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Fast Analysis of 2-D Electromagnetic Crystal
Devices Using a Periodic Green Function Approach

Davy Pissoort, Eric Michielssen, Fellow, IEEE, Frank Olyslager, Fellow, IEEE, and Daniël De Zutter, Fellow, IEEE

Abstract—A novel integral equation-based method for simulat-
ing wave propagation in two-dimensional (2-D) electromagnetic
crystal (EC) devices is presented. A small number of irregular
defects aside, the targeted devices are obtained by removing cylin-
ders from infinite, doubly periodic, and defectless electromagnetic
crystals. Integral equations in terms of equivalent currents that
reside on the surfaces of the voids left by the removed cylinders
are constructed by using Green functions innate to the defectless
electromagnetic crystal. The sparse system of equations that re-
sults upon discretizing these integral equations is solved efficiently
by a multifrontal method. The scheme is ideally suited to extract
electromagnetic crystal device S parameters as it permits imposing
modal excitations and exact absorbing boundary conditions. The
scheme is applied to the analysis of two multiplexer–demultiplexer
devices, a filter, and a bended EC waveguide, thereby demonstrat-
ing its versatility and computational efficiency.

Index Terms—Numerical analysis, periodic structures, photonic
bandgap waveguides, photonic crystals.

I. INTRODUCTION

R ECENTLY, photonic or electromagnetic crystals (ECs)

have been studied widely as their careful design enables

the manipulation of optical/electromagnetic waves on spatial

scales smaller than achievable by classical fiber structures

[1]. Two-dimensional (2-D) ECs consist of parallel homoge-

neous dielectric cylinders residing on a periodic lattice in a

homogeneous background. These ECs exhibit electromagnetic

bandgaps, viz., ranges of frequencies for which no electromag-

netic propagation is allowed. By removing/adding cylinders

from/to an otherwise perfect EC, an EC device capable of

supporting localized electromagnetic modes may result. This

phenomenon can be exploited to create low-loss waveguides

with sharp bends [2], [3], multiplexers [4]–[6], superprisms

[7], etc.

In recent years, many computational schemes for simulat-

ing EC devices have been proposed. At present, the finite-

difference time-domain method (FDTD) [8], which relates

spatial samples of electromagnetic field variables on a stag-

gered Cartesian grid via a temporal leapfrog scheme, is the
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most popular among them. As the FDTD method operates

directly in the time domain, it permits the wideband character-

ization of an EC device via a single simulation. Unfortunately,

as ECs often contain small elements, their FDTD discretization

and analysis require small spatial cells and time steps. Although

the ensuing computational burden can be partially alleviated by

using subcell models [9], FDTD methods remain computation-

ally expensive, especially when high accuracies are required

and phase dispersion is to be controlled. The eigenmode expan-

sion method (EME) [10], [11] constitutes another frequently

used technique for analyzing EC devices. The EME method

slices up an EC device into sections with constant index profile

along the propagation direction. Next, it expresses EC fields

as a sum over each section’s eigenmodes and determines the

latter’s expansion coefficients by mode matching at the section

interfaces. While the EME method is very attractive when

analyzing regular structures, its application becomes unwieldy

when many different section types or curved structures are

involved. The multiple scattering technique (MST) [12], [13]

is a third popular method for analyzing EC devices. The MST

solves integral equations in terms of equivalent currents that

reside on the EC cylinders’ surfaces. Often, the MST exploits

the cylinders’ circular nature by expanding surface currents in

angular Fourier series, which permits their fields to be cast

in terms of Bessel/Hankel functions. With this method, high

accuracy can be obtained with only a few unknowns per cylin-

der. The MST’s principal disadvantage is that it requires the

solution of a dense linear system of equations whose dimension

scales linearly with the number of cylinders. The cost of directly

solving this system scales cubically in the numbers of cylinders.

When using iterative solvers, this cost per iteration scales

(nearly) linearly or quadratically in the number of cylinders

depending on whether or not fast matrix–vector multiplica-

tion schemes are employed [14]. Unfortunately, the overall

cost of the iterative solver also scales proportional to the

total number of iterations required for its residual error to fall

below a preset threshold. Numerical experiments have shown

that for many realistic EC devices this number of iterations can

be very high, especially when they contain waveguide com-

ponents [15].

This paper describes a novel and fast MST for analyzing

electromagnetic wave propagation in EC devices. A small

number of defects aside, the targeted devices are obtained

by removing cylinders from doubly periodic, defectless, and

infinite ECs. The proposed method expressly cannot model

radiation and mismatch effects caused by EC truncation, nor

0733-8724/$20.00 © 2005 IEEE
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Fig. 1. Field-equivalence theorem applied to the simulation of finite EC devices using the free-space Green function approach. (a) Original configuration.
(b) Exterior problem. (c) Interior problem.

can it analyze devices carved out of nonideal and perturbed

ECs. Just like the conventional MST, the new MST solves

integral equations in terms of equivalent currents that reside

on cylindrical surfaces. However, contrary to the conventional

MST, which associates currents with the surfaces of all physical

cylinders that define the EC device and then subsequently

describes their interactions using a free-space Green function,

the new method considers unknown currents on the surfaces of

fictitious removed cylinders and then models their interaction

via a Green function innate to the surrounding infinite EC.

For frequencies in the electromagnetic bandgap, this EC Green

function decays exponentially with distance. Its precomputa-

tion can be achieved using the conventional MST by consid-

ering a centrally excited, finite, and small EC. Knowledge of

the EC Green function permits the fast assembly of the novel

MST’s system of equations comprising a sparse interaction

matrix and a localized excitation that can be solved rapidly

by multifrontal methods. Precomputation of the EC Green

function also permits calculation of the modes of the semi-

infinite waveguides that terminate the EC device. Knowledge

of these modes in turn can be used to compute the EC device’s

S parameters as it enables the implementation of exact modal

excitations and absorbing boundary conditions. Unfortunately,

many EC devices do not fit the above mold. That is, they can-

not be constructed by simply removing cylinders from an oth-

erwise defectless and infinite EC as they contain defects, e.g.,

cylinders with center positions, radii, and/or material parame-

ters that do not conform to those of the EC background. It will

be shown that the proposed method applies to these structures

as well, as they can be characterized by special Green functions

that are low-rank perturbations of that of the defectless EC.

Notation: All sources and fields are assumed time harmonic

with angular frequency ω; temporal dependencies e jωt are

suppressed.

II. ANALYSIS OF EC DEVICES USING THE FREE-SPACE

GREEN FUNCTION MST

This section details the conventional MST for the character-

ization of finite EC devices comprising arbitrarily positioned

dielectric/magnetic cylinders. This integral equation-based

scheme uses a free-space Green function to describe interac-

tions between equivalent currents on the cylinder surfaces.

