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Abstract In this paper we present a new robust approach

for 3D face registration to an intrinsic coordinate system

of the face. The intrinsic coordinate system is defined by

the vertical symmetry plane through the nose, the tip of the

nose and the slope of the bridge of the nose. In addition, we

propose a 3D face classifier based on the fusion of many

dependent region classifiers for overlapping face regions.

The region classifiers use PCA-LDA for feature extraction

and the likelihood ratio as a matching score. Fusion is re-

alised using straightforward majority voting for the identifi-

cation scenario. For verification, a voting approach is used

as well and the decision is defined by comparing the num-

ber of votes to a threshold. Using the proposed registration

method combined with a classifier consisting of 60 fused re-

gion classifiers we obtain a 99.0% identification rate on the

all vs first identification test of the FRGC v2 data. A verifi-

cation rate of 94.6% at FAR = 0.1% was obtained for the all

vs all verification test on the FRGC v2 data using fusion of

120 region classifiers. The first is the highest reported per-

formance and the second is in the top-5 of best performing

systems on these tests. In addition, our approach is much

faster than other methods, taking only 2.5 seconds per im-

age for registration and less than 0.1 ms per comparison.

Because we apply feature extraction using PCA and LDA,

the resulting template size is also very small: 6 kB for 60

region classifiers.
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1 Introduction

3D face recognition has made much progress during the last

decade. Both in the area of 3D face acquisition as well as in

3D face matching significant steps were made. Currently, a

wide range of sensors for 3D face acquisition is available,

mostly based on laser scanning and structured light tech-

niques. Many 3D face recognition approaches use the dis-

tance between the aligned facial surfaces as a measure of

how well faces match. To align the 3D facial shapes, nearly

all state-of-the-art 3D face recognition methods minimise

the distance between two face shapes or between a face

shape and an average face model. This process of aligning

facial shapes to a common coordinate system is called regis-

tration. In contrast to registration to a second or an average

face shape, we present an approach that registers 3D facial

shapes to an intrinsic coordinate system of the face, defined

by 3D landmark structures. For classification we use the fu-

sion of many regional likelihood ratio based classifiers and

PCA-LDA to extract compact feature vectors. Registration

to an intrinsic coordinate system has received little atten-

tion since the early days of 3D face recognition due to lack

of success. In this paper, we show, however, that excellent

results can be obtained if the registration is sufficiently ro-

bust and accurate. Below we briefly outline the basics and

advantages and disadvantages of the different approaches.

A popular method to align two faces is the Iterative Clos-

est Point (ICP) algorithm, Besl and McKay (1992). In this

approach, two 3D point clouds, representing the surfaces of

two different faces, are registered to each other by minimis-

ing the distance between the surfaces in an iterative process.

The distance between the surfaces is calculated by finding

the closest point in the second point cloud for each of the

points in the first point cloud and taking the average of all

these distances. The distance between the surfaces is min-

imised by rotating and translating one of the point clouds
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relative to the other. The resulting distance measure is then

used for face matching. Many of the top ranking papers on

3D face recognition of the last 5 years are based on ICP-

like approaches: Faltemier et al. (2008a), Kakadiaris et al.

(2007), Maurer et al. (2005), Mian et al. (2007), Queirolo

et al. (2010). Queirolo et al. (2010) actually do not use

ICP, but Simulating Annealing to obtain a closest fit be-

tween two point clouds. The ICP approach and Queirolo’s

approach, however, have several major disadvantages. Since

the point clouds (or other surface representations) are used

in the matching process directly, the only way to store the

templates is to store the whole point cloud. Firstly, this re-

quires much more space than normally is reserved for bio-

metric templates (a point cloud of 50.000 vertices requires

in the order of 600 kB). Secondly, it prevents the use of pri-

vacy protecting techniques aimed at the impossibility to be

able to reconstruct the original biometric data based on the

template. A third disadvantage is the fact that ICP is rela-

tively slow, generally taking several seconds for registration

and calculation of the distance measure. This is not neces-

sarily a problem in the verification scenario where only two

images must be compared, but it is a problem in the iden-

tification scenario where a probe image is compared to a

gallery of many images. Therefore the ICP approach is not

very fit for identification, as is also pointed out in Faltemier

et al. (2008a) and Queirolo et al. (2010), who incidentally

report the highest 3D face identification rates.

The approach we propose in this paper, does not regis-

ter two point clouds to each other, but transforms each point

cloud to an intrinsic coordinate system of the face. This ref-

erence coordinate system is based on the vertical symmetry

plane of the face and the tip and orientation of the nose.

The point cloud is then resampled into a range image from

which features are extracted using PCA and LDA. The fea-

tures form a template that is far more compact than a com-

plete point cloud. The likelihood ratio is used as a similarity

measure. Like in many other approaches, see e.g. Faltemier

et al. (2008a) and Queirolo et al. (2010), we divide the facial

surface into parts that are more or less stable under variation

of facial expressions. We found that using multiple overlap-

ping regions and combining them with a simple decision

level fusion approach using voting, gives excellent robust-

ness against variations in facial expression.

The proposed approach has some major advantages over

ICP-like approaches. Firstly, since we do not register two

point clouds to each other for each match, but use an in-

dependent registration and store templates consisting of ex-

tracted features, in the identification scenario, where one im-

age is compared to many images in a list, we save many reg-

istrations. If the list contains N entries, for the ICP-like ap-

proaches, N registrations must be performed for each probe

image. In our case only a single registration is required, be-

cause all gallery probes are pre-registered and only the tem-

plates are stored. The face matching using the PCA LDA

likelihood approach on two templates is extremely fast and

allows for many thousands of comparisons per second. Sec-

ondly, because the coordinate system of the face is fixed, this

could be standardised. Thirdly, unlike to the point clouds, to

the templates we store, biometric template protection tech-

niques can be applied, see e.g. Buhan et al. (2010), Kelk-

boom et al. (2009, 2010), Chen et al. (2009). This means

that the “encrypted” templates cannot be traced back to the

original 3D data (or templates) and the matching takes place

in the protected domain. Privacy protection of biometric

data is an ever increasing concern, so this is a very useful

property of our approach. Finally, our approach provides

excellent recognition results, besting the highest published

identification results and ranking between the highest ver-

ification scores. The performance was evaluated using the

Face Recognition Grand Challenge (FRGC) benchmarking

for 3D face recognition (Phillips et al. 2005). In this bench-

mark a challenging database consisting of 4007 images of

466 subjects with varying facial expression is used. Sum-

marising, we present a 3D face recognition approach that is

superior both in speed and recognition performance relative

to other methods and has the additional advantage of being

better fit for biometric template protection.

This paper is organised as follows. Section 2 presents an

overview of related work. In Sect. 3 the registration method

is described in detail. Section 4 describes the PCA-LDA-

likelihood ratio classifier. In Sect. 5 the region classifiers are

defined and the used decision level fusion approaches are ex-

plained for both the identification and the verification cases.

Section 6 contains experiments and results and a description

of the used 3D facial data. Finally, Sect. 7 gives conclusions.

2 Related Work

This section on related work consists of two parts. The first

part addresses related work on 3D face registration. The sec-

ond part concentrates on 3D face recognition, i.e. the classi-

fication or comparison of 3D face images or extracted fea-

tures. In practise, the two are often tightly interwoven, like

in e.g. the ICP approach.

2.1 3D Face Registration

Registration basically means transforming shapes in such a

way that they can be compared. For 2D face recognition,

e.g. it is common to locate a number of landmarks (e.g.

eyes, nose, mouth) in each face and rotate, translate and

scale these landmarks in such a way that they are projected

to fixed, predefined positions. The same geometric transfor-

mation is then applied to the facial image. The facial image

is thus transformed to an intrinsic coordinate system. Once

the images are represented in this intrinsic coordinate sys-

tem, they can be compared, because corresponding features
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Fig. 1 Iterative registration of one 3D point cloud to a reference point

cloud

are more or less in the same positions in the different facial

images.

Basically three different approaches to 3D face registra-

tion can be distinguished:

– One-to-all registration (register one face to another)

– Registration to a face model or atlas

– Registration to an intrinsic coordinate system using geo-

metric properties of the face like landmarks

Apart from this division in three classes, we can also dis-

tinguish rigid and non-rigid registration. The former only

performs rotation and translation (and possibly scaling) of

the point clouds. The latter also allows for (small) deforma-

tions of the point cloud to realise an optimal registration.

Non-rigid registration can be useful in handling facial ex-

pressions. Using non-rigid registration, e.g. a smiling mouth

can be fitted to a neutral mouth etc. which is impossible for

rigid registration.

The first approach: one-to-all registration (see Fig. 1) reg-

isters two surfaces or point clouds to each other using an

iterative procedure. One of the point clouds is the refer-

ence (from a gallery) while the other is the probe. The aim

of this registration approach is to find rotation and trans-

lation parameters that will transform the probe point cloud

to lie as close as possible to the reference point cloud. To

this end, a distance measure must be defined between the

two point clouds. Examples of such distance measures are

the Mean Square Error (MSE) between the surfaces and

the Surface Interpenetration Measure (SIM), see Silva et

al. (2005), Queirolo et al. (2010). Based on the distance

between the point clouds (or the change in distance due

to a change in the registration parameters) the registration

parameters (θ,φ, γ, t) are updated and the probe is trans-

formed again etc. This process continues for a number of

iterations until convergence is reached. As a result, the reg-

istration parameters, the transformed probe and the resid-

ual distance between the two point clouds become avail-

able for further processing. The Iterative Closest Point (ICP)

approach is the most popular method for this optimisation

process of aligning one point cloud to another. Generally,

a reasonably good initial estimate of the registration para-

meters (θ,φ, γ, t) is required to obtain convergence. Usu-

ally landmarks like the tip of the nose and sometimes the

vertical symmetry plane are used to obtain this initial esti-

mate. Examples of one-to-all registration are Maurer et al.

(2005), Mian et al. (2007), Queirolo et al. (2010), Faltemier

et al. (2008b). All of these address only rigid registration.

As pointed out in Sect. 1, one-to-all registration has the dis-

advantage that a probe must be registered to all images in

the gallery. Because the iterative registration procedure gen-

erally is quite time-consuming, this makes application to an

identification scenario (one-to-many) impractical. For a ver-

ification scenario (one-to-one), only a single registration is

required, so a somewhat slower registration is entirely ac-

ceptable.

The second approach: registration to a model or atlas ba-

sically operates in the same way, however, the probe image

is not registered to a gallery image, but to a model or at-

las (see Fig. 1). The model or atlas is learnt from a training

set. Examples of this approach are Kakadiaris et al. (2007),

Gokberk et al. (2006), Salah et al. (2007), Boehnen et al.

