accessing it. 

 

Copyright and reuse: 

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 

University of Warwick available open access under the following conditions.  

 

Copyright © and all moral rights to the version of the paper presented here belong to the 

individual author(s) and/or other copyright owners. To the extent reasonable and 

practicable the material made available in WRAP has been checked for eligibility before 

being made available. 

 

Copies of full items can be used for personal research or study, educational, or not-for-profit 

purposes without prior permission or charge. Provided that the authors, title and full 

bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 

page and the content is not changed in any way. 

 

Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 

information. 

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 

 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/132840
mailto:wrap@warwick.ac.uk


IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Fast All-Pairs SimRank Assessment on
Large Graphs and Bipartite Domains

Weiren Yu, Xuemin Lin, Wenjie Zhang, and Julie A. McCann

Abstract—SimRank is a powerful model for assessing vertex-pair similarities in a graph. It follows the concept that two vertices

are similar if they are referenced by similar vertices. The prior work [18] exploits partial sums memoization to compute SimRank in

O(Kmn) time on a graph of n vertices and m edges, for K iterations. However, computations among different partial sums may

have redundancy. Besides, to guarantee a given accuracy ϵ, the existing SimRank needs K = ⌈logC ϵ⌉ iterations, where C is a

damping factor, but the geometric rate of convergence is slow if a high accuracy is expected. In this paper, (1) a novel clustering

strategy is proposed to eliminate duplicate computations occurring in partial sums, and an efficient algorithm is then devised to

accelerate SimRank computation to O(Kd′n2) time, where d′ is typically much smaller than m
n

. (2) A new differential SimRank

equation is proposed, which can represent the SimRank matrix as an exponential sum of transition matrices, as opposed to the

geometric sum of the conventional counterpart. This leads to a further speedup in the convergence rate of SimRank iterations.

(3) In bipartite domains, a novel finer-grained partial max clustering method is developed to speed up the computation of the

Minimax SimRank variation from O(Kmn) to O(Km′n) time, where m′ (≤ m) is the number of edges in a reduced graph after

edge clustering, which can be typically much smaller than m. Using real and synthetic data, we empirically verify that (1) our

approach of partial sums sharing outperforms the best known algorithm by up to one order of magnitude; (2) the revised notion

of SimRank further achieves a 5X speedup on large graphs while also fairly preserving the relative order of original SimRank

scores; (3) our finer-grained partial max memoization for the Minimax SimRank variation in bipartite domains is 5X–12X faster

than the baselines.

Index Terms—Structural Similarity, SimRank, Hyperlink Analysis

✦

1 INTRODUCTION

Identifying similar objects based on link structure is a
fundamental operation for many web mining tasks.
Examples include web page ranking [3], hypertext
classification (KNN) [14], graph clustering (K-means)
[4], and collaborative filtering [12]. In the last decade,
with the overwhelming number of objects on the Web,
there is a growing need to be able to automatically
and efficiently assess their similarities on large graphs.
Indeed, the Web has huge dimensions and continues
to grow rapidly — more than 5% of new objects are
created weekly [5]. As a result, similarity assessment
on web objects tends to be obsolete so quickly. Thus,
it is imperative to get a fast computational speed for
similarity assessment on large graphs.

Amid the existing similarity metrics, SimRank [12]
has emerged as a powerful tool for assessing struc-
tural similarities between two objects. Similar to the
well-known PageRank [3], SimRank scores depend
merely on the Web link structure, independent of
the textual content of objects. The major difference
between the two models is the scoring mechanism.
PageRank assigns an authority weight for each object,

• Weiren Yu and Julie A. McCann are with the Department of Comput-
ing, Imperial College London, UK.
E-mail: {weiren.yu, jamm}@imperial.ac.uk

• Xuemin Lin and Wenjie Zhang are with the School of Computer Sci-
ence and Engineering, the University of New South Wales, Australia.
E-mail: {lxue, zhangw}@cse.unsw.edu.au

whereas SimRank assigns a similarity score between
two objects. SimRank was first proposed by Jeh and
Widom [12], and has gained increasing popularity in
many areas such as bibliometrics [15], top-K search
[14], and recommender systems [1]. The intuition be-
hind SimRank is a subtle recursion that “two vertices
are similar if their incoming neighbors are similar”,
together with the base case that “each vertex is most
similar to itself” [12]. Due to this self-referentiality,
conventional algorithms for computing SimRank have
an iterative nature. The sheer size of the Web has pre-
sented striking challenges to fast SimRank computing.

Among the existing SimRank computing problems,
all-pairs SimRank assessment (i.e., finding similarities
for all pairs of vertices) is more important than single-
source SimRank assessment (i.e., finding similarities
between a query vertex and all other vertices) since, in
many real applications, people are often interested in
not only node ranking (e.g., “Which objects are similar
to a certain query object?”), but also node-pair ranking
(e.g., “What are the top-K most similar pairs of objects
in a graph?”). Generally, all-pairs SimRank contains
similarity information that can handle both node and
node-pair ranking problems. The best known algorith-
m for computing all-pairs SimRank was proposed by
Lizorkin et al. [18] (hereafter referred to as psum-SR),
which requires O(Kmn) time (O(Kn3) in the worst
case) for K iterations, where n and m denote the
number of vertices and edges, respectively, in a graph.

The beauty of psum-SR [18] resides in three obser-



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

a

i

b

c

f

h

g

e

d

(a) A paper citation network

i

e

f i

a

b g

I(a)

I(b) I(d)

e

f

b g

I(a)

Redundancy !!
s(a, b) s(a, d)

g

(b) Naive method in [12]

g

e

f

i

a

b g

I(a)

I(b)

I(d)

g

e

f

i

a

b g

I(c)

I(b)

I(d)

d
Partial

Sk

I(a)
(g)

Partial
Sk

I(a)
(e)

Partial
Sk

I(a)
(a)

Partial
Sk

I(c)(g)

Partial
Sk

I(c)
(e)

Partial
Sk

I(c)
(i)

· · · · · ·

Partial
Sk

I(a)
(f)

Partial
Sk

I(c)
(f)

Redundancy !!

s(a, b), s(a, d) s(c, b), s(c, d)

(c) psum-SR leads to redundancy among different partial sums

Fig. 1: Merit and demerit of partial sums memoizing for SimRank computation on a paper citation network

vations. (1) Essential nodes selection may eliminate the
computation of a fraction of node pairs with a-priori
zero scores. (2) Partial sums memoizing can effectively
reduce repeated calculations of the similarity among
different node pairs by caching part of similarity
summations for later reuse. (3) A threshold setting
on the similarity enables a further reduction in the
number of node pairs to be computed. Particularly,
the second observation of partial sums memoizing plays
a paramount role in greatly speeding up the computa-
tion of SimRank from O(Kd2n2) to O(Kdn2)1, where
d is the average in-degree in a graph.

Before shedding light on the blemish of psum-SR

[18], let us first revisit the central idea of partial sums
memoizing, as depicted in the following example.

Example 1. Consider a paper citation network G in
Figure 1a, where each vertex represents a paper, and
an edge a citation. For any vertex a, we denote by
I(a) the set of in-neighbors of a. Individual element
in I(a) is denoted as Ii(a). Let s(a, b) be the SimRank
similarity between vertices a and b. In what follows,
we want to compute s(a, b) and s(a, d) in G.

Before partial sums memoizing is introduced, a
naive way is to sum up the similarities of al-
l in-neighbors (Ii(a), Ij(b)) of (a, b) for computing
s(a, b), and to sum up the similarities of all in-
neighbors (Ii(a), Ij(d)) of (a, d) for computing s(a, d),
independently, as depicted in Figure 1b. In contrast,
psum-SR is based on the observation that I(b) and
I(d) have three vertices {e, f, i} in common. Thus, the
three partial sums over I(a) (i.e., PartialskI(a)(y)

2 with

y ∈ {e, f, i}) can be computed only once, and reused
for both s(a, b) and s(a, d) computation (see left part of
Figure 1c). Similarly, for computing s(c, b) and s(c, d),
since I(b)∩I(d) = {e, f, i}, the partial sums over I(c)
(i.e., PartialskI(c)(x) with x ∈ {e, f, i}) can be cached
for later reuse (see right part of Fig. 1c). �

Despite the aforementioned merits of psum-SR,
existing work [18] on SimRank has some limitations.

Firstly, we observe from Example 1 that computing

1. As n ·d = m, O(Kmn) time in [18] is equivalent to O(Kdn2).
2. Recall from [18] that a partial sum for a binary function f : X ×

Y → R over a set D = {x1, · · · , xn} ⊆ X , denoted by Partial
f
D(⋆),

is defined as

Partial
f
D(y) =

∑

xi∈D

f(xi, y), (y ∈ Y).

partial sums over different in-neighbor sets may have
redundancy. For instance, I(a) and I(c) in Fig. 1c
have two vertices {b, g} in common, implying that
the sub-summation Partialsk{b,g}(⋆) is the common part

shared between the partial sums PartialskI(a)(⋆) and

PartialskI(c)(⋆). Thus, there is an opportunity to speed
up the computation of SimRank by preprocessing
the common sub-summation Partialsk{b,g}(⋆) once, and

caching it for both PartialskI(a)(⋆) and PartialskI(c)(⋆)
computation. However, it is a big challenge to i-
dentify the well-tailored common parts for maximal
sharing among the partial sums over different in-
neighbor sets since there could be many irregularly
and arbitrarily overlapped in-neighbor sets in a real
graph. To address this issue, we propose optimization
techniques to have such common parts memoized in a
hierarchical clustering manner, and devise an efficient
algorithm to eliminate such redundancy.

Secondly, the existing iterative paradigm [18] for
computing SimRank has a geometric rate of conver-
gence, which might be, in practice, rather slow when
a high accuracy is attained. This is especially evident
in e.g., citation networks and web graphs [13]. For
instance, our experiments on a DBLP citation network
shows that a desired accuracy of ϵ = 0.001 may lead to
more than 30 iterations of SimRank, for the damping
factor C = 0.8. Lizorkin et al. has proved theoretically
in [18] that, for a desired accuracy ϵ, the number of
iterations required for the conventional SimRank is
K = ⌈logC ϵ⌉, which is mainly due to the geometric
sum of the traditional representation of SimRank. This
highlights the need for a revised SimRank model to
speed up the geometric rate of convergence.

Moreover, for bipartite domains, a variant model
of SimRank proposed by Jeh and Widom in [12,
Section 4.3.2], called the Minimax Variation SimRank,
may also have duplicate efforts in computing the
partial max over every out-neighbor set for all vertex-
pair similarities. However, we observe that the choices
of granularity for partial max memoization may be
different from those for partial sums memoization.
This is because, in the context of partial sums sharing,
“subtraction” is allowed to compute one partial sum
from another, whereas, in the context of partial max
sharing, “subtraction” is disallowed. We will provide
a detailed discussion in Section 5.

Contributions. Below are our main contributions.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

• We propose an adaptive clustering strategy based
on a minimum spanning tree to eliminate dupli-
cate computations in partial sums [18] (Section
3). By optimizing the sub-summations sharing
among different partial sums, an efficient algo-
rithm is devised for speeding up the computation
of SimRank from O(Kdn2) [18] to O(Kd′n2) time,
where d′ (≤ d) can, in general, be much smaller
than the average in-degree d.

• We introduce a new notion of SimRank by using
a matrix differential equation to further accelerate
the convergence of SimRank iterations from the
original geometric to exponential rate (Section 4).
We show that the new notion of SimRank can be
characterized as an exponential sum in terms of
the transition matrix while fairly preserving the
relative order of SimRank. We also devise a space-
efficient iterative paradigm for computing differ-
ential SimRank, which integrates our previous
techniques of sub-summations sharing without
sacrificing extra memory space.

• We investigate the partial max sharing problem
for speeding up the computation of the Minimax
SimRank variation in bipartite graphs, a variant
model proposed in [12, Section 4.3.2]. We show
that the partial max sharing problem is different
from the partial sums sharing problem, due to
“subtraction” curse in the context of max op-
erator. To resolve this issue, we devise a novel
finer-grained partial max clustering strategy via
edge concentration, improving the computation
of Minimax SimRank variation from O(Kmn) to
O(Km′n) time, where m′ (≤ m) is the number of
edges in a reduced graph after edge clustering,
which is practically smaller than m (Section 5).

• We conduct extensive experiments on real and
synthetic datasets (Section 6), demonstrating that
(1) our approach of partial sum sharing on large
graphs can be one order of magnitude faster
than psum-SR; (2) our revised notion of Sim-
Rank achieves up to a 5X further speedup a-
gainst the conventional counterpart; (3) for the
Minimax SimRank variation in bipartite domains,
our finer-grained partial max sharing method is
5X–12X faster than the baselines in CPU time.

Related Work. The earliest mention of SimRank dates
back to Jeh and Widom [12] who suggested (i) an
iterative approach to compute SimRank, which is in
O(Kd2n2) time, along with (ii) a heuristic pruning
rule to set the similarity between far-apart vertices to
be zero. Unfortunately, the naive iterative SimRank
is rather costly to compute, and there is no provable
guarantee on the accuracy of the pruning results. To
overcome the limitations, a very appealing attempt
was made by Lizorkin et al. [18] who (i) provided
accuracy guarantees for SimRank iterations, i.e., the
number of iterations needed for a given accuracy ϵ

is K = ⌈logC ϵ⌉, and (ii) proposed three excellent
optimization approaches, i.e., essential node-pair s-
election, partial sums memoization, and threshold-
sieved similarities. Especially, partial sums memoiz-
ing serves as the cornerstone of their strategies, which
significantly reduces the computation of SimRank to
O(Kdn2) time. Our work differs from [18] in the
following. (i) We put forward the phenomenon of
partial sums redundancy in [18] that typically exists
in real graphs. (ii) We accelerate the convergence of
SimRank iterations from geometric [18] to exponential
growth. (iii) In bipartite domains, we also develop
techniques of partial max sharing for the Minimax
SimRank variation model.