The field-equivalence principle [16] is invoked to elucidate

symmetries between this conventional MST and the proposed

novel MST (Section III).

Consider a finite 2-D EC device [Fig. 1(a)] comprising

Nc identical, infinite, and z-invariant, homogeneous, dielectric/

magnetic circular cylinders with radius r and constitutive pa-

rameters (permittivity ǫ2, permeability µ2) that reside in a ho-

mogeneous background medium with constitutive parameters

(ǫ1, µ1). Let ρ = (ρ, φ) denote a global position vector. Like-

wise, let ρj = (ρj, φj) denote a local position vector with regard

to the center ρ
c
j of cylinder j, j = 1, . . . , Nc. Let E i(ρ)uz denote

the incident TMz-polarized electric field generated by im-

pressed sources (assumed to reside outside the cylinders) in

the absence of any cylinder. In the presence of the cylinders,

the total field E t(ρ)uz is observed. The difference between the

total and the incident fields is the scattered field E s(ρ)uz, viz.,

E t(ρ) = E i(ρ) + E s(ρ). To describe E s(ρ) and E t(ρ), two sets

of equivalent electric and magnetic currents are introduced on

the surface Sj of every cylinder j, j = 1, . . . , Nc. These sets,

labeled by subscripts α = 1 and 2, relate to the total field on

Sj as

J j
α(ρ)uz = −sα

j

ωµα

∂E t(ρ)

∂ρj

∣

∣

∣

∣

ρ∈Sj

δ(ρj − r)uz (1)

Kj
α(ρ)uφj

= sα E t(ρ)|
ρ∈Sj

δ(ρj − r)uφj
(2)

with s1 = 1 and s2 = −1. Two assumptions follow from the

field-equivalence theorem (Fig. 1):

i) The electric and magnetic currents
∑Nc

j=1 J
j

1 (ρ)uz and
∑Nc

j=1 K
j

1(ρ)uφj
, when radiating alongside the impressed

sources in an unbounded medium with constitutive para-

meters (ǫ1, µ1), generate zero fields inside the (now fic-

titious) surface Sj of every cylinder and the total electric

field E t(ρ)uz outside all Sj.
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ii) The electric and magnetic currents J j

2 (ρ)uz and

Kj

2(ρ)uφj
, when radiating in an unbounded medium with

constitutive parameters (ǫ2, µ2), generate zero fields out-

side Sj and E t(ρ)uz inside Sj.

Therefore, knowledge of J j
α(ρ) and Kj

α(ρ) suffices to recon-

struct all fields, scattered and/or total, both inside and outside

the cylinders. If E
s, j
α uz denotes the electric field radiated jointly

by J j
α(ρ)uz and Kj

α(ρ)uφj
in an unbounded medium with

constitutive parameters (ǫα, µα), then the above statements can

be cast as

E i(ρ) +

Nc
∑

j=1

E
s, j
1 (ρ) = 0 for ρ ∈ S−i , i = 1, . . . , Nc (3)

E
s, j
2 (ρ) = 0 for ρ ∈ S+

j , j = 1, . . . , Nc. (4)

Here, S−j and S +
j denote surfaces residing just inside and

outside cylinder j, respectively. To solve (integral equations) (3)

and (4), J j
α(ρ) and Kj

α(ρ) are expanded into an angular Fourier

series as

J j
α(ρ) = sα

K
∑

n=−K

CnI
j
n

2πr
e jnφjδ(ρj − r) (5)

K j
α(ρ) = sα

K
∑

n=−K

CnM
j

n

2πr
e jnφjδ(ρj − r). (6)

The constant

Cn =
k2µ1J′n(k2r)

k2µ1Jn(k1r)J′n(k2r) − k1µ2J′n(k1r)Jn(k2r)
(7)

with kα = ω
√

ǫαµα is introduced to simplify the derivations

and equations that follow. Because the cylinder radius r is small

compared with the wavelength and because the cylinders are

assumed sufficiently separated from one another as well as

from the impressed sources, the range of the modal index n

can always be restricted to n = −K, . . . , +K with K as a small

positive integer. It is readily verified that the scattered field

E
s, j
α (ρ) is given by (8) at the bottom of the page.

Here, Jn(·) is the nth-order Bessel function of the first kind,

and H(2)
n (·) is the nth-order Hankel function of the second kind.

Upon inserting expansion (8) into (3) and (4) and test-

ing them using T i
m(ρ) = [1/2πrJm(k1r)]e−jmφiδ(ρi − r), i =

1, . . . , Nc; m = −K, . . . , K, the resulting set of linear equations

can be solved for I
j
n and M

j
n, j = 1, . . . , Nc; n = −K, . . . , K

by brute force. Alternatively, all the magnetic unknowns M
j
n

can be eliminated in favor of their electric counterparts I
j
n by

first solving (interior) (4), thereby leaving only (3) and electric

unknowns I
j

n to be considered. This strategy is adopted here.

Inserting (8) with α = 2 into (4) yields

I
j

n

M
j

n

= −j

√

ǫ2

µ2

J′n(k2r)

Jn(k2r)
. (9)

Using (9), (8) with α = 1 can be reexpressed as

E
s, j

1 (ρ) =

K
∑

n=−K

Gn(ρj)I
j

n (10)

where Gn(ρj) given in (11), shown at the bottom of the page, is

defined.

Quantity Gn(ρj) is the (generalized) free-space Green func-

tion for a Huygens source with distributed electric and mag-

netic components (Cn/2πr)e jnφjδ(ρj − r)uz and ( jCn/2πr)
√

(µ2/ǫ2)[Jn(k2r)/J′n(k2r)]e jnφ jδ(ρj − r)uφj
radiating jointly

in an unbounded medium with constitutive parameters (ǫ1, µ1).
To solve for the unknowns I

j
n, expansion (10) is inserted into

(3), and the resulting equation is tested by T i
m(ρ), i = 1, . . . , Nc;

m = −K, . . . , K, giving rise to the matrix equation

ZI = E. (12)

The entries of the matrix Z as well as the vector E are Z
ij
mn =

〈T i
m(ρ), Gn(ρj)〉 and Ei

m = 〈T i
m(ρ) − E i(ρ)〉. Here 〈·, ·〉 stands

for the standard inner product. Making use of the addition

theorem for the Hankel function [17, p. 232, eq. (5-103)], the

E s, j
α (ρ) =















−sα

K
∑

n=−K

[

ωµα

4
Jn(kαr)I j

n +
jkα

4
J′n(kαr)M j

n

]

CnH(2)
n (kαρj)e

jnφj if ρj > r

−sα

K
∑

n=−K

[

ωµα

4
H(2)

n (kαr)I j
n +

jkα

4
H(2)′

n (kαr)M j
n

]

CnJn(kαρj)e
jnφj if ρj < r

(8)

Gn(ρj) =











−ωµ1

4
H(2)

n (k1ρj)e
jnφj if ρj > r

−ωµ1

4

k2µ1H(2)
n (k1r)J′n(k2r) − k1µ2H(2)′

n (k1r)Jn(k2r)

k2µ1Jn(k1r)J′n(k2r) − k1µ2J′n(k1r)Jn(k2r)
Jn(k1ρj)e

jnφj if ρj < r
(11)
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Fig. 2. Field-equivalence theorem applied to the simulation of an EC device using the EC Green function approach. (a) Original configuration. (b) Exterior
problem. (c) Interior problem.

entries of the matrix Z are shown as in (13) at the bottom

of the page.