(2009), Alyüz et al. (2009). In Kakadiaris et al. (2007) and

Gokberk et al. (2006) also non-rigid registration is explored.

In all these articles the Average Face Model (AFM) is built

from training examples. A significant advantage relative to

the one-to-all approach described above, is that each image

has to be registered only once. This means images in the

gallery can be pre-registered and application in an identi-

fication scenario becomes possible. A disadvantage is that

probes may be less accurately registered to an average face

model than to an image of the same subject.

The third approach: registration to an intrinsic coordinate

system using e.g. landmarks, requires the accurate localisa-

tion of 3D landmarks on the face. The set of 3D landmarks is

mapped on the corresponding 3D landmarks in the intrinsic

coordinate system. The resulting transformation is then also

applied to the complete point cloud of the face, resulting in

the registered point cloud (see Fig. 2).

A problem is that most 3D landmarks are not stable un-

der facial expressions and/or can be covered by hair or oc-

cluded by other parts of the face. Landmark based regis-

tration is discussed in some depth in Papatheodorou and

Rueckert (2007). Registration to an intrinsic coordinate sys-

tem has the same advantages as registration to an atlas or

model: each image has to be registered only once. An added

advantage is that the intrinsic coordinate system can be pre-

cisely defined and standardised. Because atlases and AFM’s

are obtained using training sets, basing a standard on these

models is hardly possible. Tang et al. (2008) present a regis-

tration method to an intrinsic coordinate system based on the
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Fig. 2 Registration using 3D

landmarks on the face

vertical symmetry plane of the face, the tip of the nose and

the slope of the nose bridge. These could be called landmark

structures in the image as opposed to landmarks, which only

mark positions. The advantage of using the symmetry plane

and the nose tip and bridge is that these features are rela-

tively stable under facial expression variations, while they

still completely define a 3D intrinsic coordinate system (see

also Fig. 4). Our approach, as presented in this paper, is

based on the same features: the vertical symmetry plane, the

location of the tip of the nose and the slope of the bridge of

the nose (see Fig. 3). However, we take a robust approach

to determine these which, together with a more advanced

3D face classifier, results in far better recognition rates (see

Sect. 6). Furthermore, we present more results on a far larger

database and compare our results with the state of the art,

which Tang et al. do not.

It is interesting that most of the best performing ap-

proaches to 3D face recognition are based on one-to-all reg-

istration and registration to an atlas or model, mostly us-

ing ICP, while on the other hand for 2D face recognition

landmark based methods are more common. In Boom et

al. (2007) and Spreeuwers et al. (2007) we proposed ap-

proaches to 2D one-to-all registration and registration to an

AFM registration and showed significant advantages over

landmark based approaches. Ironically, here we present a

landmark (structures) based approach to 3D face recognition

and show significant advantages over 3D one-to-all registra-

tion and registration to an AFM.

2.2 3D Face Recognition

A recent overview on 3D face recognition until 2006 is pre-

sented in Bowyer et al. (2006). Other reviews are presented

in Papatheodorou and Rueckert (2007), Scheenstra et al.

(2005). More recent work was covered in Faltemier et al.

(2008a), Queirolo et al. (2010), Boehnen et al. (2009), Alyüz

et al. (2009). Since these give an extensive overview of work

Fig. 3 Registration using vertical symmetry plane, nose tip and the

slope of the bridge of the nose

on 3D face recognition, in this section only a brief summary

is presented and the reader is referred to the above papers

for more details.

Early work on 3D face recognition started around 1989

using profile and minimum distance between surfaces ap-

proaches (Cartoux et al. 1989) and e.g. application of PCA

to range images (Achermann et al. 1997; Hesher et al. 2003).

One of the problems was that in the beginning only small

datasets were available and there was no unified approach to

comparing performance of the different 3D face recognition

methods.

In 2004, the Face Recognition Grand Challenge (FRGC)

data (Phillips et al. 2005) was released containing in total

4950 images of 466 persons and the definition of a num-

ber of experiments for evaluation, among which a number

of verification experiments and identification experiments,

normally using 4007 of the 4950 images. The FRGC dataset

also contains many images with various expressions. Unfor-

tunately, the FRGC database contains a number of images

with serious motion artifacts, acquisition errors and extreme

expressions, which might be rejected for classification in ac-

tual situations.

As described in the previous section on 3D face registra-

tion, ICP can be used to align 3D point clouds. Apart from

the aligned point clouds ICP also produces a measure for the

distance between the facial surfaces if they are aligned. This

measure can be used as a matching criterion, because the

distance between aligned 3D point clouds of two different

individuals will be larger than between two different aligned

point clouds of a single individual. The use of the iterative

closest point (ICP) approach started around 2003 (Medioni

and Waupotitsch 2003) and because it was very successful
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it has dominated the world of 3D face recognition since.

Because ICP only works properly if the two point clouds

are already quite close to each other, generally a form of

pre-registration is performed and often the data are cleaned

somewhat: noise is suppressed and spikes are removed. Im-

provements of the ICP approach using several regions in

the face that were more or less sensitive to expressions and

modified distance measures were published in e.g. Maurer

et al. (2005), Mian et al. (2007), Queirolo et al. (2010), Fal-

temier et al. (2008b). A major drawback of the ICP approach

to 3D face comparison, is that it is a slow method, gener-

ally taking several seconds to minutes per comparison. For

the verification scenario, where only two images have to be

compared, this may still be acceptable, but for the identifica-

tion scenario, where a single probe must be compared to all

gallery images, it is not a practical solution. As described in

Sect. 2.1 another approach is to register to an average face

model (AFM) using ICP and then extract features which are

used for the classification. In this case, ICP has to be per-

formed only once and more compact templates of the faces

can be stored for the gallery images. This approach with reg-

istration to an AFM is used in Kakadiaris et al. (2007), Gok-

berk et al. (2006), Alyüz et al. (2009), Papatheodorou and

Rueckert (2005).

In recent work (Mian et al. 2007; Kakadiaris et al. 2007;

Gokberk et al. 2006; Alyüz et al. 2009; Faltemier et al.

2008b; Maurer et al. 2005; Queirolo et al. 2010), generally

performance comparison to the state-of-the-art is done using

the FRGC database (often in addition to other databases).

Two of the most challenging tests that are most cited in pub-

lications are an all vs all verification test, resulting in a score

matrix of 4007×4007 and a closed set identification test us-

ing a gallery consisting of the first images of all 466 subjects

and the rest of the 4007 images as probes. For the former the

recognition rate at a false accept rate of 0.1% is reported,

while for the latter the rank-1 recognition rate is reported.

On the all vs. all verification test, currently the best perfor-

mance ranges from 93.2% (Faltemier et al. 2008b) to 97%

(Kakadiaris et al. 2007). For the closed set identification test,

the best rank-1 results reported were 98.4% (Queirolo et al.

2010). Our approach using rigid registration to an intrinsic

coordinate system and multiple region PCA-LDA likelihood

ratio classifiers yields excellent results with a verification

rate of 94.6% and a rank-1 score of 99.0% while offering a

significant advantage in processing speed.

3 3D Face Registration Method

3.1 Introduction

As explained in Sect. 2.1, our registration method does not

map one point cloud on another, but transforms each point

Fig. 4 The intrinsic coordinate system with u-, v- and w-axis of the

3D face is defined by its origin in the tip of the nose and 3 rotation

angles: φ around the z-axis, θ around the y-axis and γ around the

x-axis

cloud to an intrinsic coordinate system. In 2D face registra-

tion, generally landmarks, like the centres of the eyes, nose

tip and mouth are used to determine a transformation to an

intrinsic coordinate system. In the 3D data, often only a sin-

gle stable landmark can be distinguished: the tip of the nose.

At the centres of the eyes and the mouth, often there are

holes in the 3D data, making accurate localisation of these

landmarks very difficult. Also these landmarks may move

due to facial expressions. Therefore, we used two different

geometric properties of facial data: the vertical symmetry

plane of the face and the slope of the bridge of the nose.

Both geometrical properties are stable under variation of fa-

cial expressions (Tang et al. 2008). To define an intrinsic

coordinate system, three angles and an origin must be de-

termined. The symmetry plane defines two angles (θ,φ, see

Figs. 4 and 8). The nose tip defines the origin and the an-

gle of the nose bridge defines the third angle (γ , see Figs. 4,

11 and 14). The intrinsic coordinate system of a 3D face is

shown in Fig. 4. The world coordinate system is spanned

by the vectors x,y and z. The intrinsic coordinate system

is spanned by the vectors u,v and w. The v-axis is chosen

such that the angle with the nose bridge is π
6

rad. This will

generally place faces in a frontal position.

As mentioned in Sect. 2.1, a 3D face registration method

based on similar geometric properties was presented by

Tang et al. (2008). However, the verification results they

present on the FRGC v1 data are far inferior to the results

we obtained as will be shown in the experiments in Sect. 6.

Our registration method operates on the rough 3D point

cloud and consists of the following main steps:

1. Determine a region of interest containing the face

2. Determine the vertical symmetry plane of the face

through the nose

3. Determine the nose tip and the slope of the nose bridge
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Fig. 5 Two samples from the FRGC v2 data (04529d93.abs and

04529d101.abs) of the same subject represented as a surface

4. Transform the point cloud to a coordinate system defined

by the symmetry plane, nose tip and angle of the nose

bridge

5. Construct a range image by projecting the point cloud to

a plane perpendicular to the symmetry plane

6. Perform hole filling and spike removal

The resulting range image can be readily used for face

comparison with a variety of face recognition methods. We

use the likelihood ratio classifier (Bazen and Veldhuis 2004;

Veldhuis et al. 2006), which is described in Sect. 4. Further-

more, we fuse the results of multiple classifiers of overlap-

ping regions of the face. The regions and fusion is described

in Sect. 5.

Because there is much variation in the 3D images due to

pose, expression, facial hair etc. we designed a robust ap-

proach to the steps of the registration method. This basically

means that some of the steps are performed twice: once ap-

plying a very robust approach with a large search space for

the parameters, but with lower accuracy and once with a nar-

row search space for the parameters but aimed at high accu-

racy. Each step will be explained in detail below.

3.2 Region of Interest

The full 3D scans may contain more than just the face. An

example from the FRGC v2 data set (Phillips et al. 2005)

is shown in Fig. 5. Because other body parts may disturb

the determination of the symmetry plane of the face, first a

Region of Interest (ROI) around the face is determined.