There has also been a flurry of interests (e.g., [1], [6],
[11], [14]–[16]) in SimRank optimization. Li et al. [15]
first based SimRank computation on the matrix repre-
sentation. They developed very interesting SimRank
approximation techniques on a low-rank graph, by
leveraging the singular value decomposition and ten-
sor product. However, (i) for digraphs, the upper
bound of approximation error still remains unknown.
(ii) The computational time in [15] would become
O(n4) even when the rank of an adjacency matrix
is relatively small, e.g., ⌈√n⌉ (≪ n). The pioneering
work of He et al. [11] deployed iterative aggregation
techniques to accelerate the global convergence of
parallel SimRank, in which the speed-up in the global
convergence of SimRank is due mainly to the different
local convergence rates on small matrix partitions.
Recently, the new notions of weight- and evidence-
based SimRank have been suggested in [1] to address
the issue of query rewriting for sponsored search.
Fogaras et al. [6] adopted a scalable Monte Carlo
sampling approach to estimate SimRank by using the
first meeting time of two random surfers. Li et al. [16]
employed an effective method for locally computing
single-pair SimRank by breaking the holistic nature of
the SimRank recursion. Lee et al. [14] devised a top-
K SimRank algorithm needing to access only a small
fraction of vertices in a graph. Most recently, Fujiwara
et al. [7] proposed an excellent SVD-based SimRank
for efficiently finding the top-k similar nodes w.r.t. a
given query.

2 PRELIMINARIES

We revisit the two forms of SimRank, i.e., the iterative
form [12], [18], and the matrix form [11], [15]. The
consistency of two forms was pointed out in [15].

2.1 Iterative Form of SimRank

For a digraph G = (V, E) with a vertex set V and an
edge set E , let I (a) be the in-neighbor set of a, i.e.,

I(a) = {x ∈ V|(x, a) ∈ E}.

The SimRank score between vertices a and b, denoted
by s(a, b), is defined as (i) s(a, a) = 1; (ii) s(a, b) = 0,



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

if I(a) = ∅ or I(b) = ∅; (iii) otherwise,

s(a, b) = C
|I(a)||I(b)|

∑

j∈I(b)

∑

i∈I(a)
s(i, j), (1)

where C ∈ (0, 1) is a damping factor, and |I(a)| is the
cardinality of I(a).

The above formulas naturally lead to the iterative

method. Start with s0(a, b) =
{

1, a=b;
0, a ̸=b. , and for k =

0, 1, · · · , set (i) sk+1(a, a) = 1; (ii) sk+1(a, b) = 0, if
I (a) = ∅ or I (b) = ∅; (iii) otherwise,

sk+1(a, b) =
C

|I(a)||I(b)|

∑

j∈I(b)

∑

i∈I(a)
sk(i, j). (2)

The resultant sequence {sk(a, b)}∞k=0 converges to
s(a, b), the exact solution of Eq.(1).

2.2 Matrix Form of SimRank

In matrix notations, SimRank can be formulated as

S = C · (Q · S ·QT ) + (1− C) · In, (3)

where S is the similarity matrix whose entry [S]a,b is
the similarity score s(a, b), Q is the backward transi-
tion matrix whose entry [Q]a,b = 1

|I(a)| if there is an
edge from b to a, and 0 otherwise, and In is an n× n
identity matrix.

3 ELIMINATING PARTIAL SUMS DUPLICATE

COMPUTATIONS

The existing method psum-SR [18] of performing
Eq.(2) is to memoize the partial sums over I(a) first:

Partial
sk
I(a)(j) =

∑

i∈I(a)
sk(i, j), (j ∈ I(b)) (4)

and then iteratively compute sk+1(a, b) as follows:

sk+1(a, b) =
C

|I(a)||I(b)|

∑

j∈I(b)
Partial

sk
I(a)(j). (5)

Consequently, the results of PartialskI(a)(j), ∀j ∈ I(b),
can be reused later when we compute the similarities
sk+1(a, ⋆) for a given vertex a as the first argumen-
t. However, we observe that the partial sums over
different in-neighbor sets may share common sub-
summations. For example in Figure 1c, the partial
sums PartialskI(a)(⋆) and PartialskI(c)(⋆) have the sub-

summation Partialsk{b,g}(⋆) in common. By virtue of
this, we show how to optimize sub-summations shar-
ing among different partial sums in this section.

3.1 Partition In-neighbor Sets for (Inner) Partial

Sums Sharing

We first introduce the notion of a set partition.

Definition 1. A partition of a set D, denoted by P(D),
is a family of disjoint subsets Di of D whose union is D:

P(D) = {D1,D2, · · · ,Dp}, with p = |P(D)|,

where Di ∩ Dj = ∅ for i ̸= j, and
∪p

i=1 Di = D.

For instance, P(I(b)) = {{f, g}, {e, i}} is a partition
of the in-neighbor set I(b) = {f, g, e, i} in Fig 1a.

The set partition is deployed for speeding up Sim-
Rank computation, based on the proposition below.

Proposition 1. For two distinct vertices a and b with
I(a) ̸= ∅ and I(b) ̸= ∅, sk+1(a, b) can be iteratively
computed as

sk+1(a, b) =
C

|I(a)||I(b)|

∑

j∈I(b)

∑

∆∈P(I(a))

Partial
sk
∆ (j). (6)

Here, Partial
sk
∆ (j) is defined as Eq.(4) with I(a) replaced by ∆.

Sketch of Proof: The proof follows immediately
from the facts that (i) for two disjoint sets A and B,
PartialskA (j) + PartialskB (j) = PartialskA∪B(j), ∀j, and
(ii)

∪

∆∈P(I(a)) = I(a), ∀a ∈ V .
The main idea in our approach is to share the com-

mon sub-summations among different partial sums,
by precomputing the sub-summations Partialsk∆ (⋆)
over ∆ ∈ P(I(a)) once, and caching them in a
block fashion for later reuse, which can effectively
avoid repeating duplicate sub-summations. As an
example in Figure 1c, when I(c) is partitioned as
P(I(c)) = {I(a), {d}} with I(a) = {b, g}, once
computed, the sub-summations PartialskI(a)(⋆) can be

memoized and reused for computing PartialskI(c)(⋆).
In contrast, psum-SR [18] has to start from scratch to
compute PartialskI(a)(⋆) and PartialskI(c)(⋆), indepen-
dently, due to no reuse of common sub-summations.

The selection of a partition P(I(a)) for an in-
neighbor set I(a) has a great impact on the perfor-
mance of our approach. Troubles could be expected
when a selected partition P(I(a)) is too coarse or
too fine. For instance, if I(a) is taken to be a trivial
partition of itself, i.e., P(I(a)) = {I(a)} for every
vertex a, Eq.(6) can be simplified to the conventional
psum-SR iteration in Eq.(5). From this perspective,
our approach is a generalization of psum-SR. On the
other hand, if the partitions of I(a) become finer
(i.e., the size of ∆ ∈ P(I(a)) is smaller), there is a
more likelihood of Partialsk∆ (⋆) with a high density of
common sub-summations, but with a low cardinality
on similarity values to be clustered. An extreme ex-
ample is a discrete partition of I(a), i.e., P(I(a)) =
{{x}|x ∈ I(a)}, where every block is a singleton
vertex. In such a case, Eq.(6) would deteriorate to
the naive iteration [12] in Eq.(2), which may be even
worse than psum-SR. Thus, it is desirable to find
the best partition P(I(a)) for each I(a) that has the
largest and densest clumps of common vertices.

The problem of finding such optimal partitions to
minimize the total cost of partial sums over different
in-neighbor sets, referred to as Optimal In-neighbors
Partitioning (OIP), can be formulated as follows:

Given a graph G = (V, E), OIP is to find the optimal
partition P(I(a)) = {∆i

a | i = 1, · · · , |P(I(a))|} of
each in-neighbor set I(a), a ∈ V , for creating chunks
∆i

a such that the total number of additions required
for computing all the partial sums PartialskI(a)(⋆) over

every I(a), a ∈ V , is minimized by reusing the sub-



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

summation results Partialsk∆i
a
(⋆) over chunks ∆i

a.

Proposition 2. The OIP problem is NP-hard.

(Please refer to Appendix A for a detailed proof.)

We next seek for a good heuristic method for OIP.

Main Idea. Consider a directed graph G = (V, E). For
every two in-neighbor sets I(a) and I(b) of vertices
a, b ∈ V , we first calculate the transition cost from I(a)
to I(b), denoted by T CI(a)→I(b), as follows: 3

T CI(a)→I(b) , min{|I(a)⊖ I(b)|, |I(b)| − 1}, (7)

where ⊖ is the symmetric difference of two sets. 4

Thus, the value of T CI(a)→I(b) is actually the number
of additions required to compute the partial sum
PartialskI(b)(⋆), given the partial sum PartialskI(a)(⋆).
Then, we construct a weighted digraph G = (V ,E )
whose vertices correspond to the non-empty in-
neighbor sets of G, with an extra vertex corresponding
to an empty set ∅, i.e., V = {I(a) | a ∈ V} ∪ {∅}.
There is an edge from I(a) to I(b) in G if |I(a)| ≤
|I(b)|. The weight of an edge (I(a), I(b)) ∈ E rep-
resents the transition cost T CI(a)→I(b). Finally, we
find a minimum spanning tree of G , denoted by
T , whose total transition cost is minimum. Hence-
forth, every edge (I(a), I(b)) in T implies the fol-
lowing: (i) PartialskI(a)(⋆) should be computed pri-

or to PartialskI(b)(⋆) computation, which provides an
optimized topological sort for efficiently computing
all the partial sums. (ii) I(b) needs to be partitioned
as I(b) ∩ I(a) and I(b)\I(a), meaning that the re-
sult of PartialskI(a)(⋆) can be cached and shared with

PartialskI(b)(⋆) computation.

The following example depicts how this idea works.

Example 2. Consider the network G in Figure 1a,
with the vertices and the corresponding non-empty
in-neighbor sets depicted in Figure 2a. We show how
to find a decent ordering for partial sums computing
and sharing in G.

Firstly, we compute the transition cost of each
pair of in-neighbor sets (along with an empty set
∅) in G, by using Eq.(7). The results are shown in
Figure 2b, where each cell describes the transition
cost from the in-neighbor set in the left most column
to the in-neighbor set in the top line. For instance,

3. Without loss of generality, only in the case of |I(a)| ≤ |I(b)|,
we need to compute T CI(a)→I(b). This is because we are interested
only in the cost of computing Partial

sk
I(b)

(⋆) by using the given

Partial
sk
I(a)

(⋆). Conversely, if utilizing the result of Partial
sk
I(b)

(⋆)

to compute Partial
sk
I(a)

(⋆), for |I(a)| ≤ |I(b)|, then we have to

introduce the “subtraction” to undo the summation that we have
already done, which is often an extra operation.

4. The symmetric difference of two sets A and B, denoted by A⊖B,
is the set of all elements of A or B which are not in both A and B.
Symbolically,

A⊖ B = (A\B) ∪ (B\A).

As an example in Fig 1c, given I(b) = {g, e, f, i} and I(d) =
{e, f, i, a}, we have I(b)⊖ I(d) = {g, a}.

the cell ‘2#’ at row ‘I(e)’ column ‘I(b)’ shows that
T CI(e)→I(b) = 2. This cell is tagged with #, indicating
that the partial sum PartialskI(b)(⋆) can be computed

from the memoized result of PartialskI(e)(⋆) (rather
than from scratch). This is because the transition cost
2 is, in essence, obtained from the 2 operations of
symmetric difference (i.e., |I(e)⊖I(b)| = |{e, i}| = 2) in
lieu of the 3 additions (i.e., |I(b)| − 1 = 3) w.r.t. Eq.(7).
Note that the lower triangular part of the table in
Figure 2b remains empty since we are interested only
in the cost T CI(x)→I(y) when |I(x)| ≤ |I(y)|.

Next, we build a weighted digraph G in Figure 2c,
with vertices corresponding to the non-empty in-
neighbor sets (plus ∅) of G (which are in column
‘I(⋆)’ of Figure 2a), and edge weights to the transition
costs. For instance, the weight of the edge (I(e), I(b))
in G is associated with the cell ‘2#’ at row ‘I(e)’
column ‘I(b)’ in Figure 2b. Thus, every path in G

yields a linear ordering of partial sums computation.
More importantly, partial sums sharing may occur in
the edges tagged with #. As an example, the path

∅
1−→ I(e) 2#−−→ I(b) in G shows that (i) PartialskI(e)(⋆)

is computed from scratch (from ∅) with 1 operation,
and (ii) PartialskI(b)(⋆) is obtained by reusing the result

of PartialskI(e)(⋆), involving 2 operations.

Finally, we find a directed minimum spanning tree
T of G , by starting from the vertex ∅, and choos-
ing the cheapest path for partial sums computing
and sharing, as depicted in bold edges in Figure 2c.
Consequently, using depth-first search (DFS), we can
obtain 3 paths from T for partial sums optimization,
as shown in Figure 2d. �

Using this idea, we can identify the moderate par-
titions of each in-neighbor set in G, with large and
dense chunks for sub-summations sharing. Such parti-
tions are not optimal, but can, in practice, achieve bet-
ter performances than psum-SR. Proposition 3 shows
the correctness.

