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Abstract. Alternating direction methods are a common tool for general mathematical programming and op-
timization. These methods have become particularly important in the field of variational image
processing, which frequently requires the minimization of nondifferentiable objectives. This paper
considers accelerated (i.e., fast) variants of two common alternating direction methods: the alternat-
ing direction method of multipliers (ADMM) and the alternating minimization algorithm (AMA).
The proposed acceleration is of the form first proposed by Nesterov for gradient descent methods.
In the case that the objective function is strongly convex, global convergence bounds are provided
for both classical and accelerated variants of the methods. Numerical examples are presented to
demonstrate the superior performance of the fast methods for a wide variety of problems.
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1. Introduction. This manuscript considers the problem

(1)
minimize H(u) +G(v)
subject to Au+Bv = b

over variables u ∈ RNu and v ∈ RNv , where H : RNu → (−∞,∞] and G : RNv → (−∞,∞]
are closed convex functions, A ∈ RNb×Nu and B ∈ RNb×Nv are linear operators, and b ∈ RNb

is a vector of data. In many cases H and G each have a simple, exploitable structure. In
this case, alternating direction methods, whereby we minimize over one function and then the
other, are efficient and simple to implement.

The formulation (1) arises naturally in many application areas. One common application
is ℓ1 regularization for the solution of linear inverse problems. In statistics, ℓ1-penalized least-
squares problems are often used for “variable selection,” which enforces that only a small
subset of the regression parameters are nonzero [30, 36, 40, 38, 39, 16, 14]. In the context
of image processing, one commonly solves variational models involving the total variation
seminorm [44]. In this case, the regularizer is the ℓ1 norm of the gradient of an image.

Two common splitting methods for solving problem (1) are the alternating direction
method of multipliers (ADMM) and the alternating minimization algorithm (AMA). Both
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FAST ALTERNATING DIRECTION OPTIMIZATION METHODS 1589

of these schemes solve (1) using a sequence of steps that decouple H and G. While ADMM
and AMA are the preferred way to solve (1) because of their simplicity, they often perform
poorly in situations where the components of (1) are poorly conditioned or when high precision
is required.

This paper presents new accelerated variants of ADMM and AMA that exhibit faster con-
vergence than conventional splitting methods. Convergence rates are given for the accelerated
methods in the case when the problems are strongly convex. For general problems of the form
(1) (which may not be strongly convex), we present “restart” rules that allow the acceleration
to be applied with guaranteed convergence.

1.1. Structure of this paper. In section 2 we present the ADMM and AMA splitting
methods and provide a review of currently available accelerated optimization schemes. In
section 3 we develop a global convergence theory for nonaccelerated ADMM. In section 4 we
present the new accelerated ADMM scheme. Global convergence bounds are provided for
the case when the objective is strongly convex, and a rate is given. In the case of weakly
convex functions we present a “restart” scheme that is globally convergent but without a
guaranteed rate. In section 5 we present an accelerated variant of AMA. In section 6 we
discuss the relationship of the proposed methods to previous schemes. Finally, in section 7
we present numerical results demonstrating the effectiveness of the proposed acceleration for
image restoration, compressed sensing, and quadratic programming problems.

1.2. Terminology and notation. Given some tuple x = {xi|i ∈ Ω} with index set Ω, we
denote the ℓ2 norm and ℓ1 norm as

‖x‖ =

√

√

√

√

n
∑

i=1

|xi|2, |x| =
n
∑

i=1

|xi|,

respectively.
In much of the theory below, we shall make use of the resolvent operator, as described by

Moreau [31]. Let ∂F (x) be the subdifferential of a convex function F at x. The resolvent (or
proximal mapping) of a maximal monotone operator F is

J∂F (z) := (I + ∂F )−1z = argmin
x

F (x) +
1

2
‖x− z‖2.

For example, when F (x) = µ|x| for some µ > 0 we have

J∂F (z) := shrink(z, µ),

where the ith entry of the “shrink” function is

(2) shrink(z, µ)i :=
zi
|zi|

max{|zi| − µ, 0} = max{|zi| − µ, 0} sign{zi}.

We shall also make extensive use of the conjugate of a convex function. The conjugate of a
convex function F, denoted F ∗, is defined as

F ∗(p) = sup
u
〈u, p〉 − F (u).
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1590 T. GOLDSTEIN, B. O’DONOGHUE, S. SETZER, AND R. BARANIUK

The conjugate function satisfies the important identity

p ∈ ∂F (u) ⇔ u ∈ ∂F ∗(p)

that will be used extensively below. For an in-depth discussion of the conjugate function and
its properties, see [5, 43].

We shall often refer to strongly convex functions. If H is strongly convex, then there exists
a constant σH > 0 such that for every x, y ∈ RNu

〈p− q, x− y〉 ≥ σH‖x− y‖2,

where p ∈ ∂H(x) and q ∈ ∂H(y). This can be written equivalently as

λH(x) + (1− λ)H(y)−H(λx+ (1− λ)y) ≥ σHλ(1− λ)‖x− y‖2

for λ ∈ [0, 1]. Intuitively, strong convexity means that a function lies above its local quadratic
approximation.

If H is strongly convex, then its conjugate function has a Lipschitz continuous gradient,
in which case ∂H∗(y) = {∇H∗(y)}. If H is strongly convex with modulus σH , then

L(∇H∗) = σ−1
H ,

where L(∇H∗) denotes the Lipschitz constant of ∇H, i.e.,

‖∇H∗(x)−∇H∗(y)‖ ≤ L(∇H∗)‖x− y‖.

For an extensive discussion of the properties of strongly convex functions, see Proposition 12.60
of [43].

We will work frequently with the dual of problem (1), which we write as

(3) maximize
(

D(λ) = −H∗(ATλ) + 〈λ, b〉 −G∗(BTλ)
)

over λ ∈ RNb and where D : RNb → R is the concave dual objective. We denote by λ⋆ the
optimum of the above problem (presuming it exists) and by D(λ⋆) the optimal objective value.

Finally, we denote the spectral radius of a matrix A by ρ(A). Using this notation the
matrix norm of A can be written as

√

ρ(ATA).

1.3. Alternating direction methods. Alternating direction methods enable problems of
the form (1) to be solved by addressing H and G separately.

The alternating direction method of multipliers (ADMM) solves the coupled problem (1)
using the uncoupled steps listed in Algorithm 1.

Algorithm 1. ADMM.

Require: v0 ∈ RNv , λ0 ∈ RN
b , τ > 0

1: for k = 0, 1, 2, . . . do
2: uk+1 = argminuH(u) + 〈λk,−Au〉+ τ

2‖b−Au−Bvk‖2
3: vk+1 = argminv G(v) + 〈λk,−Bv〉+ τ

2‖b−Auk+1 −Bv‖2
4: λk+1 = λk + τ(b−Auk+1 −Bvk+1)
5: end for
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The ADMM was first described by Glowinski and Marrocco [17]. Convergence results
were studied by Gabay and Mercier [15], Glowinski and Le Tallec [18], and Eckstein and
Bertsekas [13]. In the context of ℓ1-regularized problems, this technique is commonly known
as the split Bregman method [22] and is known to be an efficient solver for problems involving
the total variation norm [21].

Another well-known alternating direction method is Tseng’s alternating minimization al-

gorithm (AMA) [48]. This method has simpler steps than ADMM, but requires strong con-
vexity of one of the objectives. See Algorithm 2.

Algorithm 2. AMA.

Require: λ0 ∈ RNb , τ > 0
1: for k = 0, 1, 2, . . . do
2: uk+1 = argminuH(u) + 〈λk,−Au〉
3: vk+1 = argminv G(v) + 〈λk,−Bv〉+ τ

2‖b−Auk+1 −Bv‖2
4: λk+1 = λk + τ(b−Auk+1 −Bvk+1)
5: end for

The goal of this paper is to develop accelerated (i.e., fast) variants of the ADMM and
AMA methods. We will show that the ADMM and AMA iterations can be accelerated using
techniques of the type first proposed by Nesterov [33]. Nesterov’s method was originally
intended to accelerate the minimization of convex functions using first-order (e.g., gradient
descent–type) methods. In the context of alternating direction methods, we will show how
the technique can be used to solve the constrained problem (1).

1.4. Optimality conditions and residuals for ADMM. The solution to a wide class of
problems can be described by the KKT conditions [5]. In the case of the constrained problem
(1), there are two conditions that describe an optimal solution (see [4] and [5] for an in-depth
treatment of optimality conditions for this problem). First, the primal variables must be
feasible. This results in the condition

(4) b−Au⋆ −Bv⋆ = 0.

Next, the dual variables must satisfy the Lagrange multiplier (or dual feasibility) condition

0 ∈ ∂H(u⋆)−ATλ⋆,(5)

0 ∈ ∂G(v⋆)−BTλ⋆.(6)

In general, it could be that G or H is nondifferentiable, in which case these optimality con-
ditions are difficult to check. Using the optimality conditions for the individual steps of Al-
gorithm 1, we can arrive at more useful expressions for these quantities. From the optimality
condition for step 3 of Algorithm 1, we have

0 ∈ ∂G(vk+1)−BTλk − τBT (b−Auk+1 −Bvk+1)

= ∂G(vk+1)−BTλk+1.