Here Rij = |ρc
ij| and Φij = arctan (ρc

ij · uy/ρ
c
ij · ux) are the

length and angle with respect to the positive x-axis of the vector

ρ
c
ij = ρ

c
j − ρ

c
i connecting the centers of the cylinders i and

j [Fig. 1(b)]. For certain types of fields E i(ρ), closed-form

expressions of the entries of E also exist. For example, if E i(ρ)

is due to a unit strength electric line current located at ρs, that is,

if E i(ρ) = −(ωµ1/4)H(2)
0 (k1|ρ − ρs|), then use of the above-

referenced addition formula permits Ei
m to be expressed as

Ei
m = −ωµ1

4
(−1)mH(2)

m (k1Rsi)e
jmΦsi . (14)

Here, Rsi = |ρc
si| and Φsi = arctan (ρc

si · uy/ρ
c
si · ux) are the

length and angle of the vector ρ
c
si = ρ

c
i − ρs [Fig. 1(b)].

The above analysis can be easily repeated for TEz-polarized

fields. The required modifications are principally twofold: 1)

(3) and (4) are replaced by two similar equations stating that

appropriate z-directed magnetic fields vanish inside or outside

the surface Sj; 2) magnetic and electric currents flow along z

and φ, respectively.

The above “free-space Green function” MST does not pre-

clude the characterization of EC devices with semi-infinite

waveguide attachments. Indeed, such characterization can be

achieved by terminating sufficiently long EC device waveguide

appendages by absorbing/resistive sections, e.g., by perfectly

matched layer-based absorbing boundary conditions for inte-

gral equation solvers [18]. The resulting scheme, potentially

used in conjunction with computational de-embedding meth-

ods, then permits EC device S-parameter extraction.

Unfortunately, the above scheme’s computational cost is

high. The number of unknown electric current coefficients in

the system (12) is (2K + 1)Nc; here, 2K + 1, the number of

azimuthal harmonics per cylinder, does not depend on Nc, the

extent of the crystal. As the latter grows, the cost of solving

(12) using a direct solver thus scales as O(N3
c ). By using

classical iterative solvers, this cost can be reduced to O(PN2
c );

here P is the number of iterations. The cost can be further

reduced to O(PNc log Nc) or even O(PNc) by using fast Fourier

transform (FFT) or multilevel fast multipole-based methods

[14]. Unfortunately, numerical experiments have demonstrated

that when the EC device contains waveguiding components, P

can be very high, even when a good preconditioner is used [15].

This precludes the application of this free-space Green function

MST—even in conjunction with state of the art accelerators—to

the analysis of all but the simplest EC devices.

III. ANALYSIS OF EC DEVICES USING THE EC GREEN

FUNCTION MST

This section details a novel and fast scheme for character-

izing (semi-in)finite EC devices. A small number of defects

aside, these devices are obtained by removing cylinders from

an otherwise infinitely periodic and defectless EC. Contrary to

the scheme described in the previous section, which charac-

terized ECs by using a free-space Green function to describe

interactions between equivalent currents on physical cylinders,

the new scheme describes ECs by using a Green function innate

to the defectless EC to model interactions between equivalent

currents on removed cylinders.

A. Formulation

Consider a 2-D EC device [Fig. 2(a)] obtained by removing

Nr cylinders from an infinite and defectless EC comprising

Zij
mn =



















−ωµ1

4

k2µ1H(2)
n (k1r) J′n(k2r) − k1µ2H(2)′

n (k1r) Jn(k2r)

k2µ1Jn(k1r) J′n(k2r) − k1µ2J′n(k1r) Jn(k2r)
if i = j and m = n

0 if i = j and m 
= n

−ωµ1

4
H

(2)
n−m(k1Rij)e

j(m−n)Φij if i 
= j

(13)
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identical, infinite, and z-invariant, homogeneous, dielectric/

magnetic circular cylinders with radius r and constitutive pa-

rameters (ǫ2, µ2) that are spaced by ∆x and ∆y from center

to center along the x and y directions and that reside in a ho-

mogeneous background medium with constitutive parameters

(ǫ1, µ1). The nomenclature in this section generally adheres to

that used in Section II, with the exception that tildes appear on

symbols referring to fields, currents, and surfaces of removed

cylinders. It is assumed that ω lies within the EC bandgap.

Let Ẽ i(ρ)uz denote the incident electric field generated by

impressed sources that radiate in the presence of the defectless

EC, viz., the infinite EC without any cylinders removed. Upon

removal of the cylinders, the total field Ẽ t(ρ)uz is observed.

The difference between the total and the incident fields is

the scattered field Ẽ s(ρ)uz, viz., Ẽ t(ρ) = Ẽ i(ρ) + Ẽ s(ρ). To

describe Ẽ s(ρ) and Ẽ t(ρ), two sets (α = 1, 2) of equivalent

electric and magnetic currents are introduced on the surface S̃j

of every removed cylinder j, j = 1, . . . , Nr. Both sets are re-

lated to the total field on S̃j by

J̃ j
α(ρ)uz = −sα

j

ωµ1

∂Ẽ t(ρ)

∂ρj

∣

∣

∣

∣

ρ∈S̃j

δ(ρj − r)uz (15)

K̃j
α(ρ)uφj

= sα Ẽ t(ρ)
∣

∣

ρ∈S̃j
δ(ρj − r)uφj

. (16)

The following are found from the field-equivalence theorem

(Fig. 2):
i) The electric and magnetic currents

∑Nr

j=1 J̃
j

1 (ρ)uz and
∑Nr

j=1 K̃
j

1(ρ)uφj
, when radiating alongside the impressed

sources in the unbounded and defectless EC, generate

zero fields inside the surface S̃j of every cylinder that was

originally removed and the total electric field Ẽ t(ρ)uz

outside all S̃j.