Proposition 3. Given two distinct non-empty in-neighbor
sets I(a) and I(b), and a partial sum PartialskI(a)(⋆), if

|I(a)⊖ I(b)| < |I(b)| − 1, then we have the following:

(i) I(b) can be partitioned as

I(b) = (I(b) ∩ I(a)) ∪ (I(b)\I(a)). (8)

(ii) The partial sum PartialskI(b)(⋆) can be computed

from the cached result of PartialskI(a)(⋆) as follows

Partial
sk
I(b)(y) = Partial

sk
I(a)(y)−

∑

x∈I(a)\I(b)

sk(x, y)

+
∑

x∈I(b)\I(a)

sk(x, y), (y ∈ V) (9)

with |I(a)⊖ I(b)| operations being performed.

Sketch of Proof: The proof of Eq.(8) is trivial,
whereas the proof of Eq.(9) is based on the facts
that (i) B = (A\(A\B)) ∪ (B\A), (ii) PartialskA\B(j) =



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

vertex I(⋆)
a {b, g}
e {f, g}
h {b, d}
c {b, d, g}
b {f, g, e, i}
d {f, a, e, i}

(a) In-neighbors in G

I(a) I(e) I(h) I(c) I(b) I(d)
∅ 1 1 1 2 3 3

I(a) 1 1 1# 3 3

I(e) 1 2 2# 3

I(h) 1# 3 3

I(c) 3 3

I(b) 2#

(b) Transition Costs (Edge Weights) in G

I(h)

I(a)

I(e)I(c)

I(b)

I(d)
1

1

1

2

3

3

1

1

1
#

3

3

1

2

2
#

3

1
#

3

3

33

∅

2
#

(c) Minimum Spanning Tree T of G

∅

I(h)

I(b)

I(e)

I(d)

I(a)

I(c)

∅∅

1 1 1

1
#

2
#

2
#

① ③②

(d) Partial Sums Order

Fig. 2: Constructing a minimum spanning tree T to find an optimized topological sort for partial sums sharing

PartialskA (j)− PartialskB∩A(j), ∀j.
In Appendix B, we give an illustrative example to

show how to find all the partitions of in-neighbor sets
for partial sums sharing via Proposition 3.

3.2 Use In-neighbor Set Partitions for Outer Sums

Sharing

After in-neighbor set partitions have been identified
for (inner) partial sums sharing, optimization methods
in this subsection allow outer partial sums sharing for
further speeding up SimRank computation.

To avoid ambiguity, we refer to the sums w.r.t. the
index i in Eq.(4) as (inner) partial sums, and the sums
w.r.t. the index j in Eq.(5) as outer partial sums.

Our key observation is as follows. Recall from Eq.(5)
that, given the memoized results of partial sums
PartialskI(a)(⋆), the existing algorithm psum-SR for

computing sk(a, b) is to sum up PartialskI(a)(y), one by

one, over all y ∈ I(b). Such a process can be pictorially
depicted in the left part of Figure 1c, in which each
horizontal bar represents a partial sum over I(a).
In order to compute s(a, b), we need to add up the
horizontal bars (i.e., the partial sums) in the first four
rows. However, while computing s(a, d) by adding up
the horizontal bars in the last four rows, we observe
that the three horizontal bars at rows ‘e’,‘f ’,‘i’ may
suffer from repetitive additions. As another example
in the right part of Figure 1c, for computing s(c, b)
and s(c, d), the sum of the three horizontal bars at
rows ‘e’,‘f ’,‘i’ is again a repeated operation. As such,
the major problem of Eq.(5) is the one-by-one fashion
in which the partial sums PartialskI(a)(y) for y ∈ I(b)
are added together.

Our main idea in optimizing Eq.(5) is to split I(b)
into several chunks ∆i

b first, such that

P(I(b)) = {∆i
b | i = 1, · · · , |P(I(b))|},

and then add up the cached results of partial sums in
a chunk-by-chunk fashion to compute sk+1(a, b) as

sk+1(a, b) =
C

|I(a)||I(b)|

∑

∆i
b
∈P(I(b)) OuterPartial

I(a),sk
∆i

b

(10)

with

OuterPartial
I(a),sk
∆i

b

,
∑

j∈∆i
b

PartialskI(a)(j).

In contrast with Eq.(5), our method in Eq.(10) can
eliminate the redundancy among different outer par-
tial sums. Once computed, the outer partial sum

OuterPartial
I(a),sk
∆i

b

is memoized and can be reused

later without recalculation again. As an example in
Figure 1c, suppose I(b) and I(d) are split into

I(b) = {g} ∪ {e, f, i}, I(d) = {e, f, i} ∪ {a},

the outer partial sum OuterPartial
I(a),sk
{e,f,i} is computed

only once and can be reused in both sk+1(a, b) and
sk+1(a, d) computation.

The problem of finding an ideal partition P(I(b))
of I(b) for maximal sharing outer partial sums is still
NP-hard, and its proof is the same as that of OIP in
Proposition 2. Thus, the partitioning techniques for
(inner) partial sums sharing in Subsection 3.1 can be
applied in a similar way to optimize outer partial
sums sharing. In other words, the partitions of in-
neighbor sets in Eq.(8) for (inner) partial sums shar-
ing, once identified, can be reused later for outer
partial sums sharing. The correctness is verified in
Proposition 4.

Proposition 4. Given two non-empty in-neighbor sets

I(b) and I(d), an outer partial sum OuterPartial
I(a),sk
I(b) ,

and (inner) partial sums PartialskI(a)(⋆), if |I(b)⊖I(d)| <
|I(d)| − 1, then we have the following:

(i) OuterPartial
I(a),sk
I(d) can be computed from the mem-

oized results of OuterPartial
I(a),sk
I(b) , ∀a ∈ V , as follows:

OuterPartial
I(a),sk
I(d) = OuterPartial

I(a),sk
I(b) −

−
∑

x∈I(b)\I(d)

Partial
sk
I(a)(x) +

∑

x∈I(d)\I(b)

Partial
sk
I(a)(x), ∀a ∈ V

with |I(b)⊖ I(d)| operations being performed.
(ii) sk+1(a, d), ∀a ∈ V\{d}, can be computed as

sk+1(a, d) =
C

|I(a)||I(d)|
OuterPartial

I(a),sk
I(d) , ∀a ∈ V\{d}. (11)

(The proof is similar to Proposition 3. We omit it here.)
In Appendix B, we provide an example to illustrate

how to use outer partial sums sharing for further
speeding up the computation of SimRank.

3.3 An Algorithm for Computing SimRank

We next present a complete algorithm to efficiently
compute SimRank, by integrating the aforementioned
techniques of inner and outer partial sums sharing.

The main result of this subsection is the following.

Proposition 5. For any graph G, it is in O(dn2+Kd′n2)
time and O(n) intermediate memory to compute SimRank



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

Algorithm 1: OIP-SR (G, C,K)

Input : graph G = (V, E), damping factor C,
iteration number K.

Output: SimRank scores sK(⋆, ⋆).
1 construct a transitional MST T ← DMST-Reduce (G);
2 initialize s0(x, y)←

{ 1, x=y
0, x ̸=y ∀x, y ∈ V

3 for k ← 0, 1, · · · ,K − 1 do
4 foreach vertex u ∈ O(#) in the MST T do
5 foreach vertex y ∈ V in G do
6 Partial

sk
I(u)(y)←

∑

x∈I(u) sk(x, y) ;

7 sk+1(u, ⋆)← OP (T ,G, u, C, k, Partial
sk
I(u)(⋆));

8 while O(u) ̸= ∅ do
9 v ← O(u) ;

10 foreach vertex y ∈ V in G do
11 Partial

sk
I(v)(y)← Partial

sk
I(u)(y)−

∑

x∈I(u)\I(v)

sk(x, y) +
∑

x∈I(v)\I(u)

sk(x, y);

12 sk+1(v, ⋆)← OP(T ,G, v, C, k, Partial
sk
I(v)(⋆));

13 u← v ;

14 foreach vertex y ∈ V in G do
15 free Partial

sk
I(u)(y) ;

16 while O(u) ̸= ∅ do
17 v ← O(u), free Partial

sk
I(v)(y), u← v;

18 return sK(⋆, ⋆) ;

similarities of all pairs of vertices for K iterations, where
d is the average vertex in-degree of G, and d′ ≤ d.

Note that d′ is affected by the overlapped area size
among different in-neighbor sets in G. Typically, d′ is
much smaller than d as in-neighbor sets in G may
have many vertices in common in real networks. That
is, our approach of partial sums sharing can compute
SimRank more efficiently than psum-SR in practice,
as opposed to the O(Kdn2)-time of the conventional
counterpart via separate partial sums over each in-
neighbour set in G. Even in the extreme case when
all in-neighbor sets in G are pair-wise disjoint, our
method can retain the same complexity bound of
psum-SR in the worst case.

We next prove Proposition 5 by providing an al-
gorithm for SimRank computation, with the desired
complexity bound.

Algorithm. The algorithm, referred to as OIP-SR, is
shown in Algorithm 1. Given G, a damping factor C,
and the total iteration number K, it returns sK(⋆, ⋆)
of all pairs of vertices.

(Please refer to Appendix C for the detailed descrip-
tions of algorithm OIP-SR and procedures OP and
DMST-Reduce.)

Correctness & Complexity. OIP-SR consists of two
phases: (i) building an MST T (line 1), and (ii) com-
puting similarities (lines 2-18). One can readily verify
that (i) OIP-SR correctly computes the similarities
sk(u, v) in G for each vertex pair (u, v); and (ii) the
total time of OIP-SR is bounded by O(Kd′n2), with
d′ ≤ d, and in practice, d′ ≪ d.

(Please see Appendix D for the detailed analysis.)

4 EXPONENTIAL RATE OF CONVERGENCE

FOR SIMRANK ITERATIONS

For a desired accuracy ϵ, the existing paradigm (via
Eq.(2)) for computing SimRank needs K = ⌈logC ϵ⌉
iterations [18]. In this section, we introduce a new no-
tion of SimRank that is based on a matrix differential
equation, which can significantly reduce the number
of iterations for attaining the accuracy ϵ while fairly
preserving the relative order of SimRank.

The main idea in our approach is to replace the
geometric sum of the conventional SimRank by an
exponential sum that provides more rapid rate of
convergence. We start by expanding the conventional
SimRank matrix form (in Eq.(3))

S = C · (Q · S ·QT ) + (1− C) · In,

as a power series:

S = (1− C) ·
∑∞

i=0
Ci ·Qi · (QT )

i
, (12)

where we notice that the coefficient for each ter-
m in the summation makes a geometric sequence
{1, C, C2, · · · }. For this expansion form, the effect of
damping factor Ci in the summation is to reduce the
contribution of long paths relative to short ones. That
is, the conventional SimRank measure considers two
vertices to be more similar if they have more paths of
short length between them. Following this intuition,
we observe that there is an opportunity to speed
up the asymptotic rate of convergence for SimRank
iterations, if we allow a slight (and with hindsight
sensible) modification of Eq.(12) as follows:

Ŝ = e−C ·
∑∞

i=0

Ci

i! ·Qi · (QT )
i
, (13)

Comparing Eq.(12) with Eq.(13), we notice that Ŝ

is just an exponential sum rather than S that is a
geometric sum. Since the exponential sum converges
more rapidly, such a modification can speed up the
computation of SimRank. In addition, the modified
coefficient for each term in the summation of Eq.(13)

that yields the exponential sequence {1, C
1! ,

C2

2! , · · · }
still obeys the intuition of the conventional counter-

part, i.e., the efficacy of damping factor Ci

i! is to reduce
the contribution of long paths relative to short ones.

4.1 Closed Form of Exponential SimRank

With the modified notion of SimRank in Eq.(13), we
now need to define an Eq.(3)-like recurrence for Ŝ.

Definition 2. Let Ŝ(t) be a matrix function w.r.t. a scalar
t. The matrix differential form of SimRank is defined
to be Ŝ , Ŝ(t)|t=C such that Ŝ(t) satisfies the following
matrix differential equation:

dŜ(t)
dt = Q · Ŝ(t) ·QT , Ŝ(0) = e−C · In. (14)



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

Note that the solution of Eq.(14) is unique since the
initial condition Ŝ(0) = e−C · In is specified. Based on
Definition 2, it is crucial to verify that Ŝ (in Eq.(13))
is the solution to Eq.(14). Proposition 6 shows the
correctness.

Proposition 6. The matrix differential form of SimRank
in Eq.(14) has an exact solution Ŝ given in Eq.(13).

(Please refer to Appendix A for a detailed proof.)

To iteratively compute Ŝ, the conventional way is
to use the Euler method [2] for approximating Ŝ(t) at
time t = C. Precisely, by choosing a value h for the
step size, and setting tk = k · h, one step of the Euler
method from tk to tk+1 is

Ŝk+1 = Ŝk + h ·Q · Ŝk ·QT , Ŝ0 = Ŝ(0) = e−C · In.

Subsequently, the value of Ŝk is an approximation
of the solution to Eq.(14) at time t = tk, i.e., Ŝk ≈
Ŝ(tk). However, the approximation error of the Euler
method hinges heavily on the choice of step size h,
which is hard to determine since the small choice of
h would entail huge computational cost for attaining
high accuracy. To address this issue, we adopt the
following iterative paradigm for computing Ŝ as
{

Tk+1 = Q ·Tk ·QT

Ŝk+1 = Ŝk + e−C · Ck+1

(k+1)! ·Tk+1
with

{
T0 = In

Ŝ0 = e−C · In
(15)

Note that the main difference in our approach, as
compared to the Euler method, is that there is no need
for the choice of a particular step size h to iteratively
compute Ŝ. The correctness of our approach can be
easily verified, by induction on k, that the value of Ŝk

in our iteration Eq.(15) equals the sum of the first k
terms of the infinite series Ŝ in Eq.(13).