Thus, the second dual optimality condition (5) is satisfied by vk+1 and λk+1 at the end of
each iteration of Algorithm 1.
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1592 T. GOLDSTEIN, B. O’DONOGHUE, S. SETZER, AND R. BARANIUK

To obtain a useful expression for the condition (5), we use the optimality condition for
step 2 of Algorithm 1,

0 ∈ ∂H(uk+1)−ATλk − τAT (b−Auk+1 −Bvk) = ∂H(uk+1)−ATλk+1 − τATB(vk+1 − vk).

After each iteration of Algorithm 1, we then have

τATB(vk+1 − vk) ∈ ∂H(uk+1)−ATλk+1.

One common way to measure how well the iterates of Algorithm 1 satisfy the KKT con-
ditions is to define the primal and dual residuals:

rk = b−Auk −Bvk,(7)

dk = τATB(vk − vk−1).(8)

The size of these residuals indicates how far the iterates are from a solution. One of the goals
of this paper is to establish accelerated versions of Algorithm 1 such that these residuals decay
quickly.

1.5. Optimality conditions and residuals for AMA. We can write the KKT condition
(5) in terms of the iterates of AMA using the optimality condition for step 2 of Algorithm 2,
which is

0 ∈ ∂H(uk+1)−ATλk =
(

∂H(uk+1)−ATλk+1

)

+AT (λk+1 − λk).

The residuals for AMA can thus be written as

rk = b−Auk −Bvk,(9)

dk = AT (λk − λk+1).(10)

2. Optimal descent methods. Consider the unconstrained problem

(11) minimize F (x)

over variable x ∈ RN for some Lipschitz continuously differentiable, convex function F : RN →
R. We consider standard first-order methods for solving this type of problem. We begin with
the method of gradient descent described in Algorithm 3.

Algorithm 3. Gradient descent.

1: for k = 0, 1, 2, . . . do
2: xk+1 = xk − τ∇F (xk)
3: end for

Convergence of gradient descent is guaranteed as long as τ < 2
L(∇F ) , where L(∇F ) is the

Lipschitz constant for ∇F .

In the case when F = H+G is the sum of two convex functions, a very useful minimization
technique is the forward-backward splitting (FBS) method (Algorithm 4), first introduced by
Bruck [6] and popularized by Passty [41].
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Algorithm 4. FBS.

1: for k = 1, 2, 3, . . . do
2: xk+1 = Jτ∂G(xk − τ∂H(xk))
3: end for

FBS has fairly general convergence properties. In particular, it is convergent as long as
τ < 2/L(∂H) [41]. See [11] for a more recent and in-depth analysis of FBS.

The complexity of first-order methods has been studied extensively by Nemirovsky and
Yudin [32]. For the general class of problems with Lipschitz continuous derivative, gradient
descent achieves the global convergence rate O(1/k), meaning that F (xk) − F ∗ < C/k for
some constant C > 0 [34]. Similar O(1/k) convergence bounds have been provided for more
sophisticated first-order methods including the proximal point method [24] and FBS [2].

In a seminal paper, Nesterov [33] presented a first-order minimization scheme with O(1/k2)
global convergence—a rate which is provably optimal for the class of Lipschitz differentiable
functionals [34]. Nesterov’s optimal method is a variant of gradient descent which is acceler-
ated by an overrelaxation step; see Algorithm 5.

Algorithm 5. Nesterov’s accelerated gradient descent.

Require: α0 = 1, x0 = y1 ∈ RN , τ < 1/L(∇F )
1: for k = 1, 2, 3, . . . do
2: xk = yk − τ∇F (yk)

3: αk+1 = (1 +
√
4α2

k + 1)/2
4: yk+1 = xk + (αk − 1)(xk − xk−1)/αk+1

5: end for

Since the introduction of this optimal method, much work has been done in applying Nes-
terov’s concept to other first-order splitting methods. Nesterov himself showed that O(1/k2)
complexity results can be proved for certain classes of nondifferentiable problems [35]. His
arguments have also been adapted to the acceleration of proximal point descent methods by
Güler [24]. Like Nesterov’s gradient descent method, Güler’s method achieves O(1/k2) global
convergence, which is provably optimal.

More recently, there has been reinvigorated interest in optimal first-order schemes in the
context of compressed sensing [3, 27]. One particular algorithm of interest is the optimal FBS
method of Beck and Teboulle [2], which they have termed FISTA. See Algorithm 6.

Algorithm 6. FISTA.

Require: y1 = x0 ∈ RN , α1 = 1, τ < 1/L(∇G)
1: for k = 1, 2, 3, . . . do
2: xk = Jτ∂G(yk − τ∇H(yk))

3: αk+1 = (1 +
√
1 + 4α2

k)/2
4: yk+1 = xk +

αk−1
αk+1

(xk − xk−1)

5: end for

FISTA is one the first examples of global acceleration being applied to a splitting scheme.
However, the method cannot directly solve saddle point problems involving Lagrange multi-
pliers (i.e., problems involving linear constraints).
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One approach for solving saddle point problems is the accelerated alternating direction
method proposed by Goldfarb, Ma, and Scheinberg [20]. These authors propose a Nesterov-
type acceleration for problems of the form (1) in the special case where both A and B are
identity matrices, and one ofH or G is differentiable. This scheme is based on the “symmetric”
ADMM method, which differs from Algorithm 1 in that it involves two dual updates per
iteration rather than one. The authors handle weakly convex problems by introducing a step-
skipping process that applies the acceleration selectively on certain iterations. These “step-
skipping” methods require a more complicated sequence of steps than conventional ADMM,
but maintain stability in the presence of a Nesterov-type acceleration step.

3. Global convergence bounds for unaccelerated ADMM. We now develop global con-
vergence bounds for ADMM. We consider the case where both terms in the objective are
strongly convex.

Assumption 1. Both H and G are strongly convex with moduli σH and σG, respectively.
Note that this assumption is rather strong—in many common problems solved using

ADMM, one or both of the objective terms are not strongly convex. Later, we shall see
how convergence can be guaranteed for general objectives by incorporating a simple restart
rule.

As we shall demonstrate below, the conventional (unaccelerated) ADMM converges in
the dual objective with rate O(1/k). Later, we shall introduce an accelerated variant that
converges with the optimal bound O(1/k2).

3.1. Preliminary results. Before we prove global convergence results for ADMM, we re-
quire some preliminary definitions and lemmas.

To simplify notation, we define the “pushforward” operators, u+, v+, and λ+, for ADMM
such that

u+ = argmin
u

H(u) + 〈λ,−Au〉+ τ

2
‖b−Au−Bv‖2,(12)

v+ = argmin
z

G(z) + 〈λ,−Bz〉+ τ

2
‖b−Au+ −Bz‖2,(13)

λ+ = λ+ τ(b−Au+ −Bv+).(14)

In plain words, u+, v+, and λ+ represent the results of an ADMM iteration starting with v
and λ. Note that that these pushforward operators are implicitly functions of v and λ, but we
have omitted this dependence for brevity.

Again we consider the dual to problem (1) which we restate here for clarity:

(15) maximize
(

D(λ) = −H∗(ATλ) + 〈λ, b〉 −G∗(BTλ)
)

.

Define the following operators:

Ψ(λ) = A∇H∗(ATλ),(16)

Φ(λ) = B∇G∗(BTλ).(17)

Note that the derivative of the dual functional is b − Ψ − Φ. Maximizing the dual problem
is therefore equivalent to finding a solution to b ∈ Ψ(λ⋆) + Φ(λ⋆). Note that Assumption 1
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guarantees that both Ψ and Φ are Lipschitz continuous with L(Ψ) ≤ ρ(ATA)
σH

and L(Φ) ≤
ρ(BTB)

σG
.

Lemma 1. Let λ ∈ RNb , v ∈ RNv . Define

λ
1

2 = λ+ τ(b−Au+ −Bv),

λ+ = λ+ τ(b−Au+ −Bv+).

Then we have

Au+ = A∇H∗(ATλ
1

2 ) := Ψ(λ
1

2 ),

Bv+ = B∇G∗(BTλ+) := Φ(λ+).

Proof. From the optimality condition for u+ given in (12),

0 ∈ ∂H(u+)−ATλ− τAT (b−Au+ −Bv) = ∂H(u+)−ATλ
1

2 .

From this, we obtain

ATλ
1

2 ∈ ∂H(u+) ⇔ u+ = ∇H∗(ATλ
1

2 ) ⇒ Au+ = A∇H∗(ATλ
1

2 ) = Ψ(λ
1

2 ).

From the optimality condition for v+ given in (13),

0 ∈ ∂G(v+)−BTλ− τBT (b−Au+ −Bv+) = ∂G(v+)−BTλ+,

which yields

BTλ+ ∈ ∂G(v+) ⇔ v+ = ∇G∗(BTλ+) ⇒ Bv+ = B∇G∗(BTλ+) = Φ(λ+).

The following key lemma provides bounds on the dual functional and its value for succes-
sive iterates of the dual variable.

Lemma 2. Suppose that τ3 ≤ σHσ2
G

ρ(ATA)ρ(BTB)2
and that Bv = Φ(λ). Then, for any γ ∈ RNb,

D(λ+)−D(γ) ≥ τ−1〈γ − λ, λ− λ+〉+ 1

2τ
‖λ− λ+‖2.