ii) The electric and magnetic currents J̃ j

2 (ρ)uz and

K̃j

2(ρ)uφj
, when radiating in an unbounded medium with

constitutive parameters (ǫ1, µ1), generate zero fields out-

side S̃j and Ẽ t(ρ)uz inside S̃j.
If Ẽ

s, j
α (ρ) denotes the amplitude of the z-directed electric field

radiated jointly by J̃ j
α(ρ)uz and K̃j

α(ρ)uφj
in the unbounded

and defectless EC when α = 1 or in the unbounded medium

with constitutive parameters (ǫ1, µ1) when α = 2, then the

above statements can be cast as

Ẽ i(ρ) +

Nr
∑

j=1

Ẽ
s, j
1 (ρ) = 0 if ρ ∈ S̃−i , i = 1, . . . , Nr (17)

Ẽ
s, j

2 (ρ) = 0 if ρ ∈ S̃ +
j , j = 1, . . . , Nr. (18)

To solve (17) and (18), J̃ j
α(ρ) and K̃j

α(ρ) are expanded as

J̃ j
α(ρ) = sα

K
∑

n=−K

Cn Ĩ
j
n

2πr
e jnφjδ(ρj − r) (19)

K̃j
α(ρ) = sα

K
∑

n=−K

CnM̃
j

n

2πr
e jnφjδ(ρj − r). (20)

Solving (18) now leads to

Ĩ
j
n

M̃
j
n

= −j

√

ǫ1

µ1

J′n(k1r)

Jn(k1r)
. (21)

Note the change in material index from 2 to 1 when comparing

this ratio to that appearing in (9). This relationship permits

Ẽ
s, j

1 (ρ), the amplitude of the z-directed electric field radiated

jointly by J̃ j

1 (ρ) and K̃j

1(ρ) in the defectless and unbounded

EC, to be expressed solely in terms of electric unknowns as

Ẽ
s, j
1 (ρ) =

K
∑

n=−K

G̃n(ρj)Ĩ
j
n. (22)

Quantity G̃n(ρj) is the (generalized) EC Green function for a

Huygens source with distributed electric and magnetic com-

ponents (Cn/2πr)e jnφjδ(ρj − r)uz and ( jCn/2πr)
√

(ǫ1/µ1)

[Jn(k1r)/J′n(k1r)]e jnφjδ(ρj − r)uφj
radiating jointly in the de-

fectless and unbounded EC. Unfortunately, contrary to the

developments in the previous section, no closed-form expres-

sions for G̃n(ρj) exist.

To solve for the unknowns Ĩ
j
n, expansion (22) is inserted

into (17), and the resulting equation is tested by T̃ i
m(ρ) =

[1/2πrJm(k2r)]e−jmφiδ(ρi − r), resulting in the matrix

equation

Z̃Ĩ = Ẽ (23)

where Z̃
ij
mn = 〈T̃ i

m(ρ), G̃n(ρj)〉 and Ẽi
m = 〈T̃ i

m(ρ),−Ẽ i(ρ)〉.
Sections III-B and III-C detail techniques for evaluating the

entries of Z̃ and Ẽ.

Matrix equations (12) and (23) differ in two important re-

spects. First, for the vast majority of EC devices, Nr ≪ Nc.

Second, whereas Z is dense, Z̃ is essentially sparse. To see why,

recall that G̃n(ρj) is the EC Green function for a cylindrical

Huygens source that radiates in the defectless and unbounded

EC. Because ω is assumed to lie within the EC bandgap,

G̃n(ρj) decays exponentially with |ρj|—this fact will also be

demonstrated via numerical examples in Section IV. Therefore,

each and every removed cylinder only interacts with its near

neighbors, thereby rendering vanishingly small all entries of Z̃

describing interactions between sufficiently separated removed

cylinders. Consider, for example, the EC coupler depicted in

Fig. 3. Fig. 4 shows the sparsity pattern of the corresponding

interaction matrix Z̃. Recently, significant advances in direct

methods for inverting such sparse matrices have been reported,

e.g., the multifrontal method by [19]. This method organizes

the numerical factorization of a sparse matrix into a number of

steps, each involving the formation of a dense smaller frontal

matrix, followed by its partial factorization. The multifrontal

method in the past has already been used for electromagnetic

problems, e.g., in [20] and is adopted here to invert (23), thereby

avoiding excessive iteration counts often encountered when

analyzing EC devices using iterative solvers.
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Fig. 3. EC waveguide coupler.

Fig. 4. Sparsity pattern of Z̃ for the EC coupler of Fig. 3 with l = 1200a.

B. Calculation of the EC Green Function G̃n(ρ)

and the Entries of Z̃

The EC Green function G̃n(ρj) for a cylindrical Huygens

source that radiates in the defectless and unbounded EC cannot

be evaluated analytically. Its numerical evaluation is aided

by two facts, however. First, because the EC is periodic,

G̃n(ρj) does not depend on the cylinder index j. Second, as

already mentioned above, G̃n(ρ) decays exponentially with

|ρ|. As a result, G̃n(ρ) can be evaluated using the conven-

tional MST scheme detailed in Section II by considering a

finite square EC of Nc = (2Nb + 1)2 cylinders wherein the

central cylinder, which is assumed centered about the spa-

tial origin ρ = 0, is excited by a Huygens source with elec-

tric and magnetic components (Cn/2πr)e jnφδ(ρ − r)uz and

Fig. 5. Calculation of G̃n(ρ) using a centrally excited finite EC of
(2Nb + 1) × (2Nb + 1) cylinders.

( jCn/2πr)
√

(ǫ1/µ1)[Jn(k1r)/J′n(k1r)]e jnφδ(ρ − r)uφ (Fig. 5).

It follows from (8), (18), and (21) that this source, when

radiating in the background medium (ǫ1, µ1), produces null

fields for ρ > r and

E i(ρ) = −ωµ1

4

2jCn

πk1rJ′n(k1r)
Jn(k1ρ)e jnφ (24)

for ρ < r. The parameter Nb is chosen to be large enough

such that outside this square EC the total field produced by

this Huygens source essentially vanishes. Let Imn(lx, ly), lx, ly =

−Nb, . . . , Nb; m, n = −K, . . . , +K, denote the unknown de-

scribing the electric current’s mth harmonic that flows on the

cylinder centered about ρ
c
lxly

= lx∆xux + ly∆yuy in response

to excitation by the above-described Huygens source (Fig. 5).