4.2 A Space-Efficient Iterative Paradigm

Although the paradigm of Eq.(15) can iteratively com-
pute Ŝk that converges to the exponential SimRank Ŝ,
we observe that Eq.(15) requires additional memory
space to store the intermediate result Tk per iteration.
In this subsection, we provide an improved version
of Eq.(15) that can produce the same result without
using extra space for caching Tk.

Proposition 7. Given any total iteration number K, the
following paradigm can be used to iteratively compute S̃K :
{

S̃0 = e−C · In,
S̃k+1 = C

K−k
·Q · S̃k ·QT + e−C · In. (k = 0, · · · ,K − 1)

(16)

The result of S̃K at the last iteration is exactly the same
as ŜK in Eq.(15).

The main idea of our improved paradigm Eq.(16)
is based on two observations: (1) For every iteration
k = 0, 1, · · · ,K, the result of Ŝk in Eq.(15) is actually
the sum of the first k terms of the infinite series Ŝ in
Eq.(13). (2) For any total iteration number K, the result
of S̃K at the last iteration in Eq.(16) equals the sum of

the first K terms of the infinite series Ŝ in Eq.(13). Both
of these observations can be readily verified by direct
inductive manipulations. As an example for K = 3,
our improved paradigm Eq.(16) iteratively computes

Ŝ3 = e−C ·∑3
i=0

Ci

i! ·Qi · (QT )
i

as follows:

S̃3 = e−CIn + CQ
(

e−CIn + C
2 Q

S̃1
︷ ︸︸ ︷

(e−CIn + C
3 Q ·QT )QT

)

︸ ︷︷ ︸

S̃2

QT .

The merit of Eq.(16) over Eq.(15) is the space efficiency
— in Eq.(16), we do not need to use an auxiliary ma-
trix Tk to store the temporary results. Moreover, since
Eq.(16) has a very similar form to the SimRank matrix
form in Eq.(3), our partial sums sharing techniques in
Section 3 can be directly applied to the iterative form
of Eq.(16), i.e., when a ̸= b, for k = 0, 1, · · · ,K − 1,

[S̃k+1]a,b =
C

(K−k)|I(a)||I(b)|
∑

j∈I(b)

∑

i∈I(a)
[S̃k]i,j .

It is worth noticing that in Eq.(15), we can itera-
tively compute Ŝk+1 from Ŝk for any k = 0, 1, · · · ,
whereas, in Eq.(16), for any given K, we can only iter-
atively compute S̃k+1 from S̃k for k = 0, 1, · · · ,K − 1,
but we cannot compute S̃K+1 from S̃K . This means
that, to guarantee a given accuracy ϵ, we have to
determine the total number of iterations K in an a-
priori fashion for Eq.(16), in contrast with Eq.(15) in
which K can be determined in an either a-priori or
a-posteriori style. Fortunately, this requirement is not
an obstacle to Eq.(16), since in the next subsection we
will show a nice a-priori bound of the total iteration
number K for Eq.(16) to attain a given accuracy ϵ.

4.3 Error Estimate

In the SimRank matrix differential model, the follow-
ing estimate for the k-th iterative similarity matrix Ŝk

with respect to the exact one Ŝ can be established.

Proposition 8. For each iteration k = 0, 1, 2, · · · , the
difference between the k-th iterative and the exact similarity
matrix in Eqs.(13) and (15) can be bounded as follows:

∥Ŝk − Ŝ∥max ≤ Ck+1

(k+1)! , (17)

where ∥X∥max , maxi,j |xi,j | is the max norm.

(Please refer to Appendix A for a detailed proof.)

For the SimRank differential model Eq.(13), Propo-
sition 8 allows finding out the exact number of iter-
ations needed for attaining a desired accuracy, based
on the following corollary.

Corollary 1. For a desired accuracy ϵ > 0, the number of
iterations required to perform Eq.(15) is

K ′ ≥
⌈

ln ϵ′

W (
1

e·C ·ln ϵ′)

⌉
, with ϵ′ = (

√
2π · ϵ)−1

.

Here, W (⋆) is the Lambert W function [10].

(Please see the Appendix A for a detailed proof.)



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

Noting that ln(x)−ln(ln(x)) ≤ W (x) ≤ ln(x), ∀x > e
[10], we have the following improved version of
Corollary 1, which may avoid computing the Lambert
W function.

Corollary 2. For a desired accuracy 0 < ϵ < 1√
2π

e−C·e2 ,

the number of iterations needed to perform Eq.(15) is

K ′ ≥
⌈− ln(

√
2π·ϵ)

η−ln(η)

⌉
with η = ln(− 1

e·C · ln(
√
2π · ϵ)).

Comparing this with the conventional SimRank
model that requires K = ⌈logC ϵ⌉ iterations [18] for
a given accuracy ϵ, we see that our revision of the
differential SimRank model in Eq.(14) can greatly
speed up the convergence of SimRank iterations from
the original geometric to exponential rate.

As an example, setting C = 0.8 and ϵ = 0.0001, since
1√
2π

e−0.8·e2 = 0.0011 > 0.0001, we can use Corollary 2

to find out the number of iterations K ′ in Eq.(15)
necessary to our differential SimRank model Eq.(14)
as follows:

η = ln(− 1
e·0.8 · ln(

√
2π · 0.0001)) = 1.3384,

K ′ ≥
⌈ − ln(

√
2π·0.0001)

1.3384−ln(1.3384)

⌉
=

⌈
8.2914
1.0469

⌉
= 7.

In contrast, the conventional SimRank model Eq.(2)
needs K = ⌈log0.8 0.0001⌉ = 41 iterations.

For ranking purpose, our experimental results in
Section 6 further show that the revised notion of
SimRank in Eq.(14) not only drastically reduces the
number of iterations for a desired accuracy, but can
fairly maintain the relative order of vertices with
respect to the conventional SimRank in [18].

5 PARTIAL MAX SHARING FOR MINIMAX

SIMRANK VARIATION IN BIPARTITE GRAPHS

Having investigated the partial sums sharing problem
for optimizing SimRank computation in Section 4, we
now focus on the partial max sharing problem for
optimizing the computation of the Minimax SimRank
variation, a model proposed in [12, Section 4.3.2].

Given a bipartite graph G = (V ∪ W , E), for any
vertex A ∈ V , the out-neighbor set of A is defined as

O(A) = {x ∈ V|(A, x) ∈ E}.

For every two distinct vertices A and B in V , the
similarity of the Minimax SimRank variation, denoted
as s(A,B), is defined as follows [12]:

sA(A,B) = C
|O(A)|

∑

i∈O(A)
max

j∈O(B)
s(i, j),

sB(A,B) = C
|O(B)|

∑

j∈O(B)
max

i∈O(A)
s(i, j),

s(A,B) = min{sA(A,B), sB(A,B)}.

The Minimax SimRank variation model is particu-
larly useful when we sometimes do not need to com-
pare all A’s neighbors with all B’s. An real application
for this model is depicted in Appendix F.

To compute s(A,B), the conventional method is to
perform the following iterations:

s0(A,B) =
{

1, A=B;
0, A ̸=B.

For k ≥ 0, we define (i) sAk+1(A,B) = 0 if O(A) = ∅;
(ii) sBk+1(A,B) = 0 if O(B) = ∅; (iii) otherwise,

sAk+1(A,B) = C
|O(A)|

∑

i∈O(A)
max

j∈O(B)
sk(i, j),(18)

sBk+1(A,B) = C
|O(B)|

∑

j∈O(B)
max

i∈O(A)
sk(i, j),(19)

sk+1(A,B) = min{sAk+1(A,B), sBk+1(A,B)}. (20)

We can readily prove that limk→∞ sk(A,B) = s(A,B).

To speed up the computation of sk(⋆, ⋆) for all pairs
of vertices, we can first memoize the partial max in
Eq.(18) 5 as follows:

Partial Maxsk
O(B)(i) = max

j∈O(B)
sk(i, j), (21)

and then compute sAk+1(A,B) as

sAk+1(A,B) = C
|O(A)|

∑

i∈O(A)

Partial Maxsk
O(B)(i). (22)

Thus, the memoized results of Partial Maxsk
O(B)(⋆)

can be reused in all sXk+1(X,B) computations, ∀X ∈ V .

It should be pointed out that, although Eqs.(21)
and (22) have a very similar form to Eqs.(4) and (5),
we only can apply the (outer) partial sums sharing
technique of Section 3.2 to further speed up the sum-
mations in Eq.(22), but may not always employ the
(inner) partial sums sharing technique of Section 3.1 to
accelerate the partial max computation in Eq.(21). The
reason is that, for partial sums sharing, “subtraction”
is allowed to compute one partial sum from another
(see Eq.(9) in Proposition 3), whereas, for partial max
sharing, “subtraction” is disallowed in the context of
“max” operator since the maximum value of a set X may
be unequal to the maximum value of a subset of X . We
call this the “subtraction” curse of max operation.

Example 3. Suppose O(B) = {c, d, e, f, j} and O(D) =
{d, e, f, g, h, i}, with three vertices {d, e, f} in common.
Since O(D) = O(B) − {c, j} ∪ {g, h, i}, according to
Proposition 3, the partial sums PartialskO(D)(⋆) can be

computed from the memoized PartialskO(B)(⋆) as

PartialskO(D)(⋆) = PartialskO(B)(⋆) + Partialsk{g,h,i}(⋆)

−Partialsk{c,j}(⋆). (23)

However, in the context of partial max sharing, we
may not obtain the partial max Partial Maxsk

O(D)(⋆)

directly from the memoized Partial Maxsk
O(B)(⋆) via

an Eq.(23)-like approach. This is because “subtraction”

5. In the following, we shall focus solely on optimizing Eq.(18).
A similar method can be applied to Eq.(19).



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

is involved in Eq.(23) — although we know

Partial Max
sk
O(B)∪{g,h,i}(⋆)

= max{Partial Max
sk
O(B)(⋆), Partial Max

sk
{g,h,i}(⋆)},

we do not know how to derive Partial Maxsk
O(D)(⋆)

from the results of Partial Maxsk
O(B)∪{g,h,i}(⋆) and

Partial Maxsk
{c,j}(⋆), which is due to the “subtrac-

tion” curse in the context of max operator. �

This example tells that, for every two out-neighbor
sets O(X) and O(Y ), only when O(X) ⊆ O(Y ), then
the partial max Partial Maxsk

O(X)(⋆) can be reused for

computing Partial Maxsk
O(Y )(⋆) as

Partial Max
sk
O(Y )(⋆)

= max{Partial Max
sk
O(X)(⋆), Partial Max

sk
O(Y )\O(X)(⋆)}.

Unfortunately, the condition O(X) ⊆ O(Y ) is too re-
strictive in real-life networks for partial max sharing.
In practice, out-neighbors are often overlapped irregu-
larly in many real-world graphs, i.e., O(X)∩O(Y ) ̸= ∅.
It is imperative for us to find a new different way
of partial max sharing, which can effectively avoid
the “subtraction” curse for computing the Minimax
SimRank variation.
Partial Max Sharing. The main idea of our approach
is based on a finer-grained partial max sharing. Given
two out-neighbor sets O(X) and O(Y ), if O(X) ∩
O(Y ) ̸= ∅, then we first memoize the finer-grained
partial max over the common subset O(X) ∩ O(Y ):

z(⋆) = Partial Maxsk
O(X)∩O(Y )(⋆), (24)

then reuse z(⋆) to compute both Partial Maxsk
O(X)(⋆)

and Partial MaxO(Y )(⋆) as

Partial Max
sk
O(X)

(⋆) = max{Partial Max
sk
O(X)\O(Y )

(⋆), z(⋆)},

Partial Max
sk
O(Y )

(⋆) = max{Partial Max
sk
O(Y )\O(X)

(⋆), z(⋆)}.

In comparison, the partial sums sharing approach in
Section 3, if ported to the partial max sharing, on-
ly allows Partial Maxsk

O(Y )(⋆) being computed from

another memoized partial sums Partial Maxsk
O(X)(⋆)

or from scratch (depending on the transition costs);
since “subtraction” is not allowed in the context of
max operator, Partial Maxsk

O(Y )(⋆) have to be calcu-

lated from scratch if O(X) * O(Y ). Fortunately, our
approach can share the common subparts for both
Partial Maxsk

O(X)(⋆) and Partial Maxsk
O(Y )(⋆) com-

putation while preventing the “subtraction” curse.
Edge Concentration. To find out the common sub-
parts z(⋆) in Eq.(24) for all out-neighbor sets sharing,
we first introduce the notion of biclique.

Definition 3. Given a bipartite digraph G = (V ∪W, E),
a pair of two disjoint subsets (V ′,W ′), with V ′ ⊆ V and
W ′ ⊆ W , is called a biclique if (v′, w′) ∈ E for all v′ ∈ V ′

and w′ ∈ W ′.

Clearly, a biclique (V ′,W ′) is a complete subgraph
in the bipartite digraph G = (V ∪ W , E), denoting

A B D E

b c d e f g h i

z1 z2

G = (V ∪W , E) Ĝ = (V ∪W ∪ Z, Ê)

a

A B D E

b c d e f g h ia

Fig. 3: Edge Concentration

the densest parts in G. For example in the left part
of Figure 3, ({B,D}, {c, d, e, f}) (dashed arrows) and
({A,D,E}, {g, h}) (dotted arrows) are two bicliques.