Proof. Once again, let λ
1

2 = λ+τ(b−Au+−Bv). Define the constants α := ρ(ATA)
σH

≥ L(Ψ)

and β := ρ(BTB)
σG

≥ L(Φ). Choose a value of τ such that τ3 ≤ 1
αβ2 . We begin by noting that

‖λ+ − λ
1

2‖2 = τ2‖Bv+ −Bv‖2 = τ2‖Φ(λ+)− Φ(λ)‖2

≤ τ2β2‖λ+ − λ‖2.
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We now derive some tasty estimates for H and G. We have

H∗(AT γ)−H∗(ATλ+) = H∗(ATγ)−H∗(ATλ
1

2 ) +H∗(ATλ
1

2 )−H∗(ATλ+)(18)

≥ H∗(ATλ
1

2 ) + 〈γ − λ
1

2 , A∇H∗(ATλ
1

2 )〉
−
(

H∗(ATλ
1

2 ) + 〈λ+ − λ
1

2 , A∇H∗(ATλ
1

2 )〉+ α

2
‖λ+ − λ

1

2‖2
)

= 〈γ − λ+,Ψ(λ
1

2 )〉 − α

2
‖λ+ − λ

1

2‖2

≥ 〈γ − λ+,Ψ(λ
1

2 )〉 − ατ2β2

2
‖λ+ − λ‖2

≥ 〈γ − λ+,Ψ(λ
1

2 )〉 − 1

2τ
‖λ+ − λ‖2,(19)

where we have used the assumption τ3 ≤ 1
αβ2 , which implies that ατ2β2 < τ−1.

We also have

G∗(BTγ)−G∗(BTλ+) ≥ G∗(BTλ+) + 〈γ − λ+, B∇G∗(BTλ+)〉 −G∗(BTλ+)(20)

= 〈γ − λ+,Φ(λ+)〉.(21)

Adding estimate (18)–(19) to (20)–(21) yields

D(λ+)−D(γ) = G∗(BTγ)−G∗(BTλ+)

+H∗(ATγ)−H∗(ATλ+)

+ 〈λ+ − γ, b〉
≥ 〈γ − λ+,Φ(λ+)〉

+ 〈γ − λ+,Ψ(λ
1

2 )〉 − 1

2τ
‖λ+ − λ‖2

+ 〈λ+ − γ, b〉

= 〈γ − λ+,Φ(λ+) + Ψ(λ
1

2 )− b〉 − 1

2τ
‖λ+ − λ‖2(22)

= τ−1〈γ − λ+, λ− λ+〉 − 1

2τ
‖λ+ − λ‖2(23)

= τ−1〈γ − λ+ λ− λ+, λ− λ+〉 − 1

2τ
‖λ+ − λ‖2

= τ−1〈γ − λ, λ− λ+〉+ 1

2τ
‖λ+ − λ‖2,

where we have used Lemma 1 to traverse from (22) to (23).
Note that the hypothesis of Lemma 2 is actually a bit stronger than necessary. We actually

need only the weaker condition

τ3 ≤ 1

L(Ψ)L(Φ)2
.

Often, we do not have direct access to the dual function, let alone the composite functions

Ψ and Φ. In this case, the stronger assumption τ3 ≤ σHσ2
G

ρ(ATA)ρ(BTB)2
is sufficient to guarantee

that the results of Lemma 2 hold.
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Also, note that Lemma 2 requires Bv = Φ(λ). This can be thought of as a “compatibility
condition” between v and λ. While we are considering the action of ADMM on the dual
variables, the behavior of the iteration is unpredictable if we allow arbitrary values of v to
be used at the start of each iteration. Our bounds on the dual function are only meaningful
if a compatible value of v is chosen. This poses no difficulty, because the iterates produced
by Algorithm 1 satisfy this condition automatically—indeed Lemma 1 guarantees that for
arbitrary (vk, λk) we have Bvk+1 = Φ(λk+1). It follows that Bvk = Φ(λk) for all k > 0, and
so our iterates satisfy the hypothesis of Lemma 2.

3.2. Convergence results for ADMM. We are now ready to prove a global convergence
result for nonaccelerated ADMM (Algorithm 1) under strong convexity assumptions.

Theorem 1. Consider the ADMM iteration described by Algorithm 1. Suppose that H and

G satisfy the conditions of Assumption 1, and that τ3 ≤ σHσ2
G

ρ(ATA)ρ(BTB)2
. Then for k > 1 the

sequence of dual variables {λk} satisfies

D(λ⋆)−D(λk) ≤
‖λ⋆ − λ1‖2
2τ(k − 1)

,

where λ⋆ is a Lagrange multiplier that maximizes the dual.

Proof. We begin by plugging γ = λ⋆ and (v, λ) = (vk, λk) into Lemma 2. Note that
λ+ = λk+1 and

2τ(D(λk+1)−D(λ⋆)) ≥ ‖λk+1 − λk‖2 + 2〈λk − λ⋆, λk+1 − λk〉(24)

= ‖λ⋆ − λk+1‖2 − ‖λ⋆ − λk‖2.(25)

Summing over k = 1, 2, . . . , n− 1 yields

(26) 2τ

(

−(n− 1)D(λ⋆) +

n−1
∑

k=1

D(λk+1)

)

≥ ‖λ⋆ − λn‖2 − ‖λ⋆ − λ1‖2.

Now, we use Lemma 2 again, with λ = γ = λk and v = vk, to obtain

2τ (D(λk+1)−D(λk)) ≥ ‖λk − λk+1‖2.

Multiplying this estimate by k − 1 and summing over iterates 1 through n− 1 gives us

2τ
n−1
∑

k=1

(kD(λk+1)−D(λk+1)− (k − 1)D(λk)) ≥
n−1
∑

k=1

k‖λk − λk+1‖2.

The telescoping sum on the left reduces to

(27) 2τ

(

(n− 1)D(λn)−
n−1
∑

k=1

D(λk+1)

)

≥
n−1
∑

k=1

k‖λk − λk+1‖2.

Adding (26) to (27) generates the inequality

2(n− 1)τ (D(λn)−D(λ⋆)) ≥ ‖λ⋆ − λn‖2 − ‖λ⋆ − λ1‖2 +
n−1
∑

k=1

k‖λk − λk+1‖2 ≥ −‖λ⋆ − λ1‖2,
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from which we arrive at the bound

D(λ⋆)−D(λk) ≤
‖λ⋆ − λ1‖2
2τ(k − 1)

.

Note that the iterates generated by Algorithm 1 depend on the initial value for both
the primal variable v0 and the dual variable λ0. However, the error bounds in Theorem 1
involve only the dual variable. This is possible because our error bounds involve the iterate
λ1 rather than the initial value λ0 chosen by the user. Because the value of λ1 depends on
our choice of v0, the dependence on the primal variable is made implicit. Note also that for
some problems the optimal λ⋆ may not be unique. For such problems, Theorem 1 does not
guarantee convergence of the sequence {λk} itself. Other analytical approaches can be used
to prove convergence of {λk} (see, for example, [12]); however, we use the above techniques
because they lend themselves to the analysis of an accelerated ADMM scheme. Strong results
will be proved about convergence of the residuals in section 3.3.

3.3. Optimality conditions and residuals. Using Theorem 1, it is possible to put global
bounds on the size of the primal and dual residuals, as defined in (7) and (8).

Lemma 3. When Assumption 1 holds, we have the following rates of convergence on the

residuals:

‖rk‖2 ≤ O(1/k),

‖dk‖2 ≤ O(1/k).

Proof. Applying Lemma 2 with γ = λk and v = vk gives us

D(λk+1)−D(λk) ≥ (τ/2)‖λk − λk+1‖2.

Rearranging this and combining with the convergence rate of the dual function, we have

O(1/k) ≥ D(λ⋆)−D(λk) ≥ D(λ⋆)−D(λk+1) + (τ/2)‖λk − λk+1‖ ≥ (τ/2)‖λk − λk+1‖2.

From the λ update, this implies

‖rk‖2 = ‖b−Auk −Bvk‖2 ≤ O(1/k).

Under the assumption that G is strongly convex and that Bvk ∈ Φ(λk), we have that

‖Bvk −Bvk−1‖2 = ‖Φ(λk)− Φ(λk−1)‖2 ≤ β2‖λk − λk−1‖2 ≤ O(1/k).

This immediately implies the dual residual norm squared,

‖dk‖2 = ‖τATB(vk − vk−1)‖2 ≤ O(1/k).
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3.4. Comparison to other results. It is possible to achieve convergence results with
weaker assumptions than those required by Theorem 1 and Lemma 3. The authors of [25]
prove O(1/k) convergence for ADMM. While this result does not require any strong convexity
assumptions, it relies on a fairly unconventional measure of convergence obtained from the
variational inequality formulation of (1). The results in [25] are the most general convergence
rate results for ADMM to date.

Since this paper was submitted for publication, several other authors have provided con-
vergence results for ADMM under strong convexity assumptions. The authors of [12] prove
R-linear convergence of ADMM under strong convexity assumptions similar to those used in
the present paper. The work [12] also provides linear convergence results under the assump-
tion of only a single strongly convex term, provided that the linear operators A and B are
full rank. These convergence results bound the error as measured by an approximation to the
primal-dual duality gap.

R-linear convergence of ADMM with an arbitrary number of objective terms is proved
in [26] using somewhat stronger assumptions than those of Theorem 1. In particular, it is
required that each objective term of (1) have the form F (Ax) + E(x), where F is strictly
convex and E is polyhedral. It is also required that all variables in the minimization be
restricted to lie in a compact set.

While Theorem 1 and Lemma 3 do not contain the strongest convergence rates available
under strong convexity assumptions, they have the advantage that they bound fairly con-
ventional measures of the error (i.e., the dual objective and residuals). Also, the proof of
Theorem 1 is instructive in that it lays the foundation for the accelerated convergence results
of section 4.