Likewise, let Emn(lx, ly) denote the element of the excitation

vector E in the formulation of Section II obtained by using the

mth harmonic testing function T i
m(ρ) on the fields produced by

the Huygens source. It follows from (24) that

Emn(lx, ly)=

{

ωµ1

4
2jCn

πk1rJ′n (k1r)
if lx = ly = 0 and m = n

0 otherwise.
(25)

Upon solving (12), with right-hand side (25) for Imn(lx, ly), it is

seen that G̃n(ρ) can be expressed as (26), shown at the bottom

of the page, with the position vector ρlxly
in the local cylindrical

coordinate system centered about ρ
c
lxly

. For future reference,

let Z̃mn(lx, ly) denote the matrix element describing interactions

G̃n(ρ) =























ωµ2

4

K
∑

m=−K

2jCm

πk2rJ′m(k2r)
Imn(lx, ly) Jm(k2ρlxly )e jmφlx ly if ρlxly < r

Nb
∑

lx=−Nb

Nb
∑

ly=−Nb

K
∑

m=−K

Gm(ρlxly
)Imn(lx, ly) if ρlxly > r for all lx, ly

(26)
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between modes (m, n) on cylinders centered lx∆x and ly∆y

apart along the x and y directions, respectively. It follows from

(26) that Z̃mn(lx, ly) is

Z̃mn(lx, ly) =
ωµ2

4

2jCm

πk2rJ′m(k2r)
Imn(lx, ly). (27)

Note that all nonvanishing elements of the matrix Z̃ in (23) are

described by (27).

Matrix equation (12) for the centrally excited square EC

with right hand side (25) can be solved efficiently by using

an iterative, preconditioned, and FFT-accelerated method. It

was shown in [15] that the use of a left “shielded-block pre-

conditioner” effectively reduces the number of iterations to

characterize finite and defectless ECs, this in contrary to EC

devices with waveguiding structures. Instead of solving system

ZI = E to construct G̃n(ρ), system MsbZI = MsbE is solved.

The preconditioner Msb is formed by selecting, out of Z, for

each and every cylinder, a small 2Ns + 1 by 2Ns + 1 interaction

matrix (Ns < Nb) of nearest interactions (Fig. 5). This reduced

interaction matrix is inverted and the rows corresponding to the

targeted cylinder extracted and inserted into Msb.

C. Computation of the EC-Impressed Field Ẽ i(ρ) and the

Entries of Ẽ—Modal Excitation/Absorbing Boundary

Conditions of the Semi-Infinite EC

The z-component of the electric field generated by im-

pressed sources that radiate in the presence of the defectless

EC Ẽ i(ρ) cannot be evaluated analytically. If the impressed

source is a z-directed electric line current at ρs (assumed to

reside outside all the physical and removed cylinders), then

Ẽ i(ρ) can, just like G̃n(ρ), be computed using the free-space

Green function MST of Section II. Indeed, Ẽ i(ρ) comprises

E i(ρ) = −(ωµ1/4)H(2)
0 (k1|ρ − ρs|) plus the field scattered by

the cylinders. The latter can be calculated using (10), following

the computation of the currents on cylinders near the source.

To this end, consider a finite EC comprising Nc = (2Nb + 1)2

cylinders centered about the origin, which is also assumed near

ρs. Let Ims(lx, ly) denote the electric current’s mth harmonic

that flows on the cylinder centered about ρ
c
lxly

in this finite EC

when excited with the field of the electric line current. These

coefficients Ims(lx, ly) are obtained by solving (12) with the

entries of the excitation vector E given by (14), which leads

to (28), shown at the bottom of the page.

Fig. 6. Calculation of an EC waveguide’s eigenmodes.

Hence, the entries of the excitation vector Ẽ are

Ẽms(lx, ly) =
ωµ2

4

2jCm

πk2rJ′m(k2r)
Ims(lx, ly). (29)

The above EC Green function MST with line source excita-

tion can be used to characterize the effects of semi-infinite

waveguides attached to finite EC devices by terminating suffi-

ciently long waveguide appendages by resistive sections. The

scheme, when used in conjunction with computational de-

embedding techniques, then permits EC S-parameter extraction.

The EC Green function scheme however allows for an in-

triguing alternative to find the EC’s S parameters, as it al-

lows for an easy identification of the propagating EC defect/

waveguide modes and their subsequent use as modal excitations

and boundary conditions when constructing system (23). To

see how the EC Green function method can be used to find an

EC waveguide’s eigenmodes, let Ẽν (ρ)uz denote the z-directed

electric field of the νth forward propagating eigenmode in an in-

finitely long, x-directed EC waveguide. To simplify the ensuing

discussion, assume that this waveguide is formed by removing

a single x-directed row of cylinders from an unbounded, de-

fectless EC (Fig. 6). According to the Floquet–Bloch theorem,

Ẽν (ρ) satisfies

Ẽν (ρ) = ẽν (ρ)e−jβν x (30)

where ẽν (ρ + ∆xux) = ẽν (ρ) and βν is the mode’s (assumed

real) propagation constant. Of course, Ẽν (ρ) can be character-

ized in terms of equivalent electric and magnetic currents on

the surfaces of the removed cylinders. Moreover, the evolution

of these currents’ amplitudes along the waveguide channel is

Ẽ i(ρ) =























ωµ2

4

K
∑

m=−K

2jCm

πk2rJ′m(k2r)
Ims(lx, ly) Jm(k2ρlxly )e jmφlx ly if ρlxly < r

E i(ρ) +

Nb
∑

lx=−Nb

Nb
∑

ly=−Nb

K
∑

m=−K

Gm(ρlxly
)Ims(lx, ly) if ρlxly > r for all lx, ly

(28)
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Fig. 7. Modal absorbing boundary conditions and excitation.

dictated by that of the fields they were derived from, viz., (30),

and hence equivalent currents in only one unit cell suffice to

fully characterize the modal field distribution. Mirroring the

derivations in Section III-A, it follows that the electric current

expansion coefficients Ĩβν

n , n = −K, . . . , K on the removed

cylinder in the unit cell satisfy

K
∑

n=−K

[

Nb
∑

lx=−Nb

Z̃mn(lx, 0)e−jβν lx∆x

]

Ĩβν

n = 0,

for m = −K, . . . , K. (31)

Note that in (31) only currents of 2Nb + 1 cells symmet-

rically placed to the left and right of the cell in which cur-

rents Ĩβν

n are measured are accounted for—this once again is

possible only because ω lies in the EC bandgap. Setting the

βν-dependent determinant of the matrix derived from system

(31) to zero allows the waveguide’s propagation constants to

be determined. Once the propagation constants of the various

modes are found, their transverse profiles are described by the

null space of (31) with fixed βν .