Bicliques are utilized for finding out the common
subparts for partial max sharing. A biclique, say
({B,D}, {c, d, e, f}), in G means that the out-neighbor
sets O(B) and O(D) have common vertices {c, d, e, f}.
Thus, Partial Maxsk

{c,d,e,f}(⋆) can be reused for both

Partial Maxsk
O(B)(⋆) and Partial Maxsk

O(D)(⋆) com-
putation. Pictorially, such a partial max sharing op-
timization process can be depicted by the edge concen-
tration [17] of a biclique in G. As shown in the right
part of Figure 3, after edge concentration, a biclique,
say ({B,D}, {c, d, e, f}), can be simplified into a triple
({B,D}, z1, {c, d, e, f}), where we call z1 ∈ Z a concen-
tration vertex. Each triple, say ({B,D}, z1, {c, d, e, f}),
tells us the following: (1) First, all the out-neighbors
of vertex z1 can be clustered together to produce the
memoized results z1(⋆), i.e.,

z1(⋆) = Partial Maxsk
{c,d,e,f}(⋆).

(2) Then, each in-neighbor of vertex z1, say B, indi-
cates that the memoized z1(⋆) can be reused in partial
max computation Partial Maxsk

O(B)(⋆), i.e.,

Partial Maxsk
O(B)(⋆) = max{Partial Maxsk

{b}(⋆), z1(⋆)}.

Therefore, applying edge concentration to every
biclique of G provides a very efficient way for par-
tial max sharing. The main advantage is that, after
edge concentration, the number of edges in every
biclique (V ′,W ′) can be reduced from |V ′| × |W ′| to
|V ′|+ |W ′|. It is worth mentioning that for every fixed
vertex x, the total cost of performing the partial max
Partial Maxsk

O(⋆)(x) over all out-neighbor sets O(⋆)

is equal to the number |E| of edges in G. Hence, our
goal of minimizing the total cost of the partial max is
equivalent to the problem of minimizing the number
of edges in G via edge concentration. However, this
problem is NP-hard, as proved in our early work [15].
Thus, to find bicliques in G, we invoke a heuristic [4].
Algorithm. We next present an algorithm for comput-
ing Minimax SimRank variation in a bipartite graph.
The algorithm, max-MSR, is shown in Appendix E.
It takes as input the bipartite graph G = (V ∪ W , E),
a damping factor C, and the number of iterations K,
and returns all pairs of Minimax SimRank similarities.
Correctness & Complexity. We can verify max-MSR

correctly finds sK(⋆, ⋆), satisfying Eqs.(18)–(20).
The time of max-MSR is bounded by O(Km′n),

where m′ = |E|−∑N
i=1 (|V ′

i| × |W ′
i| − |V ′

i| − |W ′
i|), with



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

N being the total number of bicliques (V ′
i,W ′

i) in the
bipartite graph G = (V ∪W, E). Here, m′ ≤ |E|, and in
practice, m′ is much smaller than |E| since there could
be many small dense parts in real bipartite graphs.

We analyze the time complexity in Appendix E.

6 EMPIRICAL EVALUATION

6.1 Experimental Setting

Datasets. For the basic SimRank model, we use three
real datasets (BERKSTAN, PATENT, DBLP) to evaluate
the efficiency of our approaches, and one synthetic
dataset (SYN) to vary graph characteristics. For the
Minimax SimRank variation model in bipartite do-
mains, we use two real datasets (COURSE and IMDB)
and one syntectic bipartite dataset (SYNBI).

The sizes and detailed descriptions of these datasets
are depicted in Appendix G.

Compared Algorithms. We implement 7 algorithms
via Visual C++ 8.0. (1) OIP-DSR, our differential
SimRank of Eq.(16)6 in conjunction with partial sums
sharing. (2) OIP-SR, our basic SimRank using partial
sums sharing. (3) psum-SR [18], without partial sums
sharing. (4) mtx-SR [15], a matrix-based SimRank via
SVD factorization. (5) max-MSR, our bipartite Min-
imax SimRank variation using finer-grained partial
max sharing. (6) psum-MSR, the baseline bipartite
Minimax SimRank variation, with partial max sharing
via Eq.(21). (7) MSR [12, Section 4.3.1], the original
iterative bipartite Minimax SimRank variation.

We set the following default parameters, as used in
[18]: C = 0.6, ϵ = 0.001 (unless otherwise mentioned).
For all the methods, we clip similarity values at 0.001,
to discard far-apart nodes with scores less than 0.001
for storage. It can significantly reduce space cost with
minimal impact on accuracy, as shown in [18].

Evaluation Metrics. To assess ranking results on real
data, we used Normalized Discounted Cumulative Gain
(NDCG) [15]. The NDCG at rank position p is defined
to be NDCGp = 1

IDCGp

∑p
i=1 (2

ranki − 1)/log2 (1 + i),

where ranki is the graded relevance at position i, and
IDCGp is a normalization factor, ensuring the NDCG
of an ideal ranking at position p is 1.

To test the relative order preservation of OIP-DSR

relative to OIP-SR, we choose the ranking of OIP-SR

as the “ideal” relevance (a baseline), and the ranking
of OIP-DSR as the graded relevance ranki for NDCGp.
Thus, the resulting NDCGp can reflect the difference
of the relative order between OIP-DSR and OIP-SR.

We used a machine powered by a Quad-Core Intel
i5 CPU (3.10GHz) with 16GB RAM, using Windows 7.

6. In the previous conference version [19], OIP-DSR is our differ-
ential SimRank of Eq.(15), which requires more memory space for
storing the intermediate results.

6.2 Experimental Results

Exp-1: Time Efficiency. We first evaluate (1) the CPU
time of OIP-SR and OIP-DSR on real data, and (2) the
impact of graph density on CPU time, using synthetic
data. To favor mtx-SR that only works on low-rank
graphs (i.e., graph with a small rank of the adjacency
matrix), DBLP data are used although OIP-SR and
OIP-DSR work pretty well on various graphs.

Fixing the accuracy ϵ = .001 for DBLP, varying
K for BERKSTAN and PATENT, Figure 4a compares
the CPU time of the four algorithms. (1) In all the
cases, OIP-SR consistently outperforms mtx-SR and
psum-SR, i.e., our partial sums sharing approach is
effective. On BERKSTAN and PATENT, the speedups
of OIP-SR are on average 4.6X and 2.7X, respectively,
better than psum-SR. On the large PATENT, when K ≥
8, psum-SR takes too long to finish the computation
in two days, which is practically unacceptable. In con-
trast, OIP-SR and OIP-DSR just need about 18.6 hours
for K = 10. (2) OIP-DSR always runs up to 5.2X
faster than psum-SR, and 3X faster than OIP-SR on
DBLP, for the desired ϵ = .001. This is because the
differential matrix form of OIP-DSR increases the rate
of convergence, which enables fewer iterations for
attaining the given ϵ. (3) The speedups of OIP-SR and
OIP-DSR on BERKSTAN (4.6X) are more pronounced
than those on DBLP (1.8X) and PATENT (2.7X), which
is due to the high degree of BERKSTAN (d = 11.1)
that may potentially increase the overlapped area for
common in-neighbor sets, and thus provides more
opportunities for partial sums sharing. It can be seen
that after computing the MST, the sizes of the average
symmetric difference d⊖ relative to d are reduced
more dramatically on BERKSTAN and PATENT than
that on DBLP. Thus, the speedups of our methods
on BERKSTAN and PATENT is far more obvious.

Figure 4b further shows the amortized time for each
phase of OIP-SR and OIP-DSR on BERKSTAN and
PATENT data (given ϵ = .001), in which x-axis repre-
sents different stages. From the results, we can discern
that (1) for OIP-SR, the time taken for “Building MST”
is far less than the time taken for “Share Sums”. This
is consistent with our complexity analysis in Proposi-
tion 5. (2) “Building MST” always takes up larger por-
tions (34% on BERKSTAN, and 24% on PATENT) in the
total time of OIP-DSR, than those (6% on BERKSTAN,
and 12% on PATENT) in the total time of OIP-SR. This
becomes more evident on various datasets because
OIP-SR and OIP-DSR takes (almost) the same time
for “Building MST”, whereas, for “Sharing Sums”,
OIP-DSR enables less time (4.5X on BERKSTAN, and
2.5X on PATENT) than OIP-SR, due to the speedup in
the convergence rate of OIP-DSR.

Fixing n = 300K and varying m from 3M to 15M
on the synthetic data, Figure 4c reports the impact of
graph density (ave. in-degree) on CPU time, where y-
axis is in the log scale. Here, share ratio is defined as



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

OIP-DSR OIP-SR psum-SR mtx-SR

d02 d05 d08 d11
0

1K

2K

3K

4K Vertices n

(Ave Deg d)
(Ave Sym Diff d⊖)

9.9K
(2.8)
(1.5)

15.9K
(2.4)
(1.4)

23.4K
(2.7)
(1.7)

32.9K
(2.6)
(1.4)

Size n (DBLP)

E
la
ps
ed

T
im

e
(s
ec
)

5 10 15 20 25
0

10

20

30
n = 680K
d = 11.1
d⊖ = 3.02

0.8 1.4
3.2

4.7 5.4
3.4

6.6

13.8

19.6

24.8

# Iter. K (BerkStan)

E
la
ps
ed

T
im

e
(h
r)

5 10 15 20
0

20

40

n = 3.2M
d = 4.4
d⊖ = 1.81

11.1

18.6

28.9

38.1

29.7

# Iter. K (Patent)

E
la
ps
ed

T
im

e
(h
r)

(a) Time Efficiency on Real Datasets

OIP-DSR OIP-SR

Build
MST

Share
Sums

102

103

104

105

34%
66%

6%

94%

(BerkStan)

A
m
or
ti
ze
d
T
im

e
(s
ec
)

Build
MST

Share
Sums

103

104

105

24%

76%

12%

88%

(Patent)

(b) Amortized Time on Real Data

10 20 30 40 50
102

103

104

105

share ratio

0.68

0.72
0.79

0.75 0.83

Ave Deg. d (Syn 300K)

E
la
ps
ed

T
im

e
(s
ec
) OIP-DSR OIP-SR

psum-SR

(c) Effect of Density

OIP-DSR OIP-SR psum-SR mtx-SR

d02 d05 d08 d11
101

102

103

104

Size n (DBLP)

M
em

or
y
Sp

ac
e
(K

B
)

5 10 15 20 25
0

1

2

3

4

# Iter. K (BerkStan)

M
em

or
y
Sp

ac
e
(M

B
)

5 10 15 20
0

5

10

15

20

# Iter. K (Patent)

M
em

or
y
Sp

ac
e
(M

B
)

(d) Memory Space on Real Datasets

10−2 10−3 10−4 10−5 10−6
0

20

40

60

C = 0.8

n = 32, 930

d = 2.6

Accuracy ǫ (DBLP d11)

#
It
er
.
K

OIP-SR

OIP-DSR

Lambert W Est.

Log Est.

(e) Convergence Rate

Err OIP- OIP- LamW Log

ϵ SR DSR Est. Est.

10−2 19 4 4 -

10−3 30 5 5 5

10−4 43 6 7 7

10−5 50 7 8 9

10−6 64 8 9 10

(f) Lam W & Log Bound on K

DBLP BerkStan Patent

p = 10 p = 30 p = 50
0.7

0.8

0.9

1

A
ve
.
N
D
C
G

p
fo
r

V
er
te
x
R
an

k
in
g

p = 10 p = 30 p = 50
0.8

0.85

0.9

0.95

1

N
D
C
G

p
fo
r

V
er
te
x
-P
ai
rs

R
an

k
in
g

(g) Relative Ordering Preservation of OIP-DSR

Fig. 4: Performance Evaluation of OIP-SR and OIP-DSR on Real and Synthetic Datasets
max-MSR psum-MSR MSR

5 10 15 20 25
0

1K

2K

3K

4K

5K
m = 46, 825

d = 5.53

# Iter. K (Course)

E
la
ps
ed

T
im

e
(s
ec
)

5 10 15 20
0

5

10

15

20
m = 3.87M

d = 12.09

0.6 1.3 1.9 2.3
3.2

6.7

10.6

13.8

# Iter. K (IMDB)

E
la
ps
ed

T
im

e
(h
r)

5 15 25 35
0

2K

4K

6K

8K

10K

share ratio

0.47

0.48
0.58 0.67

Ave Deg. d (SynBI 200K)

E
la
ps
ed

T
im

e
(s
ec
)

(a) Computational Time

Course IMDB SynBI

10−1

101

103

M
em

or
y
S
p
ac
e
(M

B
)

max-MSR

psum-MSR

MSR

(b) Memory Space

Fig. 5: Performance Evaluation of Bipartite SimRank Variation max-MSR on Real and Synthetic Datasets

1− d+(n−1)d⊖

nd
= n−1

n
(1− d⊖

d
), where d⊖ is the average

size of symmetric differences (ave. transition costs) for
all pairs of in-neighbor sets. A larger share ratio means
that in-neighbor sets of a graph have many common
vertices for sharing (thus with a smaller d⊖). The re-
sults show that (1) for ϵ = .001, OIP-DSR significantly
outperforms psum-SR by at least one order of magni-
tude as m increases. On average, OIP-SR achieves 5X
speedups. (2) The speedups of OIP-DSR are sensitive
to graph density (ave. in-degree d) The larger the d is,
the higher the likelihood of overlapping in-neighbors
is for partial sums sharing, as expected. The biggest
speedups are observed for larger d (higher density)
— with nearly 2 orders of magnitude speedup for
d = 50. (3) When d increases from 40 to 50, there
is a decreasing tendency in the elapsed time for both
OIP-DSR and OIP-SR. This is because in our method-
s, more partial sub-summations can be shared for later
reuse even though the graph density d is increased,
as opposed to psum-SR whose time complexity is
proportional to d and n. Thus, for the fixed number of
vertices in a graph, the performance of our methods
mainly hinges on the share ratios among common

partial sub-summations (which increases from 0.75
(d = 40) to 0.83 (d = 50)). The more share ratios,
the more time can be reduced.