4. Fast ADMM for strongly convex problems. In this section, we develop the accelerated
variant of ADMM listed in Algorithm 7. The accelerated method is simply ADMM with a
predictor-corrector–type acceleration step. This predictor-corrector step is stable only in the
special case where both objective terms in (1) are strongly convex. In section 4.3 we introduce
a restart rule that guarantees convergence for general (i.e., weakly convex) problems.

Algorithm 7. Fast ADMM for strongly convex problems.

Require: v−1 = v̂0 ∈ RNv , λ−1 = λ̂0 ∈ RNb , τ > 0, α1 = 1
1: for k = 1, 2, 3, . . . do
2: uk = argminH(u) + 〈λ̂k,−Au〉+ τ

2‖b−Au−Bv̂k‖2
3: vk = argminG(v) + 〈λ̂k,−Bv〉+ τ

2‖b−Auk −Bv‖2
4: λk = λ̂k + τ(b−Auk −Bvk)

5: αk+1 =
1+
√

1+4α2
k

2

6: v̂k+1 = vk +
αk−1
αk+1

(vk − vk−1)

7: λ̂k+1 = λk +
αk−1
αk+1

(λk − λk−1)

8: end for

4.1. Convergence of fast ADMM for strongly convex problems. We consider the con-
vergence of Algorithm 7. Here we consider the case when H and G satisfy Assumption 1, i.e.,
when both objective terms are strongly convex.
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Define
sk = akλk − (ak − 1)λk−1 − λ⋆.

We will need the following identity.
Lemma 4. Let λk, λ̂k, and ak be defined as in Algorithm 7. Then

sk+1 = sk + ak+1(λk+1 − λ̂k+1).

Proof. We begin by noting that, from the definition of λ̂k+1 given in Algorithm 7,

(ak − 1)(λk − λk−1) = ak+1(λ̂k+1 − λk).

This observation, combined with the definition of sk, gives us

sk+1 = ak+1λk+1 − (ak+1 − 1)λk − λ⋆

= λk − λ⋆ + ak+1(λk+1 − λk)

= λk − (ak − 1)λk−1 − λ⋆ + ak+1(λk+1 − λk) + (ak − 1)λk−1

= akλk − (ak − 1)λk−1 − λ⋆ + ak+1(λk+1 − λk)− (ak − 1)(λk − λk−1)

= sk + ak+1(λk+1 − λk)− (ak − 1)(λk − λk−1)

= sk + ak+1(λk+1 − λk)− ak+1(λ̂k+1 − λk)

= sk + ak+1(λk+1 − λ̂k+1).

This identity, along with Lemma 2, can be used to derive the following relation.
Lemma 5. Suppose that H and G satisfy Assumption 1, that G is quadratic, and that

τ3 ≤ σHσ2
G

ρ(ATA)ρ(BTB)2
. The iterates generated by Algorithm 7 without restart and the sequence

{sk} obey the following relation:

‖sk+1‖2 − ‖sk‖2 ≤ 2a2kτ (D(λ⋆)−D(λk))− 2a2k+1τ (D(λ⋆)−D(λk+1)) .

Proof. See Appendix A.
Using these preliminary results, we now prove a convergence theorem for accelerated

ADMM.
Theorem 2. Suppose that H and G satisfy Assumption 1 and that G is quadratic. If we

choose τ3 ≤ σHσ2
G

ρ(ATA)ρ(BTB)2
, then the iterates {λk} generated by Algorithm 7 without restart

satisfy

D(λ⋆)−D(λk) ≤
2‖λ̂1 − λ⋆‖2
τ(k + 2)2

.

Proof. From Lemma 5 we have

2a2k+1τ (D(λ⋆)−D(λk+1)) ≤ ‖sk‖2 − ‖sk+1‖2

+ 2a2kτ (D(λ⋆)−D(λk))

≤ ‖sk‖2 + 2a2kτ (D(λ⋆)−D(λk)) .

(28)

Now, note that the result of Lemma 5 can be written as

‖sk+1‖2 + 2a2k+1τ (D(λ⋆)−D(λk+1)) ≤ ‖sk‖2 + 2a2kτ (D(λ⋆)−D(λk)) ,
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which implies by induction that

‖sk‖2 + 2a2kτ (D(λ⋆)−D(λk)) ≤ ‖s1‖2 + 2a21τ (D(λ⋆)−D(λ1)) .

Furthermore, applying (49) (from Appendix A) with k = 0 yields

D(λ1)−D(λ⋆) ≥ 1

2τ
‖λ1 − λ̂1‖2 +

1

τ
〈λ̂1 − λ⋆, λ1 − λ̂1〉 =

1

2τ

(

‖λ1 − λ⋆‖2 − ‖λ̂1 − λ⋆‖2
)

.

Applying these observations to (28) yields

2a2k+1τ (D(λ⋆)−D(λk+1)) ≤ ‖s1‖2 + 2τ (D(λ⋆)−D(λ1))

= ‖λ1 − λ⋆‖2 + 2τ (D(λ⋆)−D(λ1))

≤ ‖λ1 − λ⋆‖2 + ‖λ̂1 − λ⋆‖2 − ‖λ1 − λ⋆‖2

= ‖λ̂1 − λ⋆‖2,

from which it follows immediately that

D(λ⋆)−D(λk) ≤
‖λ̂1 − λ⋆‖2

2τa2k
.

It remains only to observe that ak > ak−1 +
1
2 > 1 + k

2 , from which we arrive at

D(λ⋆)−D(λk) ≤
2‖λ̂1 − λ⋆‖2
τ(k + 2)2

.

4.2. Convergence of residuals. The primal and dual residuals for ADMM, (7) and (8),
can be extended to measure convergence of the accelerated Algorithm 7. In the accelerated
case the primal residual rk = b − Auk − Bvk is unchanged; a simple derivation yields the
following new dual residual:

(29) dk = τATB(vk − v̂k).

We now prove global convergence rates in terms of the primal and dual residuals.
Lemma 6. If Assumption 1 holds, G is quadratic, and B has full row rank, then the fol-

lowing rates of convergence hold for Algorithm 7:

‖rk‖2 ≤ O(1/k2),

‖dk‖2 ≤ O(1/k2).

Proof. Since G is quadratic and B has full row rank, −D is strongly convex, which implies
that

‖λ⋆ − λk‖2 ≤ O(1/k2)

from the convergence of D(λk). This implies that

‖λk+1 − λk‖2 ≤ (‖λ⋆ − λk‖+ ‖λ⋆ − λk+1‖)2 ≤ O(1/k2).
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Since H and G are strongly convex, D has a Lipschitz continuous gradient with constant
L ≤ 1/σH + 1/σG. From this we have that

D(λ̂k) ≥ D(λ⋆)− (L/2)‖λ̂k − λ⋆‖2

and so

D(λk+1)−D(λ̂k+1) ≤ D(λk+1)−D(λ⋆) + (L/2)‖λ̂k+1 − λ⋆‖2

≤ (L/2)‖λ̂k+1 − λ⋆‖2

= (L/2)‖λk − λ⋆ + γk(λk − λk−1)‖2

≤ (L/2) (‖λk − λ⋆‖+ γk‖λk − λk−1‖)2

≤ O(1/k2),

where γk = (ak − 1)/ak+1 ≤ 1. But from Lemma 2 we have that

D(λk+1)−D(λ̂k+1) ≥ (1/2τ)‖λk+1 − λ̂k+1‖2 = (1/2)‖rk‖2

and therefore
‖rk‖2 ≤ O(1/k2).

We now consider convergence of the dual residual. From Lemma 8 (see Appendix A) we
know that Bv̂k ∈ Φ(λ̂k) and Bvk ∈ Φ(λk). It follows that

‖dk‖2 = ‖τATB(vk − v̂k)‖2 ≤ ‖τAT (Φ(λk)− Φ(λ̂k))‖2

≤ τ2ρ(ATA)β2‖λk − λ̂k‖2 ≤ O(1/k2).

4.3. Accelerated ADMM for weakly convex problems. In this section, we consider the
application of ADMM to weakly convex problems. We can still accelerate ADMM in this
case; however, we cannot guarantee a global convergence rate as in the strongly convex case.
For weakly convex problems, we must enforce stability using a restart rule, as described in
Algorithm 8.

The restart rule relies on a combined residual, which measures both the primal and dual
error simultaneously:

(30) ck =
1

τ
‖λk − λ̂k‖2 + τ‖B(vk − v̂k)‖2.

Note that the combined residual contains two terms. The first term, 1
τ
‖λk − λ̂k‖2 = τ‖b −

Auk −Bvk‖2, measures the primal residual (7). The second term, τ‖B(vk − v̂k)‖2, is closely
related to the dual residual (8) but differs in that it does not require multiplication by AT .

Algorithm 8 involves a new parameter η ∈ (0, 1). On line 6 of the algorithm, we test
whether the most recent ADMM step has decreased the combined residual by a factor of at
least η. If so, then we proceed with the acceleration (steps 7–9). Otherwise, we throw out the
most recent iteration and “restart” the algorithm by setting αk+1 = 1. In this way, we use
restarting to enforce monotonicity of the method. Similar restart rules of this type have been
studied for unconstrained minimization in [37]. Because it is desirable to restart the method
as infrequently as possible, we recommend a value of η close to 1. In all of the numerical
experiments presented here, η = 0.999 was used.
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Algorithm 8. Fast ADMM with restart.