Once the waveguide modes have been characterized, they

can be used, within the framework of the EC Green function

MST, to terminate/excite the EC device in/from semi-infinite

waveguides. To illustrate this procedure, consider an EC device

connected to a set of Np identical semi-infinite waveguides

(Fig. 7)—to simplify the presentation, the assumption that these

waveguides are formed by removing one row of cylinders from

the EC remains in effect. To implement an exact absorbing

boundary condition, assume that these waveguides support only

one propagating mode with propagation constant β. Far enough

from all discontinuities, the fields propagating away from the

EC device in each of these waveguides are adequately described

by a single outward propagating mode. Let the currents on the

first cylinder in the waveguide where this behavior is believed

to hold true be denoted by Aj Ĩ
β
n ; Aj is referred to as the

waveguide j outgoing mode’s amplitude. This cylinder, along

with all that follow, is referred to as the “cylinders of port

j ”—in what follows, they are to be distinguished from the Nr

“regularly removed cylinders” that define the EC device. The

current expansion coefficients for the cylinders of port j are

related to one another by the Floquet–Bloch theorem (30), as

indicated in Fig. 7. The unknowns now comprise (2K + 1)Nr

electric current unknowns Ĩ
j
n, j = 1, . . . , Nr; j = −K, . . . , K,

and Np amplitudes Aj, j = 1, . . . , Np, of the outgoing modes.

To account for the outgoing modal fields, (17) is now

changed to

Ẽ i(ρ) +

Nr
∑

j=1

Ẽ
s, j
1 (ρ) +

Np
∑

j=1

Ẽ
s,pj

1 (ρ) = 0,

for ρ ∈ S̃−i , i = 1, . . . , Nr + Np. (32)

Here, Ẽ
s,pj

1 (ρ) represents the sum of the fields produced by

all the currents on the cylinders of port j. A first set of

(2K + 1)Nr equations are obtained by testing (32) on the sur-

faces of all Nr regularly removed cylinders with T̃ i
m(ρ), i =

1, . . . , Nr; m = −K, . . . , K. The matrix elements describing in-

teractions between regularly removed cylinders resulting from

this procedure are still described by (27). Assuming that port

j consists of a +x-directed waveguide, weighting Ẽ
s,pj

1 (ρ) on a

cylinder whose center is located −lx∆x (lx > 0) and ly∆y away

from the center of the first cylinder of port j along the x and the

y direction, respectively, yields a contribution

Z̃mpj
(−lx, ly)Aj =Aj

Nb
∑

ls=0

K
∑

n=−K

Z̃mn(−lx + ls, ly)Ĩβ
n e−jβls∆x

m = −K, . . . , K (33)
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where Z̃mpj
(lx, ly) denotes the effective matrix element describ-

ing the interaction of port pj with a regularly removed cylinder.

A second set of Np equations is found by weighting (32)

on the surface of the first cylinder of every port with T̃ i
0(ρ).

Weighting the second term of (32) leads to the matrix elements

Z̃0n(lx, ly), while weighting the third term of (32) again leads to

the effective matrix elements Z̃0pj
(lx, ly) defined in (33). Similar

arguments and expressions can be proffered for ports associated

with waveguides leaving the EC device in other directions.

To illustrate how to impose modal excitations within the EC

Green function MST framework, assume that the EC device

is excited by a propagating mode coming from the semi-

infinite waveguide 1. The incident field Ẽ i(ρ) is the sum of

the fields produced by all the currents on the cylinders of port

1, with the current expansion coefficients on the first cylinder

equal to Ĩβ
n and those for consecutive cylinders related by the

Floquet–Bloch theorem. For example, assume that port 1 is −x

directed, which means that a mode that is incoming into the

EC device propagates in the +x-direction. Following the same

reasoning as for the absorbing boundary condition, it can be

readily seen that weighting the incident field on the surface of

a cylinder whose center is lx∆x and ly∆y apart from that of the

first cylinder of port 1 in the x- and the y-direction gives the

following entries for the excitation vector Ẽ

Ẽm(lx, ly) =

Nb
∑

ls=0

K
∑

n=−K

Z̃mn(lx − ls, ly)Ĩβ
n e−jβls∆x

m = −K, . . . , K. (34)

Note that when all the semi-infinite waveguides are identical,

the amplitudes of the outgoing modes correspond immediately

with the S parameters of the EC device: S1j = Aj. The reasoning

followed in this section can be generalized to waveguides with

more than one cylinder across and/or to different types of semi-

infinite waveguide appendages.

D. Special Defects in the EC

The scheme detailed in Sections III-A, III-B, and III-C only

permits the characterization of EC devices that are obtained

by removing cylinders from defectless ECs. However, many

practical EC devices also contain defects other than removed

cylinders. For example, filters sometimes contain special cylin-

ders whose radius and/or constitutive parameters differ from

those of the background EC elements to create resonant cav-

ities. And EC devices with bended waveguides often contain

special cylinders that are displaced from the background EC

lattice to minimize reflections. In this section, it will be shown

that ECs with (a few) special defects can be treated by a simple

extension of the scheme of Sections III-A, III-B, and III-C.

Generally speaking, the scheme of Section III-A applies

to ECs with special defects, provided that their presence is

reflected in the Green function. That is, when sources and/or

observers reside near a special defect, a Green function different

from that computed in Section III-B must be used (Fig. 8).

Fig. 8. Special Green functions.

Recall that the scheme described in Section III-B for computing

the EC Green function involved the construction (and concep-

tual inversion) of a conventional MST interaction matrix Z for

a finite, square, and defectless EC. Of course, the computation

of the Green function for an EC with special defects can be

effected by very similar techniques, provided that the finite

EC considered now contains the special defect. Fortunately,

the conventional MST interaction matrix for a finite EC with

special defect further denoted as Ẑ is a low-rank update of the

interaction matrix for the defectless finite EC

Ẑ = Z + UV
T . (35)

According to the Sherman–Morrison formula [21], Ŷ = Ẑ
−1

is

also a low-rank update of Y = Z
−1

Ŷ = Y − YU(1 + V
T
YU)−1

V
T
Y. (36)

In (36), 1 stands for the identity matrix. Therefore, Ŷ can be

calculated very fast without resorting to solving a new linear

system. Below, the vectors U and V are described for two

important cases: special defects involving 1) a cylinder with

modified constitutive parameters and/or radius and 2) a cylinder

displaced from its background lattice position. To simplify

the notation, only cases involving one special defect and ECs

in which currents on cylinders are modeled by one unknown

(K = 0) are considered; extensions to more complicated sce-

narios are straightforward.

1) A Cylinder With Modified Constitutive Parameters and/or

Radius Situated on a Regular Lattice Node [Fig. 8(a)]: In this

case, it follows from (13) that the matrices Ẑ and Z only differ

by one element, namely the self-interaction of the special cylin-

der. Suppose the index of this cylinder is 1 and that this cylinder

corresponds with the central cylinder in the finite EC that is

used to calculate the Green function. With ∆ = Ẑ11
00 − Z11

00 , U

and V read

U =









1

0
...

0









, V =









∆

0
...