The region of interest is determined by first mapping

the 3D point cloud to a grid consisting of cells with size

20 × 20 × 20 mm. For each cell the average 3D coordinates

are determined and the surface normal is determined using

eigenvector/eigenvalue analysis. Only those cells are kept

with a sufficient number of 3D points and a largest eigen-

value that is clearly larger than the other two eigenvalues.

The latter signals that the cell represents a reasonably flat

surface with a clear normal.

Next a RANSAC (RANdom SAmple Consensus; Fis-

chler and Bolles 1981) is used to fit a cylinder piece to the

Fig. 6 Fitting a cylinder piece to two points with associated normals.

Left: finding the axis and centroid C of the cylinder piece. Right: the

fitted cylinder piece

3D facial data. RANSAC an iterative method to estimate pa-

rameters of a mathematical model from data which contains

outliers. The mathematical model in our case is the cylin-

der piece and the outlayers are 3D points on the shoulders,

torso etc. The “inliers” are the points on the face that are

modelled reasonably well by the cylinder. The basic idea of

RANSAC is to use a small random subset of points from the

data to hypothesise the mathematical model and to calculate

the consensus of the hypothesis by counting the number of

points in the dataset that can be explained by the hypothesis.

The process of hypothesising is repeated a number of times

and the hypothesis with the maximum consensus is selected

as the best fit of the mathematical model to the data. Advan-

tages of the RANSAC approach are its robustness against

outliers and its speed.

In our case, two cells can be used to define a cylinder

piece using the averages of the 3D coordinates of the points

in the cells and the normals. This is illustrated in Fig. 6.

The direction a of the axis of the cylinder piece is per-

pendicular to both normals n1 and n2. The intersection of

a plane α through P1 with normal b = a × n1 and the line

through P2 with direction n2 is a point on the axis of the

cylinder piece. The radius of the cylinder piece is given by

the distance of P1 and P2 to the axis. Finally, the extent of

the cylinder piece is determined by calculating the centroid

C between the projections of P1 and P2 and cutting off the

cylinder below and above half of the average face height h.

The average face height was set to 200 mm.

For the RANSAC algorithm, we consider all cell pairs

for fitting cylinder pieces with distance between the cells in

the x-direction dcx of [dcmin
x , dcmax

x ] and in the y-direction

dcy of less than dcmax
y (see Fig. 6 for definition of the

axes). We chose dcmin
x = 50 mm, dcmax

x = 100 mm and

dcmax
y = 50 mm. The consensus Ccyl is calculated by count-

ing the number of cells with distance d less than dmax (here:

20 mm) from the cylinder piece and normal less than αmax

(here: π
4

rad) deviating from the normal at the corresponding

position on the cylinder.

Ccyl(i, j) =
∑

k

{

1, if d(k) ≤ dmax ∧ α(k) ≤ αmax

0, otherwise
(1)
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Fig. 7 ROI determined by fitting a cylinder piece to the point cloud of

Fig. 5 using a RANSAC method. For points in the ROI the normals are

shown as well

Table 1 Parameter settings used in determination of the ROI

Description Symbol Value

Distances between pairs of points used to

hypothesise cylinders
dcmin

x 50 mm

dcmax
x 100 mm

dcmax
y 50 mm

Thresholds for contributing points to

consensus
dmax 20 mm

αmax π
4

rad

Distance to cylinder for points in reduced

point set

75 mm

Where Ccyl(i, j) is the consensus for the cylinder fit through

the cells i and j , d(k) is the distance of cell k to the cylinder

and α(k) is the angle between the normals of cell k and nor-

mal on the closest point on the cylinder. The cylinder piece

with the maximum consensus is chosen as the best fit. An

example of a fitted cylinder piece is shown in Fig. 7. This

approach of extraction of the face region appeared very reli-

able and did not fail a single time on a total of approximately

10 000 3D images.

All points with a distance larger than 75 mm to the cylin-

der piece are discarded from the point cloud. We will call

the remaining point cloud the reduced point cloud.

Table 1 summarises the parameter settings for ROI ex-

traction. Pairs of points used to hypothesise cylinders should

more or less lie in the same horizontal plane (we are look-

ing for cylinders with a vertical axis), hence the threshold

cmax
y . The distance between the pairs of points should not be

too small or too large, because this results in inaccurate esti-

mates of the parameters of the cylinder. The choices for the

thresholds relate directly to the average size of the face and

are not very critical.

Fig. 8 The symmetry plane is

defined by 3 parameters: θ , φ

and dx

3.3 Symmetry Plane

The next step is finding the vertical symmetry plane of the

face through the nose. The determination of the vertical

symmetry plane takes place in two stages: first a rough es-

timate of the parameters of the symmetry plane and next a

refinement of the parameters.

3.3.1 Rough Symmetry Plane Estimation

First, a range image is created from the reduced point cloud

by projecting them to the xy plane. A grid is defined on the

xy plane consisting of square pixels of 5 × 5 mm. The pro-

jection of the centre of gravity of the reduced point cloud

defines the origin of the grid. The value of a pixel is deter-

mined by calculating the average distance to the xy plane of

the points that project to the pixel (i.e. the average of their

z-coordinates). The result is a low resolution range image,

which is shown in Fig. 10 on the left.

The symmetry plane is defined by 3 parameters as shown

in Fig. 8: the rotation θ around the y-axis, the rotation φ

around the z-axis and the x coordinate of the intersection of

the symmetry plane with the x-axis: dx . Note that the angle

φ in both Figs. 8 and 4 refers to the rotation around the z-

axis.

To find the parameters of the symmetry axis, for θ and φ

in a range of [−π
4
, π

4
], new range images are generated for

which the projection plane is rotated such that it is perpen-

dicular to the symmetry plane. The step sizes for θ and φ

were set to π
40

rad. New range images only have to be gen-

erated from the point cloud for each value of θ . The range

images for different values of φ for a fixed value of θ are

obtained by in-plane rotation of the range image.

The new range images are mirrored in the y-axis and

shifted along the original range image with distances dx in

a range of [− 3
4
w, 3

4
w] with a step size of 5 mm, where w is

the width of the range image. For each displacement dx , the

z-coordinates of the pixels at the same grid positions (i, j)

are compared and the differences dz(i, j) for pixels that dif-

fer less than a threshold dmin
z are accumulated into a sum S.

This sum S is a measure for the symmetry: a low S means a

good match, a high S means a bad match. The threshold is

used to decide if the pixels are outliers. Outlier pixels have

very large differences in z-coordinates and would, therefore,
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Fig. 9 Nose template used for

rough nose fitting. Darker pixels

means nearer to the observer,

brighter pixels means further

away

have a large impact on the sum S. This is the reason why

they should not contribute to S. The symmetry measure S

also depends on the number of pixels that contributed to the

sum (i.e. those with dz < dmin
z ). To make the measure inde-

pendent for the number of pixels that contributed, we divide

by the number of contributing pixels. Because few contribut-

ing pixels generally means a bad overlap, we punish this by

dividing the sum through the number of contributing pixels

once more. The resulting expression for the symmetry mea-

sure S thus becomes:

S(θ,φ, dx) =

∑

i,j

{

0, if dz(i, j) > dmin
z

dz(i, j), otherwise

(

∑

i,j

{

0, if dz(i, j) > dmin
z

1, otherwise

)2
(2)

Where dz(i, j) is the absolute difference of the z-coordinates

of two pixels at the same grid position (i, j) of the two range

images and dmin
z the threshold used to decide if the pixels are

outliers. In all experiments, we set dmin
z = 10 mm. All lo-

cal minima in the 3 dimensional parameter space (θ,φ, dx )

are recorded as potential symmetry plane candidates. The

candidates for the symmetry plane are sorted in a list with

increasing S.

For all candidate symmetry planes a nose model is fitted

to the area around the symmetry plane on the facial surface

using a simple 3D nose model as a template and Normalised

Cross Correlation (NCC) as a matching criterion (see e.g.

van der Heijden and Spreeuwers 2007). The nose template

is shown in Fig. 9.

For each symmetry plane, the projection plane is tilted

around the x-axis with an angle γ and the best position of

the nose around the symmetry plane is selected. The search

range in the y-direction is across the full height of the face

and in the x-direction ± 15 mm from the symmetry plane.

The step size in x- and y-directions is 5 mm. The range for

the head tilt γ is [−π
5
, π

5
] and the step size is π

40
rad.

We now select the symmetry plane with low S while at

the same time a good nose fit. A good nose fit is in our

case defined as a NCC of 0.6 or larger (NCC has a range

of [−1,1] with 1 the best match). If there are more candi-

date symmetry planes with a good nose fit, the one with the

best symmetry (lowest S) is selected. If there is no good nose

fit, the symmetry plane candidate with the best nose fit is se-

lected. The threshold for the NCC was found experimentally

and is not very critical. The main purpose is to discard false

symmetry planes, e.g. vertical planes through the eyes.

Apart from a first estimate of the symmetry plane, we

now also have a first estimate of the position of the nose and

Fig. 10 Rough symmetry plane detection. Left: low resolution range

image of original data in ROI; Right: rotated to frontal. The rough es-

timate of the nose tip is marked with a cross

Fig. 11 The projection plane is

perpendicular to the symmetry

plane, has an angle γ with the

nose bridge and has its origin in

the tip of the nose

the tilt of the face (γ ), so basically we have a first estimate

of the intrinsic coordinate system.

The parameters are used to transform the point cloud to

the intrinsic coordinate system and again a low resolution

range image is created as described before. The result for

the image in Fig. 5 is shown in Fig. 10. Darker pixels are

closer to the observer and brighter pixels are further away.

Figure 11 shows the symmetry plane and the projection

plane with the origin in the tip of the nose.

This first estimate of the intrinsic coordinate system para-

meters appeared very reliable. The next step is a refinement

of the estimation of the parameters of the symmetry plane

and the nose tip and the slope of the nose bridge.