Require: v−1 = v̂0 ∈ RNv , λ−1 = λ̂0 ∈ RNb , τ > 0, α1 = 1, η ∈ (0, 1)
1: for k = 1, 2, 3, . . . do
2: uk = argminH(u) + 〈λ̂k,−Au〉+ τ

2‖b−Au−Bv̂k‖2
3: vk = argminG(v) + 〈λ̂k,−Bv〉+ τ

2‖b−Auk −Bv‖2
4: λk = λ̂k + τ(b−Auk −Bvk)
5: ck = τ−1‖λk − λ̂k‖2 + τ‖B(vk − v̂k)‖2
6: if ck < ηck−1 then

7: αk+1 =
1+
√

1+4α2
k

2

8: v̂k+1 = vk +
αk−1
αk+1

(vk − vk−1)

9: λ̂k+1 = λk +
αk−1
αk+1

(λk − λk−1)

10: else

11: αk+1 = 1, v̂k+1 = vk−1, λ̂k+1 = λk−1

12: ck ← η−1ck−1

13: end if

14: end for

4.4. Convergence of the restart method. To prove the convergence of Algorithm 8, we
will need the following result, due to He and Yuan (for a proof, see [25, Theorem 4.1]).

Lemma 7. The iterates {vk, λk} produced by Algorithm 1 satisfy

1

τ
‖λk+1 − λk‖2 + τ‖B(vk+1 − vk)‖2 ≤ 1

τ
‖λk − λk−1‖2 + τ‖B(vk − vk−1)‖2.

In words, Theorem 7 states that the unaccelerated ADMM (Algorithm 1) decreases the
combined residual monotonically. It is now fairly straightforward to prove convergence for the
restart method.

Theorem 3. For convex H and G, Algorithm 8 converges in the sense that

lim
k→∞

ck = 0.

Proof. We begin with some terminology. Each iteration of Algorithm 8 is of one of three
types: (1) A “restart” iteration occurs when the inequality in step 6 of the algorithm is not
satisfied. (2) A “nonaccelerated” iteration occurs immediately after a “restart” iteration. On
such iterations αk = 1, and so the acceleration (lines 7–9) of Algorithm 8 is inactivated, making
the iteration equivalent to the original ADMM. (3) An “accelerated” iteration is any iteration
that is not “restart” or “unaccelerated.” On such iterations, lines 7–9 of the algorithm are
invoked, and αk > 1.

Suppose that a restart occurs at iteration k. Then the values of vk and λk are returned
to their values at iteration k − 1 (which have combined residual ck−1). We also set αk+1 = 1,
making iteration k + 1 an unaccelerated iteration. By Theorem 3 the combined residual is
nonincreasing on this iteration, and so ck+1 ≤ ck−1. Note that after accelerated steps, the
combined residual decreases by at least a factor of η. It follows that the combined residual
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satisfies
ck ≤ c0η

k̂,

where k̂ denotes the number of accelerated steps that have occurred within the first k itera-
tions.

Clearly, if the number of accelerated iterations is infinite, then we have ck → 0 at k → ∞.
In the case that the number of accelerated iterations is finite, then after the final accelerated
iteration each pair of restart and unaccelerated iterations is equivalent to a single iteration of
the original unaccelerated ADMM (Algorithm 1) for which convergence is known [25].

While Algorithm 8 enables us to extend accelerated ADMM to weakly convex problems,
our theoretical results are weaker in this case because we cannot guarantee a convergence rate
as we did in the strongly convex case. Nevertheless, the empirical behavior of the restart
method (Algorithm 8) is superior to that of the original ADMM (Algorithm 1), even in the
case of strongly convex functions. Similar results have been observed for restarted variants of
other accelerated schemes [37].

5. An accelerated alternating minimization algorithm. We now develop an accelerated
version of Algorithm 2, AMA. This acceleration technique is very simple and comes with fairly
strong convergence bounds, but at the cost of requiring H to be strongly convex. We begin
by considering the convergence of standard unaccelerated AMA. We can prove convergence
of this scheme by noting its equivalence to FBS on the dual of problem (1), given in (3).

Following the arguments of Tseng [48], we show that the Lagrange multiplier vectors
generated by AMA correspond to those produced by performing FBS (Algorithm 4) on the
dual. The original proof of Theorem 4 as presented in [48] does not provide a convergence
rate, although it relies on techniques similar to those used here.

Theorem 4. Suppose that G is convex, and that H is strongly convex with strong convex-

ity constant σH . Then Algorithm 2 converges whenever τ < 2σH/ρ(ATA). Furthermore, the

sequence of iterates {λk} is equivalent to that generated by applying FBS to the dual problem.

Proof. We begin by considering (3), the dual formulation of problem (1). Define the
following operators:

Ψ(λ) = A∇H∗(ATλ),(31)

Θ(λ) = B∂G∗(BTλ)− b.(32)

From the optimality condition for step 3 of Algorithm 2,

BTλk + τBT (b−Auk+1 −Bvk+1) ∈ ∂G(vk+1),

which leads to
vk+1 ∈ ∂G∗

(

BTλk + τBT (b−Auk+1 −Bvk+1)
)

.

Multiplying by B and subtracting b yields

Bvk+1 − b ∈ Θ(λk + τ(b−Auk+1 −Bvk+1)).

Next, we multiply by τ and add λk+τ(b−Auk+1−Bvk+1) to both sides of the above equation
to obtain

λk − τAuk+1 ∈ (I + τΘ) (λk + τ(b−Auk+1 −Bvk+1)) ,
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which can be rewritten as

(33) (I + τΘ)−1(λk − τAuk+1) = (λk + τ(b−Auk+1 −Bvk+1)) = λk+1.

Note that (I+τΘ)−1 is the “resolvent” of the convex function G∗. This inverse is known to be
unique and well defined for arbitrary proper convex functions (see [42]). Next, the optimality
condition for step 2 yields

(34) ATλk = ∇H(uk+1) ⇔ uk+1 = ∇H∗(ATλk) ⇒ Auk+1 = Ψ(λk).

Combining (33) with (34) yields

(35) λk+1 = (I + τΘ)−1(λk − τΨ(λk)) = (I + τΘ)−1(I − τΨ)λk,

which is the forward-backward recursion for the minimization of (3).
This FBS converges as long as τ < 2/L(Ψ). From the definition of Ψ given in (31), we

have that τ < 2
L(∂H∗)ρ(ATA)

. If we apply the identity L(∇H∗) = 1/σH , we obtain the condition

τ < 2σH/ρ(ATA).
The equivalence between AMA and FBS provides us with a simple method for accelerating

the splitting method. By overrelaxing the Lagrange multiplier vectors after each iteration, we
obtain an accelerated scheme equivalent to performing FISTA on the dual; see Algorithm 9.

Algorithm 9. Fast AMA.

Require: α0 = 1, λ−1 = λ̂0 ∈ RNb , τ < σH/ρ(ATA)
1: for k = 0, 1, 2, . . . do
2: uk = argminH(u) + 〈λ̂k,−Au〉
3: vk = argminG(v) + 〈λ̂k,−Bv〉+ τ

2‖b−Auk −Bv‖2
4: λk = λ̂k + τ(b−Auk −Bvk)

5: αk+1 = (1 +
√
1 + 4α2

k)/2
6: λ̂k+1 = λk +

αk−1
αk+1

(λk − λk−1)

7: end for

Algorithm 9 accelerates Algorithm 2 by exploiting the equivalence between (2) and FBS
on the dual problem (3). By applying the Nesterov-type acceleration step to the dual variable
λ, we obtain an accelerated method which is equivalent to maximizing the dual functional (3)
using FISTA. This notion is formalized below.

Theorem 5. If H is strongly convex and τ < σH/ρ(ATA), then the iterates {λk} generated

by the accelerated Algorithm 9 converge in the dual objective with rate O(1/k2). More precisely,

if D denotes the dual objective, then

D(λ⋆)−D(λk) ≤
2ρ(ATA)‖x0 − x⋆‖2

σH(k + 1)2
.

Proof. We follow the arguments in the proof of Theorem 4, where it was demonstrated
that the sequence of Lagrange multipliers {λk} generated by Algorithm 2 is equivalent to the
application of FBS to the dual problem

max
λ

(

D(λ) = Θ(λ) + Ψ(λ)
)

.
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By overrelaxing the sequence of iterates with the parameter sequence {αk}, we obtain an
algorithm equivalent to performing FISTA on the dual objective. The well-known convergence
results for FISTA state that the dual error is bounded above by 2L(Ψ)‖x0 − x⋆‖2)/(k + 1)2.
If we recall that L(Ψ) = ρ(ATA)/σH , then we arrive at the stated bound.

6. Relation to other methods. The methods presented here have close relationships to
other accelerated methods. The most immediate relationship is between fast AMA (Algo-
rithm 9) and FISTA, which are equivalent in the sense that AMA is derived by applying
FISTA to the dual problem.

A relationship can also be seen between the proposed fast ADMM method and the ac-
celerated primal-dual scheme of Chambolle and Pock [9]. The latter method addresses the
problem

(36) min
u

G(Ku) +H(u).

The approach of Chambolle and Pock is to dualize one of the terms and solve the equivalent
problem

(37) max
λ

min
u

〈Ku, λ〉 −G∗(λ) +H(u).

The steps of the primal-dual method are described as follows:

uk+1 = Jτn∂H∗(uk − σkK
T λ̄k),

λk+1 = Jσn∂G∗(λk + τkKxk),

λ̄k+1 = λk+1 + α(λk+1 − λk),

(38)

where α is an overrelaxation parameter.