0









. (37)
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Because the Green function is calculated using an iterative

method, Y is not explicitly known. In Section III-B, it was

shown that the excitation vector E completely consists of zeros

except for the element corresponding with the central cylinder

(cylinder 1). This means that I is proportional to the first

column of Y. If i is the index of the cylinder centered about

lix∆xux + liy∆yuy, then

Y i1
00 = D0I00

(

l i
x, l i

y

)

(38)
with

D0 =
4

ωµ1

πk1rJ′0(k1r)

2jC0

. (39)

Although the iterative solution of (13) only gives the first col-

umn of Y, all the elements of this matrix are known if it is kept

in mind that in fact the Green function for an infinite EC is cal-

culated. Indeed, Y
ij

00 is proportional to the current on cylinder i,

when the excitation is on cylinder j. For an infinite EC, the solu-

tion corresponding to the excitation on cylinder j can be derived

from that of exciting cylinder 1 by a shift operation, and hence

Y
ij

00 = D0I00

(

l i
x − l j

x, l i
y − l j

y

)

. (40)

Suppose that Z̃
ij

00, the element in the sparse interaction matrix of

the new method that describes the interaction between cylinder

i and cylinder j that reside (l i
x∆x, l i

y∆y) and (l
j
x∆x, l

j
y∆y) apart

along the x- and y-direction from the special cylinder, has to

be calculated (Fig. 8). Note that YU corresponds with the first

column of Y and that V
T
Y corresponds with ∆ times the first

row of Y. According to (36)

Ŷ
ij

00 = Y
ij

00 − Y i1
00

(

1 + ∆Y11
00

)−1
∆Y

1j

00. (41)

The combination of (27), (40), and (41) yields

Z̃
ij

00 =
ωµ2

4

2jC0

πk2rJ′0(k2r)

[

I00

(

l i
x − l j

x, l i
y − l j

y

)

+ I00

(

l i
x, l i

y

)

× ∆D0

1 + ∆D0I00(0, 0)
I00

(

−l j
x,−l j

y

)

]

. (42)

2) A Cylinder Displaced From Its Background Lattice Po-

sition (With the Same Constitutive Parameters and Radius as

Those of the Background EC Lattice) [Fig. 8(b)]: Now, Ẑ and Z

differ by the whole first column and row, except for the diagonal

element. So, U and V can be expressed as

U =









1 0

0 ∆21
...

...

0 ∆Nc1









= (U1 U2)

V =









0 1

∆12 0
...

...

∆1Nc
0









= (V1 V2) (43)

with ∆ij = Ẑ
ij

00 − Z
ij

00. The calculation of YU1 and V
T
2 Y has

already been treated above. Let U2i denote the ith element of

the vector U2. To calculate YU2, note that

Y













U21

U22
...
...

U2Nc













= U21Y













1

0
...
...

0













+ U22Y











0

1

0
...

0











+ . . . + U2Nc
Y













0
...
...

0

1













.

(44)

With U2(l i
x, l i

y ) = U2i and following the above reasoning, it is

seen that the ith element of YU2 is nothing but

(YU2)i = D0

Nc
∑

j=1

U2

(

l j
x, l j

y

)

I00

(

lix − l j
x, liy − l j

y

)

. (45)

Similarly

(

V
T
1 Y

)

i
= D0

Nc
∑

j=1

V1

(

l j
x, l j

y

)

I00

(

l j
x − l i

x, l j
y − l i

y

)

(46)

with V1(lix, liy) = V1i. Equations (45) and (46) show that YU2

and V
T
1 Y are discrete 2-D convolutions and, hence, can be

calculated quickly using a 2-D FFT. However, if one wants

to know YU2 and V
T
1 Y inside a square EC of (2Nb + 1) ×

(2Nb + 1) cylinders, U2 and V1 have to be calculated for

a square of (4Nb + 1) × (4Nb + 1) cylinders, so Nc =

(4Nb + 1)2; l i
x, l

j
x, l i

y, l
j
y = −2Nb, . . . , 2Nb in (45) and (46). By

definition, I00(lx, ly) = 0 if |lx| > Nb or |ly| > Nb. This proves

that although only I is known, the updates to obtain all the

necessary elements of Z̃ can be computed quickly without

ever having to solve a new linear system.

IV. EXAMPLES

All of the examples presented below involve ECs composed

of dielectric cylinders with constitutive parameters (ǫ2, µ2) =

(11.56ǫ0, µ0) and radius r = 0.18a that are arranged on a Carte-

sian lattice with ∆x = ∆y = a − a termed the lattice constant.

The cylinders reside in free space, viz., (ǫ1, µ1) = (ǫ0, µ0). This

EC has a TMz bandgap that extends from k1 = 0.604(π/a) to

k1 = 0.886(π/a). All calculations are carried out in Matlab on

a 2-GHz PC; the multifrontal package used to solve system (23)

is UMFPACK Version 4.3 [22].

A. Green Function

As outlined in Section III-B, the EC Green function is cal-

culated by considering a centrally excited finite EC comprised

of (2Nb + 1) × (2Nb + 1) cylinders with Nb large enough to

render the Green function vanishingly small beyond the finite

EC boundaries. Fig. 9 demonstrates the exponential decay

of the EC Green function |G̃0(ρ = xux)| with x for different

frequencies inside the bandgap. The decay rate is larger for
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Fig. 9. EC Green function.

frequencies near the bandgap center than for frequencies near

its edge. For example, for k1 = 0.74(π/a), |G̃0(ρ = xux)| de-

creases by 11 orders of magnitude from the spatial origin to

x = 25a. In contrast, for k1 = 0.61(π/a) and k1 = 0.88(π/a),

the EC Green function decays only by five orders of magnitude

from the spatial origin to x = 25a. It suffices to focus on

|G̃0(ρ = xux)| to determine the Green function decay rate as

the rate is even faster for n 
= 0. All examples reported below

involve frequencies near the bandgap center.

For K = 1 using Nb = 15 with an Ns = 3 shielded-block

preconditioner to accelerate convergence of the Matlab build-in

BICGSTAB solver, the computation of the EC Green function

takes just over 4 s.

B. Eigenmodes

As described in Section III-C, the EC Green function can

be used to characterize the propagating modes of an EC

waveguide. Fig. 10 shows the cross-sectional profile of the sole

propagating mode in a waveguide that results upon removing

one row of cylinders from the EC, obtained by using the

proposed scheme with increasing values of K; convergence

is reached for K = 1. This waveguide and K value are used

for all other examples considered below. Fig. 11 shows the

propagation coefficient β as a function of angular frequency

for the propagating mode of this waveguide.

C. EC Waveguide Couplers

The performance and accuracy of the proposed scheme are

demonstrated via its application to the analysis of two EC

waveguide couplers.

First, consider the ultracompact wavelength multiplexer–

demultiplexer depicted in Fig. 3 [4], [5]. The device comprises

two identical and coupled EC waveguides that are separated

by two rows of cylinders and that jointly support even and

odd propagating modes. Fig. 11 shows the dispersion curves

of these even and odd modes’ propagation constants βe and

βo. A field injected into one waveguide will couple entirely

Fig. 10. Mode profile for an increasing value of K.