Table 2 summarises the parameter choices for the rough

symmetry plane determination. The ranges for θ , φ and γ

determine the maximum rotations the registration method

can handle.
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Table 2 Parameter settings for the rough symmetry plane detection

process

Description Symbol Value

Pixel size range image 5 mm

Search range + step φ and θ [− π
4
, π

4
], π

40
rad

Search range + step dx [− 3
4
w, 3

4
w], 5 mm

Threshold to exclude points

for symmetry calculation

dmin
z 10 mm

Search range + step γ [− π
5
, π

5
], π

40
rad

Search range + step nose

x-pos

[−15,15], 5 mm

Threshold on NCC nose fit 0.6

3.3.2 Refinement of Symmetry Plane Estimation

For the refinement of the estimation of the symmetry plane,

the point cloud is first rotated and translated to frontal view

using the parameters found in the rough symmetry plane es-

timation, so all parameter estimation is relative to the al-

ready found rotations and translations. For the refinement of

the estimation of the symmetry plane, the same symmetry

measure from (2) is used. However, now a higher resolution

range image with a grid size of 1 mm is used and a circular

ROI with a radius of 110 mm around the tip of the nose (see

Fig. 12 on the left). We used an exhaustive search strategy

in the θ direction in two stages: first in a range of [− π
10

, π
10

]

with a step size of π
100

rad and next around the found op-

timum θ
opt

1 in the range [θ
opt

1 − π
50

, θ
opt

1 + π
50

] with a step

size of π
1000

rad. For each value of θ , the point cloud is mir-

rored in the symmetry plane and projected to the projection

plane perpendicular to the symmetry plane. The resulting

range image is then rotated around the z-axis over an an-

gle of φ and shifted in the x-direction over a distance dx

and compared to the original range image. The differences

of the z-coordinates of the projected points and the pixels of

the range image are again accumulated using (2). To find the

optimal φ and dx for each value of θ , we applied a one di-

mensional parabolic fit optimisation approach as described

in Brent (1973), Press et al. (1988). The search ranges were

[− π
10

, π
10

] for φ and [−10,10] mm for dx . The parabolic fit

method iteratively fits a parabola through 3 points and sub-

stitutes the worst point by the maximum of the parabola.

First the optimal value for dx was determined for φ = 0 and

then this dx value was used in the optimisation of φ, which

in turn is then used in a second optimisation of dx etc. and

after that in a third iteration. The number of iterations for

each individual parameter was set to a maximum of 10 and

the optimisation was stopped if the difference of φ resp. dx

relative to the values in the previous iteration was less than
π

1000
rad resp. 0.1 mm.

The circular ROI used as input to the fine symmetry plane

estimation is shown on the left in Fig. 12. The result after

Fig. 12 Fine symmetry plane detection. Left: high resolution range

image of circular ROI around the nose; Right: rotated to frontal

Table 3 Parameter settings for the refinement of the symmetry plane

estimation

Description Symbol Value

Pixel size range image 1 mm

Radius range image 110 mm

Range and step 1st search θ [− π
10

, π
10

], π
100

rad

Range and step 2nd search θ [− π
50

, π
50

], π
1000

rad

Range and resolution search φ [− π
10

, π
10

], π
1000

rad

Range and resolution search dx [−10,10], 0.1 mm

Max # iterations 1D search 10

Max # iterations 2D search 3

adjustment using fine symmetry plane estimation is shown

on the right in Fig. 12. Note there is only a minor adjustment

to the rough symmetry estimation. The holes on the right

side of the nose (left in the images) occur because these parts

are invisible in the original 3D recording of Fig. 5.

The next step in the registration procedure is accurate

estimation of the tip of the nose and the slope of the nose

bridge. This will be detailed in the next section.

Table 3 shows the parameter settings for the refinement

of the symmetry plane estimation.

3.4 Nose Tip and Slope of Nose Bridge

In order to locate the nose tip and determine the slope of

the nose bridge, a rough estimate of the tilt angle γ of the

face is required. A first estimate of the tilt angle was already

obtained in the rough nose detection process in the symme-

try plane estimation. However, it turned out that sometimes

this estimate was insufficiently reliable, because it relies on

fitting a crude local nose model to a very low resolution

(5 mm) range image.

Therefore, a second more accurate and reliable estimate

of γ is determined by fitting a cylinder to the circular ROI

of the face, thus using higher resolution (1 mm) and more

global data. Basically this means finding the ‘up’ axis of

the face. The cylinder in this case has a fixed radius r =
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Fig. 13 A cylinder fitted to the circular ROI surface provides a first

estimate of the “up”-axis

100 mm and the axis of the cylinder lies in the symmetry

plane with an angle γ to the vertical y-axis. The angle γ

of the axis is varied between −π
2

rad and π
2

rad with a step

of π
100

rad. The γ that gives the cylinder with the highest

consensus according to (1) is selected as an initial estimate

for γ . The result of fitting a cylinder to the circular ROI is

shown in Fig. 13.

Next the projection plane for the range images is adjusted

for the new γ and a profile of the face is extracted by pro-

jecting all points of the point cloud with a distance less than

5 mm from the symmetry plane on the symmetry plane and

record their v and w coordinates (see coordinate system in

Fig. 4).

First outliers are removed from the profile. The profile

is resampled with a point distance of 1 mm in the v direc-

tion, recording both the maximum as well as the average

in the w-direction for each position. Outliers are defined

as points with a w-coordinate deviating more than 5 mm

from the average. Next the first estimate of the tip of the

nose is found by detecting the point with the maximum w-

coordinate. Around the tip of the nose, now straight lines are

fitted to the profile. The line fitting is done again using the

RANSAC (Fischler and Bolles 1981) approach. All combi-

nations of two points around the tip of the nose that have a

distance to each other of at least 10 mm are used to construct

straight lines. The consensus of a line with the profile is cal-

culated by counting the points above the tip of the nose that

have a distance in the w-direction of less or equal to dmax
l to

the line:

Cl(i, j) =
∑

k

{

1, if dl(k) ≤ dmax
l

0, otherwise
(3)

Fig. 14 Left: line fitted to nose bridge of the profile of the face. The

tip of the nose is at coordinates (0,0). Two profiles of the same person

are shown on top of each other. Right: definition of the tip of the nose

as intersection of two lines

Where Cl(i, j) is the consensus of the line through points

i and j on the profile and d(k) is the distance in the w-

direction of point k to the line. The line with the highest

consensus is selected as the best fit. Because the nose bridge

is the longest more or less straight line piece around the tip

of the nose, the found line lies on the nose bridge. As men-

tioned before, the RANSAC approach is very robust against

outliers and generally results in an accurate estimate of the

best fitting line. The angle γ defining the tilt of the head is

now defined as the angle of the found line on the nose bridge.

The profile is rotated such that γ = π
6

rad. This places the

face in an upright position, resulting in a frontal view. Fi-

nally the tip of the nose is found as the intersection of a line

parallel to the v-axis through the point on the profile with

the maximum w-coordinate and the line on the nose bridge.

It turned out that choosing this point as the tip of the nose

is slightly more stable than the point with the highest w-

coordinate or the point with the highest curvature. The result

of the line fitting to the nose bridge is shown in Fig. 14. To il-

lustrate how well the alignment of two faces works, two pro-

files of different 3D images of the same person are shown.

At this point, all parameters needed for registration of a

facial point cloud to the intrinsic coordinate system defined

in Fig. 4, have been determined. For further processing us-

ing face classifiers, some post processing steps are required,

which are described in the subsequent section.

Table 4 summarises the parameter settings for the esti-

mation of the position of the nose tip and slope of the nose

bridge. The radius of the cylinder is derived from the average

size of the head. We observed that the registration accuracy

is not very sensitive to these parameters, which is supported
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Table 4 Parameter settings for the nose tip and slope estimation

Description Symbol Value

Radius cylinder r 100 mm

Search range + step γ [− π
2
, π

2
], π

100
rad

Max distance to cylinder dmax 20 mm

Max deviation from normal αmax π
4

rad

Max distance to symmetry plane 5 mm

Resample density profile 1 mm

Outlayer threshold 5 mm

Min dist points for line hypothesis 10 mm

Max dist point to line for consensus dmax
l 5 mm

Fig. 15 High resolution range

image. For the black areas, no

depth information is available in

the original point cloud

by the fact that the same parameter values resulted in correct

registrations for about 10 000 3D faces.

3.5 Range Image

The first of the post processing steps is the generation of a

high resolution range image. This may not be necessary for

all types of 3D face recognition methods, but the PCA-LDA-

likelihood ratio approach that we chose requires an input

vector of fixed length. Therefore, a high resolution range im-

age is constructed by projection of the original point cloud

to the projection plane defined by the found parameters. In

principle a higher resolution may give better recognition, be-

cause details are better represented. For each pixel of the

grid of the range image, the average of the w-coordinates of

the points projected on the pixel is determined. The number

of contributing points is stored in a counter flag f for each

pixel as well. A simple filter for removing occluded points

from the point cloud is also applied. These are points that

lie more than several millimetres behind other points that

project on the same pixel in the grid of the range image. The

resulting range image is shown in Fig. 15.

Due to resampling, imperfect scanning and the fact that

some areas in the face may not have been visible during

scanning, holes occur in the range image. Furthermore, er-

rors in the scanning process may produce spikes. In order

to further process the range images, the holes must be filled

and the spikes must be removed.

Fig. 16 Spikes near the eyes

and on the forehead in a 3D face

surface

3.6 Spike Removal, Hole Filling and ROI

Spikes occur in the data due to scanning errors. These er-

rors may be caused by specular reflections in e.g. the pupils

of the eyes. Smaller spikes can occur anywhere in the data.

Figure 16 shows an example of spikes in the eye.

Spike removal is performed by low-pass filtering the

range image and discarding all points from the point cloud

with a w-coordinate that deviates more than dmax
sr from the

average w-value of the corresponding pixel of the grid of the

range image. We chose dmax
sr = 5 mm. The low pass filtering

step is a special kind of filtering, because to some pixel of

the grid, no points are projected, while to other pixels more

or fewer points of the point cloud are projected. The low pass

filtering takes the number of points that project on a pixel

into account. Cells with a larger count are considered more

reliable and given a higher weight in the averaging process.

The low pass filtering now proceeds as follows: First, the

average contributing point count f per pixel is determined

for the range image. Next, for each pixel i, a new w-value

wsr(i) and count fsr(i) are determined by adding together

the average w-value of the pixel and the pixels in a square

neighbourhood N(i), weighted with their respective counts

f (j) dividing by the total count of the neighbourhood:

fsr(i) =
∑

j∈N(i)

f (j) (4)

wsr(i) =
1

fsr(i)

∑

j∈N(i)

w(j)f (j) (5)

The size of the neighbourhood of each pixel is chosen

such that the new count fsr(i) is larger or equal to a fixed

multiplier Msr times the average count f . In the left image

of Fig. 17 the spikes of Fig. 16 are visible as dark spots

(closer to the observer). The resulting filtered range image

for a multiplier Msr = 25 is shown in the middle in Fig. 17

and on the right the result of the spike removal is shown.