We wish to show that (38) is equivalent to the ADMM iteration for K = I. Applying the
ADMM scheme, Algorithm 1, to (36) with A = −I, B = K, and b = 0 yields the sequence of
steps

uk+1 = argminH(u) + 〈λk, u〉+
τ

2
‖u−Kvk‖2,

vk+1 = argminG(v) + 〈λk,−Kv〉+ τ

2
‖uk+1 −Kv‖2,

λk+1 = λk + τ(uk+1 −Kvk+1).

(39)

If we further let K = I, this method can be expressed using resolvents as

uk+1 = Jτ−1∂H(vk − τ−1λk),

vk+1 = Jτ−1∂G(uk+1 + τ−1λk),

λk+1 = λk + τ(uk+1 − vk+1).

(40)

Finally, from Moreau’s identity [42], we have

Jτ−1∂G(z) = z − τ−1Jτ∂G∗(τz).
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Applying this to (40) simplifies our steps to

uk+1 = Jτ−1∂H(vk − τ−1λk),

λk+1 = Jτ∂G(λk + τuk+1),

vk+1 = uk+1 + (λk − λk+1)/τ.

Now let λ̄k = τ(uk − vk) + λk. The resulting ADMM scheme is equivalent to (38), with
σk = 1/τk.

Thus, in the case K = I, both the scheme (38) and Algorithm 8 can also be seen as
an acceleration of ADMM. Scheme (38) has a somewhat simpler form than Algorithm 8 and
comes with stronger convergence bounds, but at the cost of less generality.

The scheme proposed in [20] works for problems of the form (36) in the special case that
K = I. In this sense, their approach is similar to the approach of [9]. However, the method
presented in [20] relies on the “symmetric” form of ADMM, which involves two Lagrange
multiplier updates per iteration rather than one. An interesting similarity between the method
in [20] and the fast ADMM (Algorithm 8) is that both schemes test a stability condition
before applying acceleration. The method in [20], unlike the method presented here, has the
advantage of working on problems with two weakly convex objectives, at the cost of requiring
A = B = I.

7. Numerical results. In this section, we demonstrate the effectiveness of our proposed
acceleration schemes by applying them to a variety of common test problems. We first con-
sider elastic net regularization. This problem formally satisfies all of the requirements of the
convergence theory (e.g., Theorem 2), and thus convergence is guaranteed without restarting
the method. We then consider several weakly convex problems including image denoising,
compressed sensing, image deblurring, and, finally, general quadratic programming.

7.1. Elastic net regularization. It is common in statistics to fit a large number of variables
using a relatively small or noisy data set. In such applications, including all of the variables
in the regression may result in overfitting. Variable selection regressions solve this problem by
automatically selecting a small subset of the available variables and performing a regression
on this active set. One of the most popular variable selection schemes is the “elastic net”
regularization, which corresponds to the following regression problem [49]:

(41) min
u

λ1|u|+
λ2

2
‖u‖2 + 1

2
‖Mu− f‖2,

where M represents a matrix of data, f contains the measurements, and u is the vector of
regression coefficients.

In the case λ2 = 0, problem (41) is often called the Lasso regression, as proposed by
Tibshirani [47]. The Lasso regression combines least-squares regression with an ℓ1 penalty
that promotes sparsity of the coefficients, thus achieving the desired variable selection. It has
been shown that the above variable selection often performs better when choosing λ2 > 0,
thus activating the ℓ2 term in the model. This is because a simple ℓ1-penalized regression has
difficulty selecting groups of variables whose corresponding columns of A are highly correlated.
In such situations, simple Lasso regression results in overly sparse solutions, while the elastic
net is capable of identifying groups of highly correlated variables [49, 45].
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The elastic net is an example of a problem that formally satisfies all of the conditions
of Theorem 2, and so restart is not necessary for convergence. To test the behavior of fast
ADMM (Algorithm 7) on this problem, we use an example proposed by Zou and Hastie [49].
These authors propose choosing three random normal vectors v1, v2, and v3 of length 50. We
then define M to be the 50× 40 matrix

Mi =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

v1 + ei, i = 1, . . . , 5,

v2 + ei, i = 6, . . . , 10,

v3 + ei, i = 11, . . . , 15,

N(0, 1), i = 16, . . . , 40,

where ei are random normal vectors with variance σe. The problem is then to recover the
vector

û =

{

3, i = 1, . . . , 15,

0 otherwise

from the noisy measurements f = Mû + η, where η is normally distributed with standard
deviation 0.1. This vector is easily recovered using the model (41) with λ1 = λ2 = 1. This
test problem simulates the ability of the elastic net to recover a sparse vector from a sensing
matrix containing a combination of highly correlated and nearly orthogonal columns.

We apply the fast ADMM method to this problem with H = 1
2‖Mu − f‖2, G = λ1|u| +

λ2

2 ‖u‖2, A = I, B = −I, and b = 0. We perform two different experiments. In the first, we
choose σe = 1 as suggested by the authors of [49]. This produces a moderately conditioned
problem in which the condition number of M is approximately 26. We also consider the case
σe = 0.1 which makes the correlations between the first 15 columns of M stronger, resulting
in a condition number of approximately 226.

In both experiments, we choose τ according to Theorem 2, where σH is the minimal
eigenvalue of MTM and σG = λ2. Note that Theorem 2 guarantees convergence without
using a restart.

We compare the performance of five different algorithms on each test problem. We apply
the original ADMM (Algorithm 1), the fast ADMM (Algorithm 7), and fast ADMM with
restart (Algorithm 8). Because problem (41) is strongly convex, its dual is Lipschitz differ-
entiable. For this reason, it is possible to solve the dual of (41) using Nesterov’s gradient
method (Algorithm 5). We consider two variants of Nesterov’s method—the original acceler-
ated method (Algorithm 5) and also a variant of Nesterov’s method incorporating a restart
whenever the method becomes nonmonotone [37].

Figure 1 shows sample convergence curves for the experiments described above. The dual
energy gap (i.e., D(λ⋆) − D(λk)) is plotted for each iterate. The dual energy is a natural
measure of error, because the Nesterov method is acting on the dual problem. When σe = 1,
the original ADMM without acceleration performed similarly to both variants of Nesterov’s
method, and the accelerated ADMMs were somewhat faster. For the poorly conditioned
problem (σe = 0.1), both variants of Nesterov’s method performed poorly, and the accelerated
ADMM with restart outperformed the other methods by a considerable margin. All five
methods had similar iteration costs, with all schemes requiring between 0.24 and 0.28 seconds
to complete 200 iterations.
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Figure 1. Convergence curves for the elastic net problem.

One reason for the superiority of the fast ADMM over Nesterov’s method is the step-
size restriction. For this problem, the step-size restriction for fast ADMM is τ3 ≤ λ2

2σH ,
where σH is the minimal eigenvalue of MTM. The step-size restriction for Nesterov’s method
is τ ≤ (λ2 + σ−1

H )−1, which is considerably more restrictive when M is poorly conditioned
and σH is small. For the moderately conditioned problem ADMM is stable with τ ≤ 0.906,
while Nesterov’s method requires τ ≤ 0.213. For the poorly conditioned problem, fast ADMM
required τ ≤ 0.201, while Nesterov’s method required τ ≤ 0.0041.

7.2. Image restoration. A fundamental image processing problem is image restoration/
denoising. A common image restoration model is the well known total variation or Rudin–
Osher–Fatemi [44] model:

(42) minimize |∇u|+ µ
2‖u− f‖2.

Note that we use the discrete forward gradient operator ∇ : RΩ → RΩ ×R2, which is defined
entrywise as

(∇u)i,j = (ui+1,j − ui,j, ui,j+1 − ui,j),
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and denote the discrete total variation of u as simply |∇u|. When f represents a noisy image,
minimizing (42) corresponds to finding a denoised image u that is similar to the noisy image f
while being “smooth” in the sense that it has small total variation. The parameter µ controls
the tradeoff between the smoothness term and the fidelity term.

To demonstrate the performance of the acceleration scheme, we use three common test
images: “cameraman,” “Barbara,” and “shapes.” Images were scaled with pixel values in the
0–255 range and then contaminated with Gaussian white noise of standard deviation σ = 20.
To put the problem in the form of (1), we take H(u) = µ

2‖u−f‖2, G(v) = |v|, A = ∇, B = −I,
and b = 0. We then have the formulation

minimize µ
2 ‖u− f‖2 + |v|

subject to ∇u− v = 0

over u ∈ RNu and v ∈ RNv . For this problem, we have σH = µ and ρ(ATA) = ρ(∆T∆) < 8.
The step-size restriction for Algorithm 9 is thus τ < µ/8.

Using this decomposition, steps 2 and 3 of Algorithm 9 become

uk = f − 1

µ
(∇ · λ̂k),

vk = shrink

(

∇uk + τ λ̂k,
1

τ

)

,(43)

where the shrink operator is defined in (2). Note that both the u and v update rules involve
only explicit vector operations including difference operators (for the gradient and divergence
terms), addition, and scalar multiplication. For this reason, the AMA approach for image
denoising is easily implemented in numerical packages (such as MATLAB), which is one of its
primary advantages.

For comparison, we also implement the fast ADMM method with restart using τ = µ/2,
which is the step size suggested for this problem in [22]. To guarantee convergence of the
method, the first minimization substep must be solved exactly, which can be done using the
fast Fourier transform (FFT) [22]. While the ADMM method allows for larger step sizes than
AMA, the iteration cost is higher due to the use of the FFT rather than simple differencing
operators.