Fig. 11. Dispersion curves: full line, single waveguide; dashed lines, two
coupled waveguides.

into the other if the length of the coupling region l is an odd

multiple of L = (2π/|βe − βo|). The field however will exit

from the output port attached to the input waveguide if l is an

integer multiple of L. By using the coupled mode theory, the

normalized output powers at ports 1, 2, and 3 defined in Fig. 3

are predicted to be

P1 = 0 (47)

P2 = sin2 (κl) (48)

P3 = cos2 (κl) (49)

with κ = (π/L) = (|βe − βo|/2). The transmission spectrum

calculated with coupled mode theory for a coupling length

l = 1200a is shown in Fig. 12, assuming that a = 540 nm.

Unfortunately, the coupled mode theory cannot account for

reflections from the 90◦ waveguide bends. Fig. 13 shows

the same transmission spectra but now calculated using the
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Fig. 12. Transmission spectrum of an EC coupler with l = 1200a calculated
with the coupled-mode theory.

Fig. 13. Transmission spectrum of an EC coupler with l = 1200a calculated
with the new scheme.

proposed scheme, which does account for these reflections.

Note, for example, that the output power for port 1 is predicted

to differ from zero. This example calls for 7465 unknown

equivalent electric currents. For one frequency, it takes 12.5 s

to fill the sparse interaction matrix (by selecting pertinent el-

ements out of the precomputed Green function matrix) and

3.8 s to solve the system of equations (23). The total time to

analyze the device, inclusive of the Green function calculation,

therefore is just over 20 s. Next, assume that the same de-

vice were analyzed using the classical scheme described in

Section II. Even if all EC waveguides were lined by only five

rows of cylinders to prevent leakage, such analysis would call

for 47262 unknowns. Not surprisingly, the CPU times required

to solve the system of equations (12) are several orders of

magnitude larger than those for the new scheme, even if a fast

matrix–vector multiplication method is used.

Second, consider the four-channel multiplexer–demulti-

plexer depicted in Fig. 14. The various waveguide coupling

lengths are l1 = 41a, l2 = 22a, and l3 = 24a. Using the

Fig. 14. Four-channel multiplexer–demultiplexer.

Fig. 15. Transmission spectrum of the four-channel multiplexer–demulti-
plexer calculated with the coupled mode theory.

coupled mode theory, the normalized output powers at ports 1,

2, 3, and 4 defined in Fig. 14 are expressed as

P1 = sin2 (κ2l1) sin2 (κ1l3) (50)

P2 = sin2 (κ2l1) cos2 (κ1l3) (51)

P3 = cos2 (κ2l1) sin2 (κ2l2) (52)

P4 = cos2 (κ2l1) cos2 (κ2l2) (53)

with κi = (|βei − βoi|/2) and the subscript i = 1 or 2, de-

pending in whether one or two rows of cylinders separate the

EC guides. Figs. 15 and 16 show the transmission spectra

predicted by the coupled-mode theory and the proposed

scheme, respectively. The proposed scheme uses 1066

unknowns to describe fields on removed cylinders. It takes

only 2 s to fill in the interaction matrix (by selecting pertinent

elements out of the precomputed Green function matrix) and

0.6 s to solve the system of equations (23). The total time to

analyze the device, inclusive of the Green function calculation,

therefore is just over 6.6 s. If the EC waveguides are lined

by five rows of cylinders on both sides, this device requires

4638 unknowns when modeled using the classical scheme of
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Fig. 16. Transmission spectrum of the four-channel multiplexer–demulti-
plexer calculated with the new scheme.

Fig. 17. EC filter.

Section II. Using a shielded-block preconditioner, the solution

of the system of equations (12) with BICGSTAB to a tolerance

of 10−4 requires 345 iterations and takes 480 s.

D. Other Defects

To demonstrate the usefulness of the theory of Section

III-D, consider the EC waveguide filter depicted in Fig. 17

[18]. The filter comprises a waveguide that is loaded by two

or three cylinders and transmits only signals in a narrow band

of frequencies in which the load cylinders jointly resonate. Two

configurations were simulated. In the first one, the obstruction

consists of two (outer) cylinders separated by a cavity; in

the second one, an extra (central) cylinder fills the cavity.

The constitutive parameters of the outer and extra cylinders,

and the radii of the outer cylinders, equal those of the EC

cylinders. The radius of the extra cylinder is four times smaller

than those of the EC cylinders (rextra = 0.045a). Fig. 18 shows

the transmission spectra of both configurations calculated with

the conventional free-space Green function and the novel EC

Green function MSTs; the conventional analysis uses perfectly

matched layers to truncate the EC waveguide and mimic semi-

infinite waveguide loads [23]. Excellent agreement between

both data sets is observed. The new scheme calls for roughly

300 unknowns to describe the fields in the channels and uses

0.25 and 0.3 s to fill in the interaction matrix and solve the

system of equations (23), respectively.

As a final example, consider the EC waveguide bend depicted

in Fig. 19. To minimize reflections, one of the cylinders in the

bend is displaced by ∆x = 0.15a and ∆y = −0.15a. Fig. 20

Fig. 18. Transmission spectrum of the EC filter.

Fig. 19. EC bend.

Fig. 20. Transmission spectrum of the EC bend.

shows the transmission spectra of the bend with and without

displaced cylinder, respectively. Both configurations require

305 unknown currents, 6.27 s to fill in the interaction matrix,

and 0.5 s to solve system (23).



PISSOORT et al.: FAST ANALYSIS OF 2D EC DEVICES USING A PERIODIC GREEN FUNCTION APPROACH 2307

V. CONCLUSION

A novel method for simulating wave propagation in two-

dimensional (2-D) electromagnetic crystal (EC) devices that,

a small number of irregular defects aside, are obtained by

removing cylinders from infinite doubly periodic and defectless

ECs was presented. Integral equations in terms of equivalent

currents that reside on the surfaces of removed cylinders were

constructed by using Green functions innate to the defectless

EC or low-rank perturbations thereof. The solution of the sparse

system of equations that resulted upon discretizing these inte-

gral equations was effected using a multifrontal method. The

scheme was shown to be ideally suited for extracting EC device

S parameters, as it permits imposing modal excitations and

exact boundary conditions. Although this paper only considered

EC devices defined on a square Cartesian lattice that supports

TMz-polarized fields, extensions of the proposed scheme to EC

devices defined on a hexagonal lattice and/or supporting TEz-

polarized fields are trivial. ECs formed by noncircular scatterers

can be treated as well by characterizing their interactions via

scattering matrices.
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