Holes can be distinguished in small holes, large holes

and missing face parts. Small holes are caused by minor

scanning failures, the high resolution resampling process or

the spike removal process. Large holes are caused by scan-

ner failures and occlusion. A typical example of large holes

caused by scanner failure are the pupils of the eyes (see
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Fig. 17 Left: spikes in the range image; Middle: filtered range image

for spike removal; Right: after spike removal

Fig. 5). An example of large holes caused by occlusion are

the sides of the nose, which can be occluded if the face is ro-

tated around the y-axis. Missing facial parts can be caused

by scanner failure and by large rotations of the face around

the x-axis and/or the y-axis. If e.g. a person is looking down,

the part between the upper lip and the nose may not be visi-

ble in the 3D scan. After rotation to frontal pose, this causes

a hole.

Small holes are filled using interpolation. This interpola-

tion works similar to the low pass filtering used for the spike

removal with the exception that the w-values and the counts

of the neighbourhood are weighted with the reciprocal of the

distance to the centre of the neighbourhood:

fhf(i) =
∑

j∈N(i)

f (j)

r(i, j)
(6)

whf(i) =
1

fhf(i)

∑

j∈N(i)

w(j)f (j)

r(i, j)
(7)

Where r(i, j) is the distance between pixels i and j in the

grid of the range image. In this case the multiplier Mhf =

0.25, or if Mhff < 1, Mhf is chosen such that Mhff = 1.

Large holes and missing parts are filled using the symme-

try of the face. Large holes are detected by testing if a pixel

i and all its immediate neighbours j have counts f (i) and

f (j) that are less than Mhff . If for a pixel i in a big hole the

pixel im on the position mirrored in the symmetry plane has

a count larger than Mhff , then w(im) and f (im) are copied

to pixel i.

The order of processing holes is that first the big holes are

filled and then the remaining small holes. If the big holes

cannot be filled using symmetry, because holes occur on

both sides of the symmetry axis, the big holes will still be

filled using the approach for small holes.

An example of the result of the hole filling is shown in

Fig. 18 on the left.

The final step of the post processing is cutting out an el-

liptical region of interest (ROI), keeping only parts of the

face that are visible in all images. Choosing a larger ROI

may result in including parts of the background for smaller

faces. The final range image is shown in Fig. 18 on the right.

Fig. 18 Result after hole filling (left) and after selection of an elliptical

ROI (right). The latter is the final result of the post processing

Table 5 Parameter settings for spike removal and hole filling

Description Symbol Value

Max deviation to low pass filtered

surface for spike removal

dmax
sr 5 mm

Multiplier defining neighbourhood

for spike removal

Msr 25

Multiplier defining neighbourhood

for hole filling

Mhf 0.25

Although the simple approaches to spike removal and

hole filling perform well in most of the cases (evaluated us-

ing visual inspection and supported by the excellent 3D face

recognition results reported in Sect. 6), more advanced ap-

proaches, like hole filling using a PCA model (see Colombo

et al. 2006) may yield even better results.

Table 5 shows the parameter settings used in the spike

removal en hole filling process. Spikes deviating more than

5 mm from the average surface are removed. The values of

the multipliers result for spikes consisting of a single pixel

in a neighbourhood of 5 × 5 and for holes of a single pixel

in a neighbourhood of 3 × 3. For larger holes/spikes, the

neighbourhoods are extended to include a sufficient number

of 3D points to make a reasonable prediction of the local

depth value.

3.7 Alternative Registration Approach

A disadvantage of determining the tilt of the head by the

slope of the nose bridge is that for some people if they show

severe facial expressions the tip of the nose is pushed up-

wards. In addition, in some scans the tip of the nose cannot

be determined accurately either because it is missing (see

Fig. 25) or because inaccuracies occur due to e.g. specular

reflections. We, therefore, investigated a second approach to

determining the tilt of the face (the angle γ ) and the origin

of the intrinsic coordinate system. In this case, the origin is

defined not at the tip of the nose, but at the point just below
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Fig. 19 Determining the dent in the nose bridge (upper dot) and the

point below the tip of the nose (lower dot) from curvature. Both points

are a local maximum of the curvature. The tilt of the face is determined

by the line through the two points

the nose. Both of these points can easily be determined using

the curvature of the (smoothed) profile. This is illustrated in

Fig. 19 which shows the smoothed profile of a face and the

corresponding curvature. The tip of the nose has a large neg-

ative curvature. The dent above the nose bridge (black dot)

and the point just below the tip of the nose (blue dot) both

have large positive curvatures and are the first strong local

maxima near the tip of the nose. The tilt of the face is de-

termined by first locating the dent at the top of the nose and

fitting a line through these two points (dashed line).

In Fig. 20 a case is illustrated for which the alternative

registration approach works better than the original. The fig-

ure shows the profiles of two images of the same subject for

the registration based on the slope of the nose bridge and

nose tip (“normal registration”) on the left and on the dent

above the nose tip and the point just below the nose tip (“al-

ternative registration”) on the right. Note that for the normal

registration the nose tip is at the origin (0,0), while for the

alternative registration the point just below the nose is at the

origin.

Because of small motion artifacts at the tip of the nose,

the shape of the tip of the nose is deformed leading to incor-

rect localisation of the tip of the nose in one of the images

which causes a vertical shift in the range image, see Fig. 21.

The incorrect localisation of the tip of the nose is because

it is defined as the intersection of two lines (see Fig. 14).

Furthermore, there is compression of the nose area caused

by the facial expression in the face on the right, making the

slope of the nose bridge a less accurate measure of the tilt of

the head. Note that the eyes and nose tip are not at the same

vertical position in Fig. 21. The alternative registration does

Fig. 20 Profiles of two images of the same subject registered by the

normal registration (left) and the alternative registration (right). The

normal registration incorrectly localises the tip of the nose, because

the shape of the nose is different. The alternative registration is not

dependent on the shape of the tip

Fig. 21 Range images resulting from the normal registration. The in-

correct localisation of the tip of the nose causes a vertical shift in one

of the images

find the correct points in both images and correctly registers

both images. The range images of the alternative registration

are shown in Fig. 22. Note that the nose tip is better aligned

now, but because of the compression of the nose area caused

by the facial expression, the eyes are still not aligned.

Because only a small part of the complete registration

changes for this alternative approach, a range image with

the alternative registration can easily be generated in addi-

tion to the original range image at very little cost, i.e. it takes

hardly more time to generate two range images instead of

a single range image. The alternative registration appeared

slightly less robust than the “normal” registration. However,

because it makes different mistakes, it makes sense to fuse



402 Int J Comput Vis (2011) 93: 389–414

Fig. 22 Range images resulting from the alternative registration. The

faces are better aligned this time

classifiers trained on images registered with the two differ-

ent registration approaches.

4 PCA-LDA-Likelihood Ratio Classifier

For comparison of the 3D range images, we use a classifier

based on the likelihood ratio as described in Bazen and Veld-

huis (2004), Veldhuis et al. (2006), Beumer et al. (2006).

The likelihood ratio is defined as:

L(x) =
p(x|c)

p(x)
(8)

Where p(x|c) is the conditional probability on a feature vec-

tor x for class c and p(x) is the unconditional probability on

feature vector x for any class. The classes here refer to the

identities of the subjects. If we assume that p(x|c) and p(x)

are normally distributed, then:

p(x) =
1

(2π)
m
2 |�T |

1
2

e− 1
2 (x−μT )T �−1

T (x−μT ) (9)

and:

p(x|c) =
1

(2π)
m
2 |�W |

1
2

e− 1
2 (x−μc)

T �−1
W (x−μc) (10)

Where m is the dimension of the feature vector. μT and μc

are the mean feature vectors of the total distribution (of all

classes) and the within class distribution (for a single class).

�T and �W are the covariance matrices of the total distribu-

tion resp. the within class distribution. μT , �T and �W are

estimated from training data. Because generally only few

samples are available per class, we assume that the within

class variation �W is the same for all classes. In this way

the data of all classes can be used to estimate �W by sub-

tracting the class mean.

To compare two 3D range images, we first vectorise the

images. Next, one of the images is selected as probe xp and

the other as reference xr . We want to find out if the probe

and the reference are of the same class, i.e. are recordings of

the same subject. Since we have only one reference vector

available, the best estimate of the class mean is the refer-

ence vector itself, so we set μc = xr . The likelihood can

then be calculated using (8). If the likelihood is above a

certain threshold, the probe is accepted as a recording of

the same subject as the reference, otherwise it is rejected.

Prior to classification, the feature vectors are transformed

to a lower dimensional subspace by a d × m transforma-

tion matrix M that simultaneously diagonalises the within

class and the total covariance matrices, such that the latter

becomes the identity matrix.

The transformation matrix M is found by PCA followed

by LDA (Veldhuis et al. 2006). The expression for the like-

lihood ratio can now be simplified by applying the transfor-

mation M and taking the natural logarithm:

l(y) = log
p(y|c)

p(y)
= −

1

2
(y − νc)

T 	−1(y − νc)

+
1

2
(y − νT )T (y − νT ) −

1

2
log |	|

(11)

Where y = Mx, νc = Mμc, νT = MμT and 	 = MT �W M

a diagonal matrix. The transformation matrix M depends on

the number of retained PCA components p and the number

of retained LDA components d . The dimensionality of the

transformed feature vectors y is d . One of the interesting re-

sults of this research is that only very few components are

needed for a good classification. As is shown in Sect. 6.3,

as few as 12 numbers suffice (d = 12) to obtain a recogni-

tion rate of around 80% for a FAR of 0.1%. This means that

discriminating 3D range maps of faces requires very little

information and very compact feature vectors can be used

as templates.

Because the estimate of the class mean vector νc is based

on a single reference vector, the estimate is not very accu-

rate. Bazen and Veldhuis (2004) argue that in this case all

elements of the within class covariance matrix are twice as

large as for the case with known class mean vectors. We use

the proposed correction to the within class covariance ma-

trix, resulting in an acceptance region 2d/2 times as large.

5 Fusing Multiple Regions

5.1 Region Classifiers

One of the main deficiencies of the PCA-LDA-based clas-

sifier described in the previous section is its limited capa-

bility to handle local variations in the faces, caused by e.g.

expressions or acquisition errors like missing data, motion
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deformation etc. In principle these can be learnt from exam-

ple data, however, only if sufficient examples of each type

of variation are available. Normally, this is not the case. One

way to handle local variations is to divide the face into a

number of regions, perform recognition on the separate re-

gions and fuse the results. This approach was used in several

recent publications, including ICP based approaches using

local ICP, see e.g. Faltemier et al. (2008a), Queirolo et al.