Experiments were conducted on three different test images: “cameraman,” “Barbara,”
and “shapes.” Images were scaled from 0–255, and a Gaussian noise was added with σ = 20
and σ = 50. Images were then denoised with µ = 0.1, 0.05 and µ = 0.01, respectively. Sample
noise-contaminated images are shown in Figure 2. Denoising results for the case σ = 20 are
shown in Figure 3. Iterations were run for each method until they produced an iterate that
satisfied ‖uk − u⋆‖/‖u⋆‖ < 0.005. Below each image we display the unaccelerated/accelerated
iteration count for AMA (top) and ADMM (bottom).

A more detailed comparison of the methods is displayed in Table 1, which contains iteration
counts and runtimes for both AMA and ADMM. Note that ADMM was advantageous for very
coarse scale problems (small µ), while AMA was more effective for large values of µ. This is
expected, because the AMA implementation uses only first-order difference operators, which
moves information through the image slowly, while ADMM uses the Fourier transforms, which
moves information globally and resolves large smooth regions quickly.
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(a) (b) (c)

Figure 2. “Cameraman” test image. (a) Original image. (b) Gaussian noise, σ = 20. (c) Gaussian noise,
σ = 50.

Note also that all four methods were considerably slower for smaller µ. However, this effect
is much less dramatic when accelerated methods are used.

7.3. Fast split Bregman method for compressed sensing and deblurring. In this sec-
tion, we consider the reconstruction of images from measurements in the Fourier domain. A
common variational model for such a problem is

(44) minimize |∇u|+ ǫ
2‖∇u‖2 + µ

2 ‖RFu− f‖2

over u ∈ RNu , where F denotes the discrete Fourier transform, R is a diagonal matrix, and f
represents the Fourier information that we have obtained. The data term on the right enforces
that the Fourier transform of the reconstructed image be compatible with the measured data,
while the total variation term on the left enforces image smoothness. The parameter µ medi-
ates the tradeoff between these two objectives. We also include an ℓ2 regularization term with
parameter ǫ to make the solution smoother and to make the fast ADMM more effective. We
consider two applications for this type of formulation: image deconvolution and compressed
sensing.

The reconstruction of an image from a subset of its Fourier modes is at the basis of mag-
netic resonance imaging (MRI) [1, 28]. In classical MRI, images are measured in the Fourier
domain. Reconstruction consists simply of applying the inverse FFT. Renewed interest in this
area has been seen with the introduction of compressed sensing, which seeks to reconstruct
high-resolution images from a small number of samples [8, 7]. Within the context of MRI, it
has been shown that high-resolution images can be reconstructed from undersampled infor-
mation in the Fourier domain [29]. This is accomplished by leveraging the sparsity of images;
i.e., the reconstructed image should have a sparse representation. This imaging problem is
modeled by (44) if we choose R to be a diagonal “row selector matrix.” This matrix has a 1
along the diagonal at entries corresponding to Fourier modes that have been measured, and
0’s for Fourier modes that are unknown. The known Fourier data is placed in the vector f.

The next application we consider is image deblurring. In many imaging applications, we
wish to obtain an image u from its blurred representation ũ = K ∗ u, where K represents
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16/9
21/10

76/23
17/10

2839/162
178/112

15/9
23/10

68/22
15/9

1914/135
120/77

16/9
17/9

92/24
14/9

4740/184
296/171

Figure 3. Iteration count versus image scale. Images were denoised with µ = 0.1 (left), µ = 0.05 (center),
and µ = 0.01 (right) to achieve varying levels of coarseness. The number of iterations required to reach a
relative error tolerance of 5× 10−3 is reported below each image for both the fast/slow methods, with AMA on
top and ADMM below.
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Table 1

Time trial results. Iteration counts are reported for each problem/algorithm, with total runtime (seconds)
in parentheses.

Image µ σ AMA Fast AMA ADMM Fast ADMM + restart

Cameraman 0.1 20 16 (0.117) 9 (0.069) 21 (0.293) 10 (0.140)
Cameraman 0.1 50 7 (0.053) 6 (0.049) 37 (0.531) 17 (0.244)
Cameraman 0.05 20 76 (0.550) 23 (0.174) 17 (0.234) 10 (0.139)
Cameraman 0.05 50 24 (0.180) 12 (0.094) 27 (0.382) 15 (0.213)
Cameraman 0.01 20 2839 (20.601) 162 (1.213) 178 (2.381) 112 (1.499)
Cameraman 0.01 50 1814 (13.083) 123 (0.925) 114 (1.530) 74 (0.993)
Barbara 0.1 20 15 (0.548) 9 (0.353) 23 (1.509) 10 (0.653)
Barbara 0.1 50 7 (0.267) 6 (0.240) 38 (2.515) 17 (1.120)
Barbara 0.05 20 68 (2.567) 22 (0.880) 15 (1.073) 9 (0.658)
Barbara 0.05 50 24 (0.901) 12 (0.476) 28 (1.849) 16 (1.064)
Barbara 0.01 20 1914 (69.039) 135 (5.089) 120 (7.636) 77 (4.894)
Barbara 0.01 50 1345 (48.348) 107 (4.057) 85 (5.385) 56 (3.535)
Shapes 0.1 20 16 (0.071) 9 (0.042) 17 (0.175) 9 (0.093)
Shapes 0.1 50 7 (0.031) 6 (0.028) 36 (0.355) 16 (0.162)
Shapes 0.05 20 92 (0.407) 24 (0.115) 14 (0.149) 9 (0.091)
Shapes 0.05 50 23 (0.102) 12 (0.057) 26 (0.261) 14 (0.142)
Shapes 0.01 20 4740 (20.729) 184 (0.828) 296 (2.754) 171 (1.599)
Shapes 0.01 50 2381 (10.434) 138 (0.618) 149 (1.396) 83 (0.782)

a blurring kernel and ∗ is the convolution operator. A common formulation of this problem
using total variation minimization solves the following [19, 10]:

(45) min |∇u|+ ǫ

2
‖∇u‖2 + µ

2
‖K ∗ u− f‖2,

where ǫ is an ℓ2 smoothing parameter. It is well known that linear convolution operators are
diagonal in the Fourier domain; that is, the convolution operator can be written as K ∗ u =
FTRFu for some diagonal matrix R. If we further note that the FFT is unitary, we can write
(45) in the form (44), where R is the Fourier representation of the blur operator and f = F ũ.

The ADMM is particularly useful for problems of the form (44) because each subproblem
of the method is very easily solved in closed form. For this reason, ADMM approaches for this
class of problems are common in the image processing literature, where they are sometimes
referred to as the split Bregman method [22, 23]. To apply Algorithm 1 to (44), we let
H(u) = µ

2 ‖RFu− f‖2, G(v) = |v|+ ǫ
2‖v‖2, A = ∇, and B = −I. The resulting minimization

step for v is

vk = argmin
v

(

|v| + ǫ

2
‖v‖2 + 〈λk, v〉+

τ

2
‖v −∇uk‖2

)

.

This regularized problem can be solved using a modified form of (43):

vk = shrink

(

τ

τ + ǫ
(∇uk + τ λ̂k),

1

τ + ǫ

)

.

The minimization for u is more complicated. The optimality condition for this minimiza-
tion is

(τ∆+ µFTR′RF)uk+1 = µFTRT f +∇ · (λk + τvk).
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To solve this, we note that the discrete Laplacian operator ∆ is itself a convolution and can
be written in the form ∆ = FTLF , where L is a diagonal matrix. This observation allows us
to write the optimality condition for u in the form

FT (τL+ µR′R)Fuk+1 = µFTRT f +∇ · (λk + τvk).

The solution to this matrix equation is then

uk+1 = FT (τL+ µR′R)−1F
(

µFTRT f +∇ · (λk + τvk)
)

.

Note that this solution can be evaluated using only two FFTs.
We apply Algorithms 1 and 8 to compressed sensing and deblurring problems to examine

their performance.
We first consider two compressed sensing problems. The first problem is to reconstruct

a synthetic image, the digital Shepp–Logan phantom [46], from undersampled data. For this
purpose, we use a 256 × 256 discretization of the Shepp–Logan phantom. A subset of 25%
of the Fourier coefficients is measured at random. The second compressed sensing problem is
the reconstruction of a real MR image of a saline phantom with dimensions 741 × 784. Only
50% of the coefficients were used for this example. Both test images and their reconstructions
are displayed in Figure 4.

To simplify parameter choice, both images were scaled so that pixel intensities ranged
from 0 to 1. With this scaling, it was found that a step size of τ = 2, regularization parameter
of ǫ = 1, and fidelity parameter µ = 500 were effective for both examples. Both the original
and fast ADMM methods were applied with the same value of ǫ = 1.

Sample convergence curves are displayed in Figure 5. Note that the acceleration becomes
more effective as the algorithm progresses. The original and fast methods have similar per-
formance for approximately 10 iterations of the method, after which the superiority of the
accelerated scheme becomes apparent. In Figure 6, the 35th iterates of both algorithms are
displayed. Note that the accelerated method resolves large, smooth regions more quickly.

Two sample deconvolution problems were generated using the cameraman and shapes test
images. Both images were scaled from 0–255. The cameraman and shapes images were blurred
by convolving with a Gaussian kernel of radius 2 and 5 pixels, respectively, and contaminated
with Gaussian noise of standard deviation 5. The original, blurred, and recovered images are
displayed in Figure 7. Deblurring was performed using the formulation (44) with parameters
µ = 1000, τ = 100, and ǫ = 0. Note that the ℓ2 regularization term was deactivated by setting
ǫ = 0, as we found that choosing ǫ > 0 resulted in lower quality reconstructions for deblurring
problems.