Exp-2: Memory Space. We next evaluate the memory
space efficiency of OIP-DSR and OIP-SR on real data.
Note that we only use mtx-SR on small DBLP as a
baseline; for large BERKSTAN and PATENT, the mem-
ory space of mtx-SR will explode as the SVD method
of mtx-SR destroys the graph sparsity.

Figure 4d shows the results on space. We observe
that (1) on DBLP, OIP-DSR and OIP-SR have much
less space than mtx-SR by at least one order of magni-
tude, as expected. (2) In all the cases, the space cost of
OIP-DSR and OIP-SR fairly retains the same order of
magnitude as psum-SR. Indeed, both OIP-DSR and
OIP-DSR merely need about 1.8X, 1.9X, 1.6X space of
psum-SR on DBLP, BERKSTAN, PATENT, respectively,
for outer partial sums sharing. This is consistent with
our complexity analysis in Section 3, suggesting that
OIP-DSR and OIP-DSR do not require too much
extra space for caching outer partial sums. Moreover,
OIP-DSR has almost the same space as OIP-SR since



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

Eq.(16) does not need to memoize the auxiliary Tk

in Eq.(15). (3) On BERKSTAN and PATENT, the space
costs of OIP-DSR and OIP-SR are stabilized as K
increases. This is because the memoized partial sums
are released immediately after each iteration, thus
maintaining the same space during the iterations.

Exp-3: Convergence Rate. We next compare the con-
vergence rate of OIP-DSR and OIP-SR, using real and
synthetic data. For the interest of space, below we
only report the results on DBLP D11 (C = 0.8). The
trends on other datasets are similar.

By varying ϵ from 10−2 to 10−6, Figs. 4e and 4f
show that (1) OIP-DSR needs far fewer iterations than
OIP-SR (also psum-SR), for a given accuracy. Even
for a small ϵ = 10−6, OIP-DSR only requires 8 itera-
tions, whereas the convergence of OIP-SR in this case
becomes sluggish, yielding over 60 iterations. This is
consistent with our observation in Proposition 8 that
OIP-DSR has an exponential rate of convergence. (2)
The two curves labeled “Lambert W Est.” and “Log
Est.” (dashed line) visualize our apriori estimates of
K ′ derived from Corollaries 1 and 2, respectively. We
can see that these dashed curves are close to the actual
number iterations of OIP-DSR, suggesting that our
estimates of K ′ for OIP-DSR are fairly precise.

Exp-4: Relative Order. We next analyze the relative
order of similarities from OIP-DSR on real datasets
(DBLP, BERKSTAN, and PATENT). On every dataset,
relative order preservations for both node and node-
pairs ranking are evaluated, as shown in Figure 4g.
For node ranking, we fix a vertex a as a given query,
and compute the average NDCGp of OIP-DSR rela-
tive to OIP-SR via similarities s(a, ⋆) from the top-
p query perspective. For query selection, we sort all
the vertices in order of their degree into 4 groups,
and then randomly choose 100 vertices from each
group, in order to ensure that the selected vertices
can systematically cover a broad range of all possible
queries. The results are shown in left Figure 4g. For
node-pairs ranking, we find the NDCGp of OIP-DSR

relative to OIP-SR from SimRank scores s(⋆, ⋆) of the
top-p similar pairs, as illustrated in right Figure 4g.
The results for p = 10, 30, 50 show that OIP-DSR can
perfectly maintain the relative order of the similarity
scores produced by OIP-DSR with only < 0.8% loss in
NDCG30 and NDCG50 on average for all the datasets.
For p = 10 (i.e., top-10 node and node-pair queries),
OIP-DSR produces exactly the same results of OIP-SR

on each dataset. Thus, we can gain a lot in speedup
from OIP-DSR while suffering little loss in quality.

A case study for qualitative ranking results on real
data is also provided in Appendix H.

Exp-5: Minimax SimRank Variation. Finally, we
evaluate the time and memory of max-MSR against
the baseline psum-MSR and MSR on bipartite real
COURSE and IMDB, and synthetic SYNBI.

To compare the CPU time of the three Minimax

SimRank variations, on COURSE and IMDB, we vary
K from 5 to 25; on SYNBI, we fix n = 200K with each
side of the bipartite graph having 100K vertices, and
vary the average out-degree from 5 to 35. The results
are reported in Figure 5a. (1) In all the cases, max-MSR

is always the fastest, and psum-MSR the second,
both of which outperform MSR by several times on
COURSE and by one order of magnitude on IMDB.
This is because partial max memoization can achieve
high speedups for Minimax SimRank computation.
Moreover, the finer-grained partial max memoization
of max-MSR can share much more common subparts
that are neglected by psum-MSR. Thus, max-MSR is
consistently better than psum-MSR. On large IMDB,
the speedup is more apparent, e.g., for K = 5, the time
of max-MSR (0.6hr) is 5.15X faster than psum-MSR

(3.2hr); however, it takes too long time for MSR to
finish the computation within one day. Hence, we
stop iterating for MSR after K ≥ 5 iterations on
IMDB and K ≥ 15 on SYNBI. (2) The graph density
has a huge impact on the speedup of max-MSR.
The denser a graph, the more likely common out-
neighbors (bicliques) can be shared for partial max
memoization. This explains why the reduced amount
of time for max-MSR relative to psum-MSR is more
pronounced on IMDB than on COURSE, as IMDB
has a higher average out-degree (12.09) than COURSE

(5.53). The results on SYNBI are also consistent with
this observation — the share ratio increases w.r.t. the
growing average out-degree of the synthetic graph.

The memory space of these Minimax SimRank vari-
ations on real and synthetic datasets are evaluated in
Figure 5b. Due to space limitations, we merely report
the results on SYNBI with the average out-degree of
25. We notice that in all the cases, the memory space
of max-MSR is a bit higher than that of psum-MSR,
both of which are a bit higher than MSR, yet maintain
the same order of magnitude during the iterations. For
instance on IMDB, the space cost for max-MSR (0.2M)
is slightly higher than psum-MSR (0.14M) and MSR

(0.10M). This is because the partial max memoization
requires extra space to cache similarities of all dummy
vertices. The finer the granularity for memoization,
the more space it requires, as expected.

7 CONCLUSIONS

We proposed efficient methods to speed up the com-
putation of SimRank on large networks and bipar-
tite domains. Firstly, we leveraged a novel clustering
approach to optimize partial sums sharing. By elimi-
nating duplicate computational efforts among partial
summations, an efficient algorithm was devised to
greatly reduce the time complexity of SimRank. Sec-
ondly, we proposed a revised SimRank model based
on the matrix differential representation, achieving an
exponential speedup in the convergence rate of Sim-
Rank, as opposed to its conventional counterpart of a



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

geometric speedup. Thirdly, in bipartite domains, we
developed a novel finer-grained partial max clustering
method for greatly accelerating the computation of
the Minimax SimRank variation, and showed that the
partial max sharing approach is different from the
partial sums sharing method in that the “subtraction”
is disallowed in the context of max operation. Our
experiments on both real and synthetic datasets have
shown that the integration of our proposed method-
s for the basic SimRank equation can significantly
outperform the best known algorithm by about one
order of magnitude, and that the computational time
of our finer-grained partial max sharing method for
the Minimax SimRank variation in bipartite domains
is 5X–12X faster than that of the baselines.

REFERENCES

[1] I. Antonellis, H. G. Molina, and C. Chang. SimRank++: query
rewriting through link analysis of the click graph. PVLDB,
1:408–421, 2008.

[2] U. M. Ascher and L. R. Petzold. Computer Methods for Or-
dinary Differential Equations and Differential-Algebraic Equations.
Society for Industrial and Applied Mathematics, 1998.

[3] P. Berkhin. Survey: a survey on PageRank computing. Internet
Mathematics, 2:73–120, 2005.

[4] G. Buehrer and K. Chellapilla. A scalable pattern mining
approach to web graph compression with communities. In
WSDM, 2008.

[5] J. Cho and S. Roy. Impact of search engines on page popularity.
In WWW, 2004.

[6] D. Fogaras and B. Rácz. Scaling link-based similarity search.
In WWW, 2005.

[7] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka.
Efficient search algorithm for SimRank. In ICDE, 2013.

[8] H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan. Efficient
algorithms for finding minimum spanning trees in undirected
and directed graphs. Combinatorica, 6:109–122, 1986.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[10] M. Hassani. Approximation of the Lambert W function.
RGMIA Research Report Collection, 8, 2005.

[11] G. He, H. Feng, C. Li, and H. Chen. Parallel SimRank
computation on large graphs with iterative aggregation. In
KDD, 2010.

[12] G. Jeh and J. Widom. SimRank: a measure of structural-context
similarity. In KDD, 2002.

[13] R. Kumar, J. Novak, and A. Tomkins. Structure and evolution
of online social networks. In KDD, 2006.

[14] P. Lee, L. V. Lakshmanan, and J. X. Yu. On Top-k structural
similarity search. In ICDE, 2012.

[15] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu. Fast
computation of SimRank for static and dynamic information
networks. In EDBT, 2010.

[16] P. Li, H. Liu, J. X. Yu, J. He, and X. Du. Fast single-pair
SimRank computation. In SDM, 2010.

[17] X. Lin. On the computational complexity of edge concentra-
tion. Discrete Applied Mathematics, 101(1-3):197–205, 2000.

[18] D. Lizorkin, P. Velikhov, M. N. Grinev, and D. Turdakov.
Accuracy estimate and optimization techniques for SimRank
computation. VLDB J., 19(1):45–66, 2010.

[19] W. Yu, X. Lin, and W. Zhang. Towards efficient SimRank
computation on large networks. In ICDE, pages 601–612, 2013.

Acknowledgements

Xuemin Lin is currently supported by NSFC61232006,
NSFC61021004, ARC DP140103578 and DP120104168.
Wenjie Zhang is supported by ARC DE120102144 and
DP120104168.

Weiren Yu is a Postdoctoral Research Asso-
ciate in the Department of Computing at Im-
perial College London. He obtained his PhD
from the School of Computer Science and
Engineering, the University of New South
Wales, Australia in 2013. His current re-
search interests include graph database, da-
ta mining, and link analysis. He is the recip-
ient of two CiSRA (Canon Information Sys-
tems Research Australia) Best Research Pa-
per Awards (in 2013 and 2014), one “One of

the Best Papers of ICDE” (in 2013), and three Best (Student) Paper
Awards at APWEB 2010, WAIM 2010 and WAIM 2011, respectively.
He is a member of the IEEE and the ACM, and serves as an active
reviewer for many CS conferences and journals.

Xuemin Lin is a Professor in the School
of Computer Science and Engineering at
the University of New South Wales. He has
been the head of database research group
at UNSW since 2002, and a concurrent
Professor at East Normal University since
2009. Before joining UNSW, Xuemin held
various academic positions at the University
of Queensland and the University of Western
Australia. He got his PhD in Computer Sci-
ence from the University of Queensland in

1992 and his BSc in Applied Math from Fudan University in 1984.
During 1984–1988, he studied for PhD in Applied Math at Fudan
University. He currently is an associate editor of ACM Transactions
on Database Systems, an associate editor of IEEE Transactions on
Knowledge and Data Engineering, and an associate editor of World
Wide Web Journal. His current research interests lie in data mining,
data streams, distributed database systems, spatial database sys-
tems, web databases, and graph visualization.

Wenjie Zhang is a Lecturer in School of
Computer Science and Engineering, the U-
niversity of New South Wales, Australia. She
received PhD in computer science and engi-
neering in 2010 from the University of New
South Wales. Since 2008, she has pub-
lished more than 30 papers in SIGMOD, SI-
GIR, VLDB, ICDE, TODS, TKDE and VLD-
BJ. She is the recipient of Best (Student)
Paper Award of National DataBase Confer-
ence of China 2006, APWeb/WAIM 2009,

Australasian Database Conference 2010 and DASFAA 2012, and
also co-authored one of the best papers in ICDE 2010, ICDE
2012, DASFAA 2012 and ICDE 2013. In 2011, she received the
ARC Discovery Early Career Researcher Award. Wenjie Zhang is
currently supported by ARC DE120102144 and DP120104168.

Julie A. McCann is a Professor of Com-
puter Systems at Imperial College. Her re-
search centers on highly decentralized and
self-organizing scalable algorithms for spa-
tial computing systems. She leads both the
AESE group and the Intel Research Insti-
tute for Sustainable Cities, and is currently
working with NEC and others on substantive
smart city projects. She has received signifi-
cant funding through bodies such as the UKs
EPSRC, TSB and NERC as well as various

international funds, and is an elected peer for the EPSRC. She
has actively served on, and chaired, many conference committees
and is currently Associative Editor for the ACM Transactions on
Autonomous and Adaptive Systems. She is a member of the IEEE
and the ACM as well as a Chartered Engineer, and was elected as a
Fellow of the BCS in 2013.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 15

APPENDIX A
PROOFS OF PROPOSITIONS & COROLLARIES

A.1 Proof of Proposition 2.