(2010), Boehnen et al. (2009), Alyüz et al. (2009). Gener-

ally, the regions are chosen disjunct in order to obtain inde-

pendent recognition results. A problem with smaller regions

is, however, that the recognition rates are very low. There-

fore, we investigated the fusion of many relatively large

overlapping regions. We defined a set of 30 overlapping re-

gions which are shown in Fig. 23 where the white area is

included and the black area is excluded. The regions were

chosen in such a way that for different types of local varia-

tion they would allow stable features for comparison. Exam-

ples of such regions are those that leave out the upper or the

lower part of the face because of variation in hair, caps etc.

or variation in expression of the mouth. Other examples are

leaving out areas covered by glasses and the left or right side

of the face, which are less visible for large rotations around

the vertical y-axis.

We started by combining a few overlapping regions, but

as it became clear that adding more still improved recog-

nition results, we added more regions until the 30 regions

shown in Fig. 23 resulted. After this point adding more re-

gions did not seem to result in significant improvements any-

more, as can be observed in the experiments presented in

Sect. 6.4. However, more careful research into the definition

of the regions and the combination of the right regions may

still give some performance improvement.

From now on we will call the classifiers for a certain re-

gion region classifiers. The next step is the fusion of the re-

sults of the region classifiers into a single score or decision.

Of course the region classifiers for the smaller regions will

perform worse than those of the larger regions, but they may

still contribute to the fused score if the small region happens

to be one of the few stable regions in the image (i.e. some-

times, due to acquisition errors, large occlusions by hats or

hair or extreme expressions, only a small part of the face,

e.g. the nose is still unchanged relative to the neutral face).

In the subsequent sections, the fusion methods used for the

verification and identification scenarios are explained.

5.2 Fusion

There are many ways to fuse the results of a pool of clas-

sifiers. In Ross et al. (2006a, 2006b), 5 levels of fusion are

distinguished:

1. Sensor level fusion—fusion of raw data from different

sensors before feature extraction

Fig. 23 Regions used for different classifiers. Parts excluded by re-

gions include upper, lower parts, mouth region, hair region, glasses

etc. Some regions only use a small area around the nose. Note that

most regions overlap and the corresponding classifiers are, therefore,

not independent

2. Feature level fusion—fusion of extracted features ex-

tracted from different sensors, feature extraction methods

or different recordings of the same subject

3. Rank level fusion—combination of sorted lists of identi-

ties in decreasing order (only for identification)

4. Decision level fusion—combination of decisions of the

different classifiers, e.g. AND and OR rules and majority

vote

5. Score level fusion—combination of the scores of the dif-

ferent classifiers e.g. the (weighted) sum and product of

likelihoods

Since we only use a single 3D sensor, sensor level fu-

sion is not applicable in our case. Feature level fusion can in

principle be applied in our case, but because all features of

all region classifiers are extracted from the same image us-

ing the same feature extraction technique (PCA-LDA), it is

questionable if this will result in any performance improve-

ment. The other 3 fusion approaches are all applicable to

our approach and indeed we performed a number of exper-

iments with different fusion techniques like the optimal OR
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decision fusion (Tao and Veldhuis 2007, 2009; Tao et al.

2007). In the end we opted for one of the most common

approaches to fusion: majority voting. Majority voting is a

form of decision level fusion, where the identity is assigned

on which the majority of the classifiers agree. Majority vot-

ing very well fits the idea of using multiple region classifiers

that each represent more or less stable regions for different

expressions or facial occlusions. For neutral faces, gener-

ally all region classifiers will present the correct decision.

For faces with expressions, some of the region classifiers

(e.g. the full face region classifier) may present the wrong

decision, but still many others will present the correct de-

cision. A further characteristic of the region classifiers we

use is that they are dependent, because the regions used for

feature extraction overlap. Support for using majority vot-

ing for the fusion of many dependent classifiers is provided

in Kuncheva et al. (2003). Applying simple majority vot-

ing fusion to the region classifiers already gave extremely

good results as is presented in Sect. 6. In this paper we,

therefore, did not explore the benefits of the different fu-

sion approaches in depth. However, in Ross et al. (2006a)

and Kuncheva et al. (2003) several approaches are described

(weighted majority voting, Dempster-Shafer Theory of Ev-

idence, selection of the best combination of classifiers etc.)

that will likely further improve the results. Another promis-

ing fusion approach combining optimal decision OR fusion

and the sum rule score level fusion was presented in Tao and

Veldhuis (2008). In future research, we will investigate other

fusion strategies in more depth.

5.2.1 Identification—Closed Set

Application of majority voting fusion is straightforward for

the closed set identification scenario. In this case, it is guar-

anteed that identity of the probe image matches one of the

identities of the gallery images. Each region classifier com-

pares the probe image to all images in the gallery and selects

the one with the highest score. This results in one vote for

the identity corresponding to the selected gallery image. The

identity of the subject in the gallery that gathers most votes

is the winner and presented as the output of the fusion.

5.2.2 Identification—Open Set

In case of an open set identification scenario, it is not guar-

anteed that the identity of the probe image is represented in

the gallery. In this case we need a threshold on the mini-

mum number of votes. If the number of votes is below this

threshold, the probe image is not recognised and rejected.

An example of this scenario is access control for e.g. build-

ings where entrance must be denied to all people not present

in the gallery.

Fig. 24 The tippet plot of a classifier shows the fraction of imposter

scores and genuine scores that are larger than the threshold as a func-

tion of the threshold. The dashed lines show that at a FAR of 10% the

threshold is −150 and the VR is 95%

5.2.3 Verification

In the verification scenario, the identity of a subject must be

verified against a claimed identity. In face recognition, this

normally means that a facial recording must be compared to

an image on some kind of identification document. In prin-

ciple, this scenario corresponds to an open set scenario with

a gallery consisting of a single image. A typical example is

border control using the photograph on a passport. In this

case a decision is made by comparing the score of the clas-

sifier to a threshold. This threshold is chosen to match the

requirements of the application. Requirements can be for-

mulated in terms of e.g. maximum verification rate (VR)

at a predefined false acceptance rate (FAR). A requirement

often used in verification experiments is maximum VR at

FAR = 0.1%, i.e. if 1 out of 1000 imposter claims is ac-

cepted as a genuine claim.

We implemented the majority voting fusion for the verifi-

cation scenario, by first determining the decision thresholds

for all region classifiers using a separate dataset for a fixed

FAR. For each pair of images in the dataset, the matching

score is determined. For an imposter claim this results in

an imposter score and for a genuine claim into a genuine

score. If we plot the fraction of imposter scores larger than

the threshold (that is the FAR) as function of the threshold,

we can determine the required threshold for a certain re-

quired FAR. By also plotting the fraction of genuine scores

larger than the threshold, we also obtain the VR. This plot is

sometimes referred to as the Tippet plot, see e.g. Gonzalez-

Rodriguez et al. (2002). An example is shown in Fig. 24,

where the VR at FAR = 10% is equal to 95% at a threshold

of −150.

To determine the fused decision for the comparison of

a probe to a reference image, the scores Si for each region

classifier i are compared to the threshold Ti of the region

classifier and the decisions are accumulated:

V =

all regions
∑

i

{

1, if Si > Ti

0, otherwise
(12)
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The number of votes is then regarded as a new score and

is compared to a another threshold Tv to reach a decision:

D =

{

1, if Vi > Tv

0, otherwise
(13)

The threshold Tv must be determined using a second

dataset and again is tuned for a specific FAR or FRR which

is not necessarily the same as the one used in obtaining the

thresholds Ti of the individual region classifiers. We call the

FAR that is used to obtain the first set of thresholds Ti the

projected FAR FARp . The optimal setting for FARp can be

different from the FAR required for the fused classifier.

6 Experiments and Results

In this section a number of experiments is presented. The

first set of experiments (Sect. 6.2) reports results of the reg-

istration method. The second set of experiments (Sect. 6.3)

concern the selection of the parameters of the classifier.

The third set of experiments (Sect. 6.4) shows results of re-

gion classifiers and fusion. The fourth experiment (Sect. 6.5)

shows a comparison to Tang’s work. The last set of ex-

periments concerns a comparison with the state of the art

of 3D face classification methods both in processing speed

(Sect. 6.6) as well as on performance (Sect. 6.7). For all

comparisons the FRGC v2 3D data set was used (Phillips

et al. 2005). For training, other data sets were used: the

Bosphorus (Savran et al. 2008) data and a part of the 3Dface

data (3DFace 2009). The different data sets are detailed in

Sect. 6.1.

6.1 3D Face Databases

In our experiments we used 3 databases with range images:

1. FRGC database

2. Bosphorus database

3. 3DFace database

The FRGC database was used for evaluation, while the

other two databases were used for training of the region clas-

sifiers. In the subsequent sections follows a brief description

of the three databases.

6.1.1 FRGC Data

In our experiments we use the FRGC v2 database (Phillips et

al. 2005) for evaluation. This database was released in 2004

and consists of 4007 images of 466 different subjects. The

number of images per subject varies from 1 to 22. The 3D

scans were acquired using a Minolta Vivid 910 laser scanner

and the 3D data are represented as a grid of 480 × 640 3D

points. The effective resolution on the face surface is around

Fig. 25 Examples of images in the FRGC data base with motion arti-

facts, a missing nose and puffed cheeks

0.6 mm between points in x- and y-directions. All recorded

faces are close to the frontal pose. Facial expressions vary

from neutral through mild to extreme expressions with puffy

cheeks. Some of the images have artifacts due to e.g. motion

during acquisition and improper distance to the scanner, see

Fig. 25. One of the subjects has a wrong identification num-

ber as reported in Queirolo et al. (2010) (subject 04643 is

the same as subject 04783). For fair comparison, we did not

make any changes to the data or signature sets.

In addition to the FRGC v2 database, we used the FRGC

v1 database consisting of 943 images of 275 of the same

subjects as the FRGC v2 data for adjusting thresholds for

fusion for the verification experiment.

6.1.2 Bosphorus Database

The Bosphorus database (Savran et al. 2008) became avail-

able in 2008 and consists of 3396 recordings of 81 sub-

jects with 31–53 samples per subject. The 3D images were

recorded using an Inspeck Mega Capturor II 3D, which is a

commercial structured-light based 3D digitiser device. The

resolution of the images is generally somewhat lower than

those of the FRGC v2 database at around 0.8 mm between

points on the face surface, because the images are subsam-

pled. There are, however, fewer acquisition artifacts like mo-

tion or spikes. It contains images under several different

poses with up to 90 degree side views, different expressions

and partly occluded faces by hands, glasses etc. We used the

Bosphorus data only for training and selected all frontal im-

ages without occlusions but with expressions. This resulted

in a set of 2733 images of 81 subjects.