Sample convergence curves for deconvolution problems are shown in Figure 8. Note that
the acceleration is less effective for this problem because we were not able to use the ℓ2
regularization. Nonetheless, the acceleration did yield an improved rate of convergence without
any significant computational overhead.

7.4. General quadratic programming. Consider the following quadratic program (QP):

(46)
minimize (1/2)uTQu+ qTu
subject to Au ≤ b
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Saline Phantom 50% Sampling

Shepp-Logan Phantom 25% Sampling

Figure 4. Test images used for compressed sensing experiments (left) and their reconstructions from under-
sampled data (right). The saline phantom is displayed on top, with the digital Shepp–Logan phantom on the
bottom.

over variable u ∈ RNu , where A ∈ RNb×Nu and b ∈ RNb and where Q ∈ RNu×Nu is sym-
metric positive definite. This QP can be solved by both ADMM and AMA; here we compare
the performance of standard ADMM and AMA (Algorithms 1 and 2) and their accelerated
counterparts (Algorithms 7 and 9). To transform (46) into the canonical form given by (1),
we introduce a new variable v ∈ RNb and rewrite the problem as

(47)
minimize (1/2)uTQu+ qTu+ Iv≤b(v)
subject to Au− v = 0,

where

Iv≤b(v) =

{

0, v ≤ b,
∞ otherwise.

This fits the form of (1) if we set H(u) = (1/2)uTQu+ qTu and G(v) = Iv≤b(v).
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Figure 5. Sample convergence curves showing the performance of the original and fast ADMM methods
for the compressed sensing problems. The “relative error” is defined as the suboptimality of the iterate, i.e.,
F (uk)− F (u⋆), where F is the objective function (44).

7.4.1. ADMM. With this formulation ADMM is carried out as in Algorithm 10.

Algorithm 10. ADMM for the QP.

Require: v0 ∈ RNv , λ0 ∈ RNb , τ ∈ R+

1: for k = 0, 1, . . . do
2: uk+1 = (Q+ τATA)−1(AT (λk + τvk)− q)
3: vk+1 = min(Auk+1 − λk/τ, b)
4: λk+1 = λk + τ(−Auk+1 + vk+1)
5: end for

The accelerated form of ADMM follows immediately.
As a numerical instance we took Nu = 500 and Nb = 250, all quantities were generated

randomly, and the condition number of Q was 108. At the solution 126 of the constraints
were active. Figure 9(a) shows the convergence of the primal and dual residuals for both
the unaccelerated and accelerated methods when τ = 1. Figure 9(b) shows the number of
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Figure 6. False color images showing the 35th iterate of reconstruction of the Shepp–Logan phantom using
accelerated ADMM (left) and standard ADMM (right).

iterations required to reach a maximum residual norm of 10−9 for different choices of τ . We
see that the accelerated-restarted form of ADMM requires fewer iterations for all choices of τ
and is less sensitive to this choice.

7.4.2. AMA. In general it seems that AMA does not perform as well as ADMM when
solving QPs. We use it here to illustrate the improvement afforded by accelerating the tech-
nique. With the formulation (47), AMA is performed as in Algorithm 11.

Algorithm 11. AMA to solve QP.

Require: λ0 ∈ RNb , τ ∈ R+

1: for k = 0, 1, . . . do
2: uk+1 = Q−1(ATλk − q)
3: vk+1 = min(Auk+1 − λk/τ, b)
4: λk+1 = λk + τ(−Auk+1 + vk+1)
5: end for

The accelerated form follows immediately.

Since H is strongly convex we expect O(1/k2) convergence of the dual function D. As
a particular example we took n = 50 and m = 25, again generating all quantities randomly.
The condition number of Q was 4 × 104. At the optimum, 12 of the constraints were active;
we chose the step size to be τ = λmin(Q)/ρ(ATA).

Figure 10 shows the convergence of the dual function for standard AMA, accelerated AMA,
and accelerated AMA with restart. The restart rule we chose enforced monotonicity on the
dual function iterates; i.e., we restart whenever we have D(λk) < D(λk−1), which is one of
the restart rules discussed in [37].

Appendix A. Proof of Lemma 5. In what follows, we will apply Lemma 2. To do this,
we will need the following result stating when the compatibility condition in the hypothesis
of Lemma 2 is satisfied.
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Figure 7. Top: Cameraman and shapes test images. Center: Blurred test images. Bottom: Restored/
deblurred images.
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Figure 8. Sample convergence curves showing the performance of the original and fast ADMM methods for
deblurring problems.

Lemma 8. Suppose that H and G satisfy Assumption 1 and that G is quadratic. Then the

iterates {v̂k} and {λ̂k} satisfy Bv̂k = Φ(λ̂k) for k ≥ 0.
Proof. Note that, by the result of Lemma 1, we have Bvk = Φ(λk). Since we have assumed

G to be quadratic and strongly convex, we know that G∗ is quadratic. It follows that ∇G∗

is an affine transformation. We then have Bv̂k+1 = Bvk + αk−1
ak+1

(Bvk − Bvk−1) ∈ Φ(λk) +
αk−1
ak+1

(Φλk − Φλk−1) = Φ(λ̂k+1)

Using the above identity, we can prove Lemma 5 from section 4.1.
Lemma 5 (restated). The iterates generated by Algorithm 7 and the sequence {sk} obey the

following relation:

‖sk+1‖2 − ‖sk‖2 ≤ 2a2kτ (D(λ⋆)−D(λk))− 2a2k+1τ (D(λ⋆)−D(λk+1)) .

Proof. From Lemma 4, we have

‖sk+1‖2 = ‖sk + ak+1(λk+1 − λ̂k+1)‖2

= ‖sk‖2 + 2ak+1〈sk, λk+1 − λ̂k+1〉
+ a2k+1‖λk+1 − λ̂k+1‖2.
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(b) Sensitivity to the choice of τ .

Figure 9. Top: Convergence curves showing the primal/dual residuals as defined in (7) and (8). Bottom:
The number of iterations required for convergence (‖rk‖, ‖dk‖ < 10−5) is plotted for a variety of step-size
choices.

Rearranging terms yields

‖sk+1‖2 − ‖sk‖2 = 2ak+1〈λk, λk+1 − λ̂k+1〉+ a2k+1‖λk+1 − λ̂k+1‖2

= 2ak+1〈akλk − (ak − 1)λk−1 − λ⋆, λk+1 − λ̂k+1〉
+ a2k+1‖λk+1 − λ̂k+1‖2

= 2ak+1〈ak+1λ̂k+1 + (1− ak+1)λk − λ⋆, λk+1 − λ̂k+1〉
+ a2k+1‖λk+1 − λ̂k+1‖2

= 2ak+1〈(ak+1 − 1)(λ̂k+1 − λk) + λ̂k+1 − λ⋆, λk+1 − λ̂k+1〉
+ a2k+1‖λk+1 − λ̂k+1‖2

= 2ak+1(ak+1 − 1)〈λ̂k+1 − λk, λk+1 − λ̂k+1〉
+2ak+1〈λ̂k+1 − λ⋆, λk+1 − λ̂k+1〉+ a2k+1‖λk+1 − λ̂k+1‖2

= 2ak+1(ak+1 − 1)

(

〈λ̂k+1 − λk, λk+1 − λ̂k+1〉+
1

2
‖λk+1 − λ̂k+1‖2

)

+2ak+1

(

〈λ̂k+1 − λ⋆, λk+1 − λ̂k+1〉+
1

2
‖λk+1 − λ̂k+1‖2

)

.
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Figure 10. Convergence of the dual function for the QP under AMA.

Note that Lemma 8 guarantees that the iterates of Algorithm 7 satisfy the compatibility
condition Bv̂k = Φ(λ̂k). It follows that the hypothesis of Lemma 2 is satisfied. We now apply
Lemma 2 with γ = λk, λ = λ̂k+1, v = v̂k+1. Note that, by the notation used in the lemma,
λ+ = λk+1. This gives us the following bound:

(48) D(λk+1)−D(λk) ≥
1

2τ
‖λk+1 − λ̂k+1‖2 + τ−1〈λ̂k+1 − λk, λk+1 − λ̂k+1〉.

Applying Lemma 2 again with γ = λ⋆, λ = λ̂k+1, and v = v̂k+1 yields

(49) D(λk+1)−D(λ⋆) ≥ 1

2τ
‖λk+1 − λ̂k+1‖2 + τ−1〈λ̂k+1 − λ∗, λk+1 − λ̂k+1〉.

Applying the estimates (48) and (49) to the above equality gives us

‖sk+1‖2 − ‖sk‖2 ≤ 2ak+1(ak+1 − 1)τ (D(λk+1)−D(λk))

+ 2ak+1τ (D(λk+1)−D(λ⋆))

= 2a2k+1τD(λk+1)− 2ak+1(ak+1 − 1)τD(λk)

− 2ak+1τD(λ⋆)

= 2a2k+1τD(λk+1)− 2a2kτD(λk)(50)

− 2(a2k+1 − a2k)τD(λ⋆)

= 2a2kτ (D(λ⋆)−D(λk))(51)

+ 2a2k+1τ (D(λk+1)−D(λ⋆)) ,

where we have used the relation a2k = a2k+1 − ak+1 to traverse from (50) to (51).

Acknowledgments. Thanks to Ernie Esser and Stephen Boyd for many useful discussions.
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