Proof: We verify this by reducing the NP-complete
Ensemble Computation (EC) problem [9, p.66] to a
special case of the decision problem of OIP. The
EC problem is defined as follows: Given a collection
C of subsets of a finite set A and a positive inte-
ger J , EC is to decide whether there is a sequence
(z1 = x1 ∪ y1, · · · , zj = xj ∪ yj) of j ≤ J union
operations, where each xi and yi is either {a} for
some a ∈ A or zp for some p < i, such that xi

and yi are disjoint for 1 ≤ i ≤ j and such that for
every subset C ∈ C there is some zi, 1 ≤ i ≤ j,
that is identical to C. For each instance of EC, we
construct the corresponding instance of the OIP de-
cision problem by setting A = {sk(a, ⋆) | a ∈ V},
C = {PartialskI(a)(⋆) | a ∈ V}, and an integer J
to be the maximum number of required additions.
Clearly, by converting union operations (∪) of EC into
additions (+), it follows that the OIP decision problem
has a solution, i.e., ∃ a sequence (z1 = x1+y1, · · · , zj =
xj+yj) of j ≤ J additions, if and only if there exists a
sequence (z1 = x1∪y1, · · · , zj = xj∪yj) of j ≤ J union
operations for EC. Thus, the NP-completeness of the
OIP decision problem follows immediately from the
NP-completeness of EC. Also, the decision problem of
OIP can be naturally converted into its corresponding
optimization problem by imposing a bound on the
number of additions to be optimized, namely, turning
“whether there exists such a solution that can be done
in fewer than J additions” into “minimize the number
of additions”. Hence, the OIP optimization problem is
NP-hard due to the NP-completeness of its decision
problem.

A.2 Proof of Proposition 6.

Proof: We shall prove this by plugging

Ŝ(t) = A · (In +
∞∑

i=1

ti

i!
·Qi · (QT )

i
),

with an arbitrary constant A, into the SimRank differ-
ential formula Eq.(14):

dŜ(t)

dt
=A ·

∞
∑

i=1

d

dt

(

ti

i!
·Qi · (QT )

i
)

=A ·

∞
∑

i=1

ti−1

(i− 1)!
·Qi · (QT )

i
= Q · Ŝ(t) ·QT

,

where the first equality holds because we notice

that
∥
∥ ti

i! ·Qi · (QT )
i∥
∥
max

≤ ti

i! , and the series
∑∞

i=1
ti

i!
converges uniformly on t ∈ [0, C].

Thus, we have verified that the solution to Eq.(14)

takes the form Ŝ(t) = A ·
(

In +
∑∞

i=1
ti

i! ·Qi · (QT )
i
)

.

To find A, let t = 0 and Ŝ(0) = e−C · In. Then we
have A · In = e−C · In, which implies that A = e−C .

Therefore,

Ŝ(t) = e−C ·
∞∑

i=0

ti

i!
·Qi · (QT )

i
.

Setting t = C, we obtain Ŝ , Ŝ(C), the solution to
Eq.(14).

A.3 Proof of Proposition 8.

Proof: Subtracting Eq.(13) from Eq.(15), we obtain

Ŝk − Ŝ = e−C ·
∞∑

i=k+1

Ci

i!
·Qi · (QT )

i
.

Taking the matrix-to-vector operator vec(⋆) [15] on
both sides, and then applying the Kronecker product
property that vec(AXB) = (BT ⊗ A) · vec(X) to the
right-hand side gives

vec(Ŝk − Ŝ) = e−C ·
∞∑

i=k+1

Ci

i!
· (Q⊗Q)

i · vec(In),

Notice that Q is a transitional matrix, i.e., the sum
of each row in Q is less than 1, which implies that
∥Q⊗Q∥∞ ≤ 1.

Take the matrix ∞-norm ∥ ⋆ ∥∞ on both sides, and
apply ∥vec(⋆)∥∞ = ∥ ⋆ ∥max to the left-hand side:

∥Ŝk − Ŝ∥max ≤ e
−C ·

∞
∑

i=k+1

Ci

i!
· ∥(Q⊗Q)∥i∞ · ∥vec(In)∥∞

≤ e
−C ·

∞
∑

i=k+1

Ci

i!
≤

Ck+1

(k + 1)!
,

where the last inequality holds because using the

Lagrange remainder f(k+1)(ξ)
(k+1)! Ck+1, ξ ∈ (0, C), of

Maclaurin series for f(C) = eC yields

∞∑

i=k+1

Ci

i!
=

eξ

(k + 1)!
Ck+1 ≤ eC

(k + 1)!
Ck+1.

A.4 Proof of Corollary 1.

Proof: Based on Eq.(17), ∀ϵ > 0, we need to find

an integer K ′ > 0 such that CK′+1

(K′+1)! ≤ ϵ.
We first use the Stirling’s formula

(K ′ + 1)! ≥
√
2π · (K

′ + 1

e
)
K′+1

to obtain ( e·C
K′+1 )

K′+1 ≤
√
2π · ϵ.

Let x = K′+1
e·C . It follows that xx ≥ (

√
2π · ϵ)−

1
e·C .

Using the Lambert W function, we have

x ≥ ln (
√
2π · ϵ)−

1
e·C

W (ln (
√
2π · ϵ)−

1
e·C )

.

By substituting x = K′+1
e·C back into the inequality, we

get the final result, which completes the proof.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 16

P(⋆)

I(a) {{b, g}}
I(e) {{f, g}}
I(h) {{b, d}}
I(c) {I(a), {d}}
I(b) {I(e), {e, i}}
I(d) {I(b)\{g}, {a}}

(a) Partitions of I(⋆) in G

d

b

g

f

i

e

a

+

+

+

+

+

−

+

+

I(c) = {b, d, g}

I(h) = {b, d}

I(a) = {b, g}

I(d) = {f, a, i, e}

I(e) = {f, g}

I(b) = {f, g, i, e}

(b) Hierarchical Clustering

Fig. 6: In-neighbor sets partitioning dendrogram

vertex PartialskI(x)(y) OuterPartial
I(x),sk
I(z) sk+1(x, z)

x y = b y = g y = d z = a z = c z = a z = c

a 1 1 0.11 2 2.11 1 0.21

e 0 1 0 1 1 0.15 0.1

h 1.11 0 1.11 1.11 2.22 0.17 0.22

c 1.11 1 1.11 2.11 3.22 0.21 1

b 0.15 1 0.08 1.15 1.23 0.09 0.06

d 0.23 0 0.08 0.23 0.31 0.02 0.02

Fig. 7: Computing sk+1(x, a) and sk+1(x, c), ∀x ∈ V ,
by using outer sums sharing (k = 2 and C = 0.6)

APPENDIX B
TWO ILLUSTRATIVE EXAMPLES

B.1 Find all the partitions of in-neighbor sets for
partial sums sharing

Example 4. Recall the network G in Figure 1a, along
with the optimized ordering of partial sums in Fig-
ure 2d. We show how to identify the partition of
each in-neighbor set in G for partial sums sharing.

For instance, consider the path ∅
1−→ I(a) 1#−−→ I(c) in

Figure 2d. We have the following.

(i) The first edge ∅
1−→ I(a) implies that

PartialskI(a)(⋆) need to be computed from scratch since

the starting point of this edge is ∅. Thus, I(a) has only
one partition of itself.

(ii) The second edge I(a) 1#−−→ I(c) suggests that
I(c) can be partitioned, by using Eq.(8), as

I(c) = (I(c) ∩ I(a)) ∪ (I(c)\I(a)) = I(a) ∪ {d}.
Hence, PartialskI(c)(⋆) can be obtained from the mem-

oized result of PartialskI(a)(⋆) via Eq.(9) as follows:

PartialskI(c)(x) = PartialskI(a)(x) + sk(d, x). (x ∈ V)

We repeat these steps for the rest of two paths
in Figure 2d. Finally, we get all the partitions of in-
neighbor sets in G, as shown in Figure 6a. Accordingly,
the resultant accumulation of reusable partial sums
is visualized in Figure 6b, in which a letter with a
box denotes a vertex, and a symbol with a circle an

operator. For example, ‘ d ⊕ b · · · I(h)’ means that
sk(d, ⋆) and sk(b, ⋆) are added to yield PartialskI(h)(⋆).

�

B.2 Use outer partial sums sharing for speeding
up SimRank computation

Example 5. Recall the graph G in Figure 1a, with
the (inner) partial sums sharing dendrogram in Fig-
ure 6b. Suppose PartialskI(x)(⋆), ∀x ∈ V , have been
pre-computed via Example 4, as depicted in part in
the first four columns of Figure 7. We show how to
compute sk+1(x, a) and sk+1(x, c), ∀x ∈ V , by using
outer partial sums sharing.

Firstly, for each non-empty in-neighbor set I(x), we

compute OuterPartial
I(x),sk
I(a) and OuterPartial

I(x),sk
I(c) ,

∀x ∈ V , from the cached results of PartialskI(x)(⋆).
In light of the clustering dendrogram in Figure 6b,

we notice that the item ‘ b ⊕ g · · · I(a)’, which, in
the context of outer partial sums, can be reinterpreted
as “adding up the (inner) partial sums PartialskI(x)(b)
and PartialskI(x)(g) to yield the outer partial sums

OuterPartial
I(x),sk
I(a) , for all x ∈ V”. Thus, we have

OuterPartial
I(x),sk
I(a) =

∑

y∈{b,g}
PartialskI(x)(y). (∀x ∈ V)

For instance, OuterPartial
I(b),sk
I(a) = 0.15+1 = 1.15, for

x = b, as illustrated in row ‘b’ of Figure 7.

Similarly, the item ‘I(a) ⊕ d · · · I(c)’ in Figure 6b

implies that OuterPartial
I(x),sk
I(c) , ∀x ∈ V , can be cal-

culated from the cached results of OuterPartial
I(x),sk
I(a)

via Eq.(10) as

OuterPartial
I(x),sk
I(c) = OuterPartial

I(x),sk
I(a)

+PartialskI(x)(d), (∀x ∈ V)

e.g., OuterPartial
I(b),sk
I(c) = 1.15+0.08 = 1.23, for x = b.

The rest of the results are shown in Cols 5-6 of
Figure 7.

Then, using Eq.(11), we can obtain sk+1(x, a) and
sk+1(x, c), ∀x ∈ V , from the memoized results of

OuterPartial
I(x),sk
I(a) and OuterPartial

I(x),sk
I(c) . For ex-

ample, in row ‘b’ of Figure 7,

sk+1(b, a) =
0.6
2×4 × 1.15 = 0.09, (x = b)

sk+1(b, c) =
0.6
3×4 × 1.23 = 0.06. (x = b)

The remainder of the similarities are depicted in the
last two columns of Figure 7. �

APPENDIX C
ALGORITHM OIP-SR & PROCEDURES OP
AND DMST-REDUCE

C.1 Detailed Description of OIP-SR

The algorithm OIP-SR works as follows. (1) It first
invokes procedure DMST-Reduce to identify the topo-
logical sort based on a minimum spanning tree T

for computing partial sums (line 1). (2) For each
iteration k, OIP-SR checks each path in T , starting
from the root node # as follows. (a) For the first edge
(#, u) in each path, OIP-SR computes PartialskI(u)(⋆)



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 17

Procedure DMST-Reduce(G)

Input : graph G = (V, E).
Output: transitional MST T .

1 initialize V ← V ∪ {#}, E ← ∅ ;
2 sort the vertices of G into non-decreasing order by

in-degree ;
3 initialize U ← V ;
4 foreach vertex a ∈ V in G, taken in sorted order do
5 U ← U\{a} ;
6 foreach vertex b ∈ U in G, taken in sorted order do
7 E ← E ∪ {(a, b)} ;
8 assign a weight w to the edge (a, b) of E :

w(a, b)← min{|I(a)⊖ I(b)|, |I(b)| − 1} ;

9 find the MST T of the graph G = (V , E , w) :
T ← Directed-MST (G ,#, w) ;

10 return T ;

from scratch (lines 5-6), and then invokes procedure
OP to compute sk+1(u, ⋆) by outer partial sums shar-
ing (line 7). (b) For other edges (u, v) in each path,
OIP-SR computes PartialskI(v)(⋆) from the result of

PartialskI(u)(⋆) memoized earlier (lines 10-11), and

gets sk+1(v, ⋆) by invoking procedure OP of outer
partial sums sharing (line 12). This process repeats
until all edges in every path have been traversed,
and OIP-SR frees the memoized results of the partial
sums generated from each path (lines 14-17). (3) The
loop will continue to iterate until k reaches K, and
OIP-SR returns all the similarities sK(⋆, ⋆) (line 18).

C.2 Procedure DMST-Reduce.

Given a graph G, the procedure returns a minimum
spanning tree T as a topological sort for computing
partial sums. First, it builds a weighed graph G ,
whose edge weights are the transition costs of all pairs
of vertices (plus a special # denoting ‘the root node’)
in G (lines 1-8). Then, it runs an algorithm [8] to find a
directed MST T of G (starting from vertex #), which
is returned as the final result (lines 9-10).

C.3 Procedure OP.

This procedure adopts a similar paradigm of OIP-SR

for outer partial sums sharing. The procedure OP

takes as input a topological sort T , a graph G, a vertex
u, a damping factor C, iteration k, and the cached
partial sums PartialskI(u)(⋆). It returns the similarities

sk+1(u, ⋆).
The procedure OP runs in three phases for each

path that starts from the root # of the tree T . (a)
For the first edge (#, w) of each path, OP needs

to start from scratch to calculate OuterPartial
I(u),sk
I(w)

(line 2) and sk+1(u,w) (lines 3-5) from the memoized
PartialskI(u)(⋆). (b) For other edges (w, z) in each path,

OP obtains OuterPartial
I(u),sk
I(z) from the cached result

of OuterPartial
I(u),sk
I(w) (line 8), and then computes

sk+1(u, z) (lines 9-11). The loop continues until all
edges in the path have been visited. (c) OP releases the

Procedure OP(T ,G, u, C, k, PartialskI(u)(⋆))

Input : transitional MST T , graph G = (V, E),
vertex u, damping factor C,
iteration k, partial sums Partial

sk
I(u)(⋆).