6.1.3 3DFace Database

The 3DFace dataset was acquired for an EU FP6 research

project: 3DFace (3DFace 2009). This dataset is not public. It

was acquired using the viSense scanner, based on structured

light and developed within the 3DFace project. The images

are available as a grid of 480×640 3D points. The resolution

of these faces is around 0.5 mm between points at the face

surface. It consists of images with different poses, with and

without glasses, occlusion (caps) and various expressions.
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Fig. 26 Registration results of images in the FRGC data base with

motion artifacts, a missing nose and puffed cheeks

We used the 3DFace dataset only for training purposes and

selected images without glasses, resulting in a set of 673

images of 64 subjects.

6.2 Performance of Registration

For this research a total of 8356 images were registered

using the new registration method. Registration failed for

very few of the images, most notably those with missing

noses (two images of the FRGC dataset) and extreme ex-

pressions. But even images with severe expressions, occlu-

sions by glasses, hats, caps etc. are handled quite well. Some

expressions, liked puffed cheeks etc. deform the face in such

a way that although the faces are registered correctly to the

intrinsic coordinate system, still comparison with other im-

ages of the same subject may fail. Results for the images

with artifacts of Fig. 25 are shown in Fig. 26. The left image

shows the effect of motion artifacts: the nose bridge is still

vertical but the rest of the face is distorted. The image in the

middle shows the effect of a missing nose: here the tilt of the

face cannot be estimated accurately. The image on the right

shows the result on a face with puffed cheeks.

The registration method was originally developed for the

3DFace data, which means high resolution and high qual-

ity data from a 3D scanner based on structured light. The

3DFace dataset also contains images with glasses and with

large variation in pose and, hence also large variation in pose

is handled well too (up to ±45 deg in all directions). An ex-

ample is shown in Fig. 27.

The range image in Fig. 27 also shows that the hole fill-

ing using interpolation and mirroring is not always working

perfectly and needs some improvements. This, together with

extensive experiments on 3D face recognition for large vari-

ations in pose, expressions and occlusions are subjects of

our future research.

The registration was implemented in C++ on a standard

Linux PC as a single threaded program. Registration takes

on average 2.5 seconds for images from the FRGC v2 data-

base and 3DFace database. Both contain images with 50 000

to 120 000 points. Registration of images from the Bospho-

rus database is faster with around 1.2 seconds, because they

contain fewer points (around 40 000).

Fig. 27 Sample bs000_YR_R45_0_3D from the Bosphorus data with

a rotation of 45◦ and the resulting range image

It hardly makes sense to present 8000 examples of cor-

rectly registered faces. A better means of evaluation of the

quality of the registration is by applying it for face recogni-

tion as will be done in the subsequent sections.

6.3 Selection of Parameters

The PCA LDA likelihood ratio based classifier has two im-

portant parameters that must be chosen: the number of prin-

ciple components for the PCA step and the number of com-

ponents in the LDA step. From our experience in 2D face

recognition, we expected optimal number of around 200

PCA components and 100 LDA components. However, for

3D face recognition, the optimal number of required LDA

components turned out to be much lower. We performed two

experiments to determine optimal values for the number of

PCA and LDA components. We selected a single classifier

region (top right in Fig. 23) and trained the classifier using

the Bosphorus frontal data. In the first experiment the num-

ber of LDA components was varied from 3 to 90 while the

number of PCA components was fixed to 100. In the sec-

ond experiment the number of PCA components was varied

from 25 to 500 while the number of LDA components was

fixed to 25. The resulting classifiers were evaluated using

the verification test on the complete FRGC v2 target set of

4007 images using an all vs all test. Figures 28 and 29 show

the results of the experiments.

As can be observed in Fig. 28, which shows the EER

(Equal Error Rate) and the FRR (False Rejection Rate) at a

FAR (False Accept Rate) of 0.1% as a function of the num-

ber of LDA components, if the number of LDA components

is above a certain value, the performance of the classifier re-

mains nearly constant. For the EER this value is 10, resulting

in an EER of approx. 2.2% and for the FRR at FAR = 0.1%

it is around 25 resulting in a FRR of approx. 12%. The con-

clusion we can derive from this is that although the human

face seems a complicated 3D surface, only 10–25 floating

point numbers suffice to discriminate between faces of dif-

ferent subjects. This results in very compact feature vectors.
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Fig. 28 FRR@FAR = 0.001 and EER of a single classifier as function

of the number of LDA components

Fig. 29 FRR@FAR = 0.001 and EER of a single classifier as function

of the number of PCA components

If we choose 25 components, each classifiers needs features

with a length of 25 floating point numbers, which results in

a total of 25 × 30 = 750 numbers or 3000 bytes for fusion

of 30 region classifiers. Compared to the space required for

a complete point cloud (around 600 kB) this means a huge

compression.

Figure 29 shows the EER and the FRR at a FAR of 0.1%

as a function of the number of PCA components for a fixed

number of 25 LDA components. As can be observed, the

optimal number of components for minimum FRR (around

12%) at FAR = 0.1% is around 175 and remains nearly con-

stant in a range of 100–250. The EER has a minimum of

2.2% at 75 PCA components and remains nearly constant

between 50 and 150 components. Above 150 components

the EER gradually increases to 2.8% at 500 components.

Based on the above experiments, we chose to use 100

PCA components and 25 LDA components. For conve-

nience, we chose the same number of PCA and LDA com-

ponents for all region classifiers, although we observed dif-

ferent optima for different classifiers. For 150 PCA compo-

nents and 40 LDA components and an in-plane resolution of

1.5 mm, for example, the best region classifier resulted in a

rank-1 score of 96.1% and a FRR of 88.3% at FAR = 0.1%.

For the smaller regions, however, large numbers of PCA and

LDA components leads to overtraining (see e.g. Jain et al.

2000) and, hence, worse results. Optimisation of these para-

meters for the individual region classifier is, however, a time

Fig. 30 FRR@FAR = 0.001 and EER of a single classifier as function

of the resolution of the range image

consuming process and, therefore, we made a compromise.

In future research, we will further optimise these parameters

and the regions which will likely result in further improve-

ment of the results.

Another parameter that influences the results of the clas-

sifiers is the resolution of the range image generated by the

registration module. A very high resolution in x- and y-

directions may seem preferable, because all details can be

represented. However, choosing a very high resolution may

degrade classifier results, because of the curse of dimension-

ality (Jain et al. 2000) and imperfect interpolation for filling

of holes. Choosing a very low resolution, on the other hand,

will speed up processing, but will result in lower recogni-

tion rates. In Boom et al. (2006) we showed that for 2D

face recognition using a PCA-LDA likelihood ratio classi-

fier the recognition performance is relatively insensitive to

image resolution. In Fig. 30 we can observe that the same is

true for 3D face recognition. The figure shows the FRR at

FAR = 0.1% and the EER for a single region classifier as a

function of the resolution in x- and y-directions of the range

image. Both FRR at FAR = 0.1% as well as the EER remain

nearly constant at around 19% resp. 7.5% for a large range

of resolutions. For most of our experiments we chose a reso-

lution of 1.5 mm/pixel, resulting in range images of 75 × 87

pixels.

Again, for convenience we chose the same resolution for

all region classifiers. In future work we will investigate the

effect of the resolution on the individual region classifiers as

well.

6.4 Classifier Performance and Fusion

We performed two evaluation experiments on the FRGC v2

data: a closed set identification experiment and an all vs all

verification experiment.

6.4.1 Identification

For the identification experiment, the 4007 images of the

FRGC are split into a gallery and a probe set. The gallery set
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Fig. 31 Performance of individual region classifiers on FRGC v2

rank-1 identification experiment. The best rank-1 score for a single re-

gion classifier is 95.9% (number 5 in the top row)

consists of the first image of each subject in the data base,

resulting in a set of 466 images. Most of these first images

are neutral images, but not all of them. The remaining 3541

images are used as a probe set.

Figure 31 shows the rank-1 scores for 30 region classi-

fiers trained on the frontal Bosphorus data set. The maxi-

mum rank-1 score obtained for a single region classifier was

95.9%. Similar results were obtained for the region classi-

fiers trained on the 3DFace data set.

As described in Sect. 5, straightforward majority voting

is used to fuse the rank-1 scores of the individual region

classifiers. Figure 32 shows the result of adding the region

classifiers one by one and taking the majority vote. The first

curve shows the combination of 30 region classifiers trained

on the Bosphorus frontal data set, which results in a final

rank-1 score of 97.9% for 30 regions. The second curve

combines region classifiers trained on the Bosphorus frontal

data set and the 3DFace data set. The fusion of two times

30 region classifiers results in a rank-1 score of 99.0%. The

region classifiers trained on the 3DFace data set used the

alternative registration described in Sect. 3.7. Because the

two registration approaches make different errors and the

two datasets contain different variations of 3D facial shapes,

fusion results in further improvement of the performance.

Note that we used a complete separation of training and

evaluation data. The training data are even acquired using

a completely different process: using structured light as op-

posed to laser scanning for the FRGC v2 data base.

The drop in performance around the 9th region suggests

that better region selection is possible. This is one of the

subjects of our future research.

6.4.2 Verification

For the verification scenario, we use the all vs all experiment

defined in the FRGC protocol. Since there are 4007 images

in the FRGC v2 database, this results in 4007 × 4006 com-

parisons (images are not compared to themselves). For each

region classifier, the VR at FAR = 0.1% is determined us-

ing a Tippet plot (see Sect. 5.2.3). Figure 33 shows this VR

Fig. 32 Fusion of region classifiers using majority voting using 1 and

2 training sets. The final result using 2 × 30 region classifiers from 2

training sets is 99.0%

Fig. 33 Performance of individual region classifiers on FRGC v2 all

vs all verification experiment. The best performance of a single region

classifier is VR = 87.5% @ FAR = 0.1% (5th on top row)

for all the region classifiers trained on the Bosphorus data-

base. The best performance of a single region classifier is

VR = 87.5% or FRR = 12.5% at FAR = 0.1%. Similar re-

sults are obtained using the 3DFace dataset for training and

the alternative registration of Sect. 3.7.

For fusion, we use the approach as described in Sect. 5.2.3.