Output: SimRank scores sk+1(u, ⋆).
1 foreach vertex w ∈ O(#) in the MST T do

2 OuterPartial
I(u),sk
I(w) ←

∑

y∈I(w) Partial
sk
I(u)(y) ;

3 if u = w then sk+1(u,w)← 1 ;

4 else if I(u) = ∅ or I(w) = ∅ then sk+1(u,w)← 0;

5 else sk+1(u,w)← C
|I(u)||I(w)|

OuterPartial
I(u),sk
I(w) ;

6 while O(w) ̸= ∅ do
7 z ← O(w) ;

8 OuterPartial
I(u),sk
I(z) ← OuterPartial

I(u),sk
I(w) −

∑

y∈I(w)\I(z)

Partial
sk
I(u)(y) +

∑

y∈I(z)\I(w)

Partial
sk
I(u)(y) ;

9 if u = z then sk+1(u, z)← 1 ;

10 else if I(u) = ∅ or I(z) = ∅ then
sk+1(u, z)← 0;

11 else

sk+1(u, z)←
C

|I(u)||I(z)|
OuterPartial

I(u),sk
I(z) ;

12 w ← z ;

13 free OuterPartial
I(u),sk
I(w) ;

14 while O(w) ̸= ∅ do

15 z ← O(w) , free OuterPartial
I(u),sk
I(z) , w ← z ;

16 return sk+1(u, ⋆) ;

memoized results of all the outer partial sums which
are generated by each path (lines 13-15). The whole
process repeats until all the paths in T have been
processed, and returns sk+1(u, ⋆) (line 16).

APPENDIX D
CORRECTNESS & COMPLEXITY OF OIP-SR

D.1 Correctness of OIP-SR.

(i) Algorithm OIP-SR correctly computes the sim-
ilarities sk(u, v) in G for each vertex pair (u, v).
One can verify that after the foreach loops (lines
5-6 and lines 10-11), for every vertex u ∈ T ,

PartialskI(u)(⋆) and OuterPartial
I(u),sk
I(⋆) are memoized,

and the similarities sk+1(u, ⋆) are computed. (ii) The
partial sums computed by our algorithm are indeed
optimized because while computing PartialskI(u)(⋆) and

OuterPartial
I(u),sk
I(⋆) for each vertex u, we allow the

common parts of partial sums to be recomputed as
fewer as possible by virtue of a minimum spanning
tree T ; in particular, the partial sums sharing would
definitely happen in every path of T for a graph with
|∪v∈V I(v)| less than

∑

v∈V |I(v)|.

D.2 Complexity of OIP-SR.

OIP-SR consists of two phases: (i) building an MST
T (line 1), and (ii) computing similarities (lines 2-18).



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 18

We analyze the time for each phase below.
In the sequel, we shall abuse the notation O(v) to

denote the out-neighbor set of vertex v.
(i) The procedure DMST-Reduce is used for finding

a directed MST T , which is bounded by O(dn2) time
and O(n) space. It includes (a) O(n log n) time and
O(n) space for sorting vertices in G by in-degree (line
2), (b) O(d) time and O(2d) space for computing the
transitional cost for a single edge (a, b) in E , being

O(dn
2

2 ) time for all edges in E (lines 4-8), and (c)
O(n2 log n) time and O(n) space for finding the MST
T of G [8].

(ii) For each iteration, OIP-SR uses T rooted at #
to compute similarities in G. Note that |O(#)| paths
in T are used for calculating partial sums over all in-
neighbour sets of G. Therefore, for completing a single
path of average length n

|O(#)| , the complexity required
for computing the partial sums, for the first edge of
the path, is O(nd) time and O(n) space (lines 5-6);
the complexity required, apart from the first edge of
the path, is O( n

|O(#)| · n · d⊖) time and O(n) space,

with d⊖ , avg(u,v)∈T
|I(u) ⊖ I(v)| (lines 8-13). It

follows that the total complexity bound in this phase
is O(K(|O(#)| ·nd+n2 ·d⊖)) time and O(n) space for
K iterations. Since d⊖ ≪ d and |O(#)| ≪ n, such a
time complexity bound is far less than O(Kdn2).

Combining (i) and (ii), the total complexity of
OIP-SR is O(dn2 +K(|O(#)| · nd+ n2 · d⊖)) time and
O(n) space.

APPENDIX E
ALGORITHM MAX-MSR & ITS COMPLEXITY

E.1 Algorithm max-MSR.

The algorithm max-MSR runs in three phases.

(1) Precomputing (lines 1–5). The algorithm first finds
bicliques in bipartite graph G by invoking the algo-
rithm in [4] (line 1). It then replaces all the bicliques
(densest parts) in G via edge concentration (lines 2–5).

(2) Inner Partial Max Sharing (lines 8–12). The algo-
rithm then iteratively computes the common subparts
among the different Partial Maxsk

O(⋆)(⋆) (lines 9–10).
Once computed, the finer-gained inner partial max
results are memoized for computing all the partial
max over different out-neighbor sets (lines 11–12).

(3) Outer Partial Sums Sharing (lines 13–22). max-MSR

computes common subparts among different outer
partial sums (lines 13–15). Once computed, finer-
gained outer partial sums results are memoized
for computing all similarities of Minimax SimRank
sk+1(⋆, ⋆) (lines 16–21). After every iteration, partial
max results can be removed from memory (line 22).

E.2 Complexity of max-MSR.

The total time of max-MSR is bounded by O(Km′n),
consisting of three phases: precomputing, inner par-
tial max sharing, and outer partial sums sharing. We
analyze the time for each phase below.

Algorithm 2: max-MSR (G, C,K)

Input : bipartite graph G = (V ∪W, E), damping
factor C, the number of iterations K.

Output: all the similarities of Minimax SimRank
variation sK(⋆, ⋆).

1 find all the bicliques {(V ′
i,W

′
i)} in G ;

2 foreach biclique (V ′
i,W

′
i) in G do

3 Delete all the edges (v′, w′) ∈ V ′
i ×W

′
i ;

4 Insert a dummy vertex zi into Z ;
5 Add edges (v′, zi), (zi, w

′), ∀v′ ∈ V ′, w′ ∈ W ′;

6 initialize s0(A,B)←
{

1, A=B
0, A ̸=B ∀A,B ∈ V ;

7 for k ← 0, 1, · · · ,K − 1 do
8 foreach vertex i ∈ V in G do
9 foreach dummy vertex zj ∈ Z do

10 sk(i, zj)← maxx∈O(zj) sk(i, x) ;

11 foreach vertex B ∈ V in G do
12 Partial Max

sk
O(B)(i)← max

x∈O(B)
sk(i, x) ;

13 foreach dummy vertex zj ∈ Z do
14 foreach vertex B ∈ V in G do
15 Partial Max

sk
O(B)(zj)←

∑

x∈O(zj)

Partial Max
sk
O(B)(x);

16 foreach vertex B ∈ V in G do
17 foreach vertex A ∈ V in G do
18 if A=B then sk+1(A,B) = 1; continue;
19 if O(A) = ∅ then sAk+1(A,B)← 0;

else sAk+1(A,B)← C
|O(A)|

∑

i∈O(A)

Partial Max
sk
O(B)(i);

20 if O(B) = ∅ then sBk+1(A,B)← 0;
else sBk+1(A,B)← C

|O(B)|

∑

i∈O(B)

Partial Max
sk
O(A)(i);

21 sk+1(A,B)← min{sAk+1(A,B), sBk+1(A,B)};

22 free Partial Max
sk
O(⋆)(⋆) ;

23 return sK(⋆, ⋆) ;

(1) For the precomputing (lines 1–5), a heuristic
algorithm in [4] is leveraged for finding bicliques in
G, which requires O(|E| log(|V|+ |W|)) time.

(2) In the inner partial max sharing phase (lines 8–
12), for every iteration k and each fixed vertex i, the
total cost of computing Partial Maxsk

O(⋆)(i) is equal
to the number of edges in the reduced graph of G via
edge concentration, which is O(m′). This is because
replacing each biclique can reduce the cost of max
operations from |V ′

i| × |W ′
i| to |V ′

i| + |W ′
i|. Thus, for

N bicliques in G, O(
∑N

i=1 (|V ′
i| × |W ′

i| − |V ′
i| − |W ′

i|))
time is reduced. Hence, for K iterations, computing all
the partial max over all the out-neighbor sets requires
O(Km′n) time.

(3) For the outer partial sums sharing (lines 13–22),
similar to the partial max sharing phase, the cost of
computing all similarities sK(⋆, ⋆) from the memoized
Partial Maxsk

O(⋆)(⋆) is equal to the number of of

edges in the reduced graph of G, entailing O(Km′)
time for K iterations.

Taking the three phases together, the total cost of
max-MSR is dominated by the second phase, which
is in O(Km′n) time.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 19

Dataset Vertices Edges Avg Deg.

BERKSTAN 685,230 7,600,595 11.1 (in)

PATENT 3,774,768 16,518,948 4.4 (in)

COURSE 8,470+1,873 46,825 5.53 (out)

IMDB 320.1K+785.6K 3,871,636 12.09 (out)

DBLP

D02 9,942 27,849 2.8 (in)

D05 15,976 38,356 2.4 (in)

D08 23,471 63,723 2.7 (in)

D11 39,965 104,468 2.6 (in)

Fig. 8: Real-life Dataset Details

APPENDIX F
A REAL APPLICATION FOR MINIMAX SIM-
RANK VARIATION

For example in an IMDB bipartite network (where
each edge from a movie to an actor represents that
an actor name has appeared in a movie), we want to
find similarity between actors and similarity between
movies based on the appearance of actor names in
these movies. Actors may appear in groups of related
movies. For instance, two actors A and B may appear
in some movies that have overlapping interests; in the
meanwhile, A also appears in detective movies, and
B also appears in war movies. To measure similarity
of the actors A and B, instead of comparing each of
A’s movies with each of B’s, we compare each of
B’s movies x with only the one of A’s movies that is
the most similar to x, and vice versa. This is because
it may dilute the similarity between A and B if A’s
detective movies are compared with B’s war movies.

APPENDIX G
DATASETS FOR EXPERIMENTAL SETTINGS

The sizes of the datasets are illustrated in Figure 8.
In the following, we provide a detailed description of
these datasets.

(1) BERKSTAN. The first network is a Berkeley-
Stanford web graph of 7.4M links between 680K
web pages (from berkely.edu and stanford.edu

domains), downloaded from the Stanford Network
Analysis Project (SNAP).7

(2) PATENT. This is a citation network among U.S.
Patents, obtained from the National Bureau of Eco-
nomic Research. 8 It is our largest dataset consisting
of 3.2M U.S. patents (vertices) and 16.1M citations
(edges), with a low average degree of 4.4.

(3) DBLP. This is a scientific publication network,
derived from DBLP Computer Science Bibliography.9

We selected the recent 12-year publications (from
2000 to 2011) in 8 major conferences (ICDE, VLDB,
SIGMOD, PODS, CIKM, ICDM, SIGIR, SIGKDD), and
then built 4 co-authorship graphs by choosing every
3 years as a time step.

7. http://snap.stanford.edu/data/web-BerkStan.html
8. http://data.nber.org/patents/
9. http://dblp.uni-trier.de/˜ley/db/

# Co-authors # Co-authors # Co-authors
1 Hongjun Lu 11 James Cheng 21 Wenfei Fan
2 Lu Qin 12 Weifa Liang 22 Rong-Hua Li
3 Xuemin Lin 13 Ying Zhang 23 Hong Cheng H

4 Wei Wang 14 Bolin Ding 24 Jun Gao N

5 Lei Chen 15 Haixun Wang 25 Xiaofang Zhou
6 Lijun Chang 16 Aoying Zhou 26 Ke Yi
7 Yiping Ke 17 Xiang Lian 27 Yufei Tao
8 Haifeng Jiang 18 Cheqing Jin 28 Nan Tang
9 Philip S. Yu 19 Baichen Chen 29 Jinsoo Lee
10 Gabriel Pui Cheong Fung 20 Byron Choi 30 Kam-Fai Wong

Fig. 9: Co-authors of “Jeffrey Xu Yu”

(4) COURSE. This dataset is obtained from the tran-
scripts of 8,470 students in the University of New
South Wales. Every transcript lists the courses that
the student has taken. There are 1,873 courses in total,
with an average of about 25 courses for each student.

(5) IMDB. The IMDB network10 is a bipartite
graph, with two types of vertices: 20.1K movies and
785.6K actors. Each edge from a movie to an actor
means that the actor name has appeared in the movie.
There are 3.8M edges in this dataset, among with 8,695
edges are multiple edges. For our Minimax SimRank
analysis, we treated multiple edges as single ones.

(6) SYN. The synthetic data were produced by the

graph generator GTGraph 11, varying two parameters:
the number of vertices, and the number of edges. We
generated the graphs following the power laws.

(7) SYNBI. The synthetic bipartite graphs were also
generated by GTGraph, denoted as SYNBI, with ver-
tex sets of two sides having one half of the vertices,
and edges being randomly generated.

APPENDIX H
A CASE STUDY FOR RELATIVE ORDER P-
RESERVATION

Figure 9 shows the top-30 co-authors of “Prof. Jeffrey
Xu Yu” via OIP-DSR on DBLP D11. The results of
OIP-DSR, as compared with OIP-SR, only differ in
one inversion at two adjacent positions (#23, #24),
which is practically acceptable. This is consistent with
our intuitions in Section 4, where we envisage that
slightly modifying the damping factor in OIP-DSR

never incurs high quality loss.

10. http://www.imdb.com
11. http://www.cse.psu.edu/˜madduri/software/GTgraph/