We used the FRGC v1 data to determine the thresholds for

the region classifiers for a given projected FARp . Figure 34

shows the FRR at FAR = 0.1% for fused classifiers of 30,

2 × 30, 3 × 30 and 4 × 30 regions as a function of the

projected FARp . The minimum FRR of 5.4% is reached

at FARp = 0.00023 for the 4 × 30 region classifier (fusion

of 30 region classifiers trained on Bosphorus data and 30

region classifiers trained on the 3DFace dataset using both

the standard as well as the alternative registration).

We can also observe that like for the other parameters,

there is a reasonably large range where the performance is

more or less constant, i.e. the exact choice of FARp is not

very critical.

As an extra indicator of performance, the EER is shown

as well in Fig. 35. Note that unlike the FRR the EER does

not show a clear minimum for the chosen range of FARp .

The best performance for the 4 × 30 regions is an EER

of 1.2%.
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Fig. 34 Performance of fused region classifiers on FRGC v2 all vs all

verification experiment as a function of the projected FARp . The best

performance for the 4 × 30 regions is a FRR of 5.4% or a VR of 94.6%

Fig. 35 Performance of fused region classifiers on FRGC v2 all vs all

verification experiment as a function of the projected FARp . The best

performance for the 4 × 30 regions is an EER of 1.2%

As mentioned in Sect. 5.2.3 further performance im-

provements may be expected by more in depth research into

the optimal combination of region classifiers. This will be

part of our future research.

6.5 Comparison to Tang

Although the main objective of the paper of Tang et al. is to

show that using the nose area to define the symmetry plane

(NSP) results in a more accurate estimate of the symmetry

plane than by using the full face (FSP) and not to perform an

extensive comparison of the recognition results to the state

of the art, it still is interesting to compare our results with

theirs, because our registration method is based on the same

landmark structures as Tang’s.

While Tang’s and our method use the same landmarking

structures, the approaches to estimate the corresponding pa-

rameters differ in several aspects. Whereas Tang et al. base

the estimation of the symmetry on a small area around the

nose, we determine the symmetry plane using a large area

around the nose, which, in our opinion, gives a more reli-

able result. Another difference is the definition of the tip of

the nose, which we defined as the intersection of two lines

rather than the point with maximum curvature. Furthermore,

our method uses a course-to-fine robust approach in each

Table 6 Comparison of our approach to Tang’s. Reported numbers are

EER’s on an all vs all experiment on the FRGC v1 data

Method EER

Tang-manual 6.1%

Tang-FSP 7.1%

Tang-NSP 5.5%

Spreeuwers 1 0.7%

Spreeuwers 2 × 30 0.3%

stage, whereas Tang’s method doesn’t. Finally, our 3D face

classifier is far more advanced than Tang’s. Tang et al. use

average distance between profiles of the face as a distance

measure for face comparison.

Tang et al. perform a single verification experiment on the

FRGC v1 3D data set, which consists of a part of the data

of the FRGC v2 data set (the Fall2003range data). This data

set consists of 943 images of 275 subjects and is regarded

as a relatively easy 3D data set. The experiment Tang et al.

performed was one-to-one verification for all data, resulting

in a 943 × 943 score matrix. Tang et al. only report equal

error rates (EER) where, generally, false reject rates (FRR)

at a false accept rate (FAR) of 0.1% are reported. In order to

compare our results to Tang’s, we trained the classifiers us-

ing the Bosphorus and the 3Dface databases. Two score ma-

trices were evaluated: one for a single classifier (Spreeuwers

1: trained on the Bosphorus data base using the region at the

top right of Fig. 23) and a full classifier using vote-fusion

(Spreeuwers 2 × 30), where the classifiers were trained on

both the Bosphorus and the 3Dface databases and the thresh-

old for the vote-fusion was tuned using the Spring2004range

and the Fall2004range data from the FRGC v2 data. The re-

sults are presented in Table 6.

Note that the classifiers we used for this test were not

specifically optimised for EER. We can also conclude that

unlike Tang’s full face symmetry (FSP) approach, our robust

approach to symmetry plane estimation does not suffer from

inaccuracy and performs even far better than Tang’s nose

symmetry (NSP) approach.

6.6 Comparison to State of the Art: Processing Speed

Processing speed is one of the major advantages of our ap-

proach. Table 7 shows for a number of top-ranking 3D face

recognition methods the times required for registration and

comparison of two images together with the processors that

were used to perform the calculations as reported in the pub-

lications. Of course, processing times are difficult to com-

pare, because they not only depend on the used processors

(which were comparable for all methods), but also on imple-

mentation, used programming language, amount and speed

of storage etc. However, since our method is an order of
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Table 7 Computation times for registration and number of compar-

isons per second of 3D recognition methods. Boehnen et al. do not

specify the registration time, but it is likely to take several seconds as

it involves ICP to an average model

Method Processor Prep. Comp.

[sec] per sec.

Queirolo et al. (2010) 3.4 GHz P4 – 0.25

Faltemier et al. (2008a) 2.4 GHz P4 7.5 0.36

Al-Osaimi et al. (2009) Core 2 Quad 4 10

Kakadiaris et al. (2007) 3.0 GHz P4 15 1 000

Boehnen et al. (2009) 2.2 GHz T7500 ? 12 500

Alyüz et al. (2009) 2.7 GHz Core i7 131 20 000

Spreeuwers 1 2.8 GHz P4 2.5 670 000

Spreeuwers 30 2.8 GHz P4 2.5 22 300

Spreeuwers 2 × 30 2.8 GHz P4 2.5 11 150

Spreeuwers 4 × 30 2.8 GHz P4 2.5 5 575

10–1000 times faster than the competing methods and was

run on rather modest hardware, we can safely state that it is

one of the fastest methods around. Also, the method could

as easily profit from parallel processing and more modern

processors as any other method (it currently runs in a single

thread on an old 2.8 MHz Pentium 4).

Queirolo et al. (2010) report an average time for com-

parison of two faces of 4 seconds. Faltemier et al. (2008a)

require 7.5 seconds for data preprocessing and rough regis-

tration. Face matching of 28 regions then takes 2.4 seconds.

Al-Osaimi et al. (2009) extract a cropped pose-corrected 3D

facial range image which is used as a template and takes 4

seconds. Face comparison is based on ICP and takes 100

ms per face. Kakadiaris et al. (2007) perform registration

to a spin model which takes 15 seconds and use extracted

features for matching which is very fast at 1 000 matches

per second. Boehnen et al. do not report the time for pre-

alignment for their signature search, but because it involves

an ICP step for registration to an average model, it is likely

to take several seconds. Their matching for 8 regions on the

signatures is very fast with 100 000 matches per second per

region or 12 500 full matches per second. Alyüz et al. need a

total of 131 seconds for preprocessing and registration using

regional ICP. Matching is again very fast at 20 000 matches

per second.

In Table 7 four of our classifiers are shown: “Spreeu-

wers 1” is the best performing single region classifier,

“Spreeuwers 30” is a fusion of 30 region classifiers trained

using the Bosphorus database and “Spreeuwers 2 × 30” is a

fusion of 30 region classifiers trained on the Bosphorus data-

base and 30 region classifiers trained on the 3DFace dataset

with alternative registration. The “Spreeuwers 4 × 30” clas-

sifier consists of 4 sets of 30 region classifiers trained on the

3DFace and the Bosphorus datasets using both types of reg-

istration. Using registration to an intrinsic coordinate system

Table 8 Estimated times for identification of a single probe using a

gallery of 466 subjects of the FRGC v2 data. Boehnen et al. did not

report registration times which are likely to take several seconds

Method Total time [sec] rank-1 score

Queirolo et al. (2010) 1864 98.4%

Faltemier et al. (2008a) 1312 97.2%

Al-Osaimi et al. (2009) 50.6 96.5%

Kakadiaris et al. (2007) 15.5 97.0%

Boehnen et al. (2009) 0.03 + reg 95.5%

Alyüz et al. (2009) 131 97.5%

Spreeuwers 1 2.5 95.9%

Spreeuwers 30 2.5 98.0%

Spreeuwers 2 × 30 2.5 99.0%

as an independent step in the recognition chain instead of a

one-to-all registration approach results in a significant ad-

vantage to ICP-like approaches. As is shown in Table 7, our

registration method also compares favourably to registra-

tion to AFM (average face models) methods, taking on aver-

age around 2.5 seconds on point clouds of 50 000–100 000

points like those in the FRGC v2 data set. Comparison it-

self, consisting of only a few matrix multiplications on the

reduced set of features is very fast with 670 000 regions per

second or 22 300 and 11 150 per second for the 30 and 2×30

region classifiers. Even the fusion of 120 region classifiers

(4 × 30) is still very fast with 5575 comparisons per second.

As argued before, methods applying an one-to-all regis-

tration approach are impractical for the identification sce-

nario. Table 8 shows for top-ranking methods the times re-

quired for identification of a single probe image to a gallery

of 466 subjects from the FRGC v2 data. Identification takes

in this case 1 registration/preprocessing of the probe im-

age and 466 comparisons. Table 8 also shows the maximum

rank-1 performance that was reported for the different meth-

ods. Our approach gives the highest rank-1 performance and

is more than 700 times faster than the second best perform-

ing approach of Queirolo et al. (2010). The fastest compet-

ing approach is by Boehnen et al. (2009), which probably is

about as fast as our method (registration to an average model

using ICP takes probably several seconds), but its rank-1

performance is far worse.

In Table 9 we estimated the time required to calculate the

complete 4007 × 4007 score matrix for the all vs all exper-

iment on the FRGC v2 data. We assume that the matrix is

symmetric and we do not compare images to the image self.

This means that a total of 4007 registrations/preprocessing

are required and 4007 × 4006/2 = 8 026 021 comparisons.

Clearly, our method has a huge advantage in computation

speed. Boehnen et al. (2009) did not report verification re-

sults and are therefore not included in the table.
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Table 9 Estimated times to calculate the complete 4007×4007 matrix

of the all vs all verification experiment on the FRGC v2 data. Boehnen

et al. did not report verification results

Method Total time [hours]

Queirolo et al. (2010) 8900

Faltemier et al. (2008a) 6250

Al-Osaimi et al. (2009) 227

Kakadiaris et al. (2007) 19

Alyüz et al. (2009) 146

Spreeuwers 1 2.8

Spreeuwers 30 2.9

Spreeuwers 2 × 30 3.0

Spreeuwers 4 × 30 3.2

6.7 Comparison to State of the Art: Performance

In this section we compare the performance of our approach

using registration to an intrinsic coordinate system and fu-

sion of multiple PCA-LDA likelihood region classifiers to

the best performing 3D face recognition methods that pub-

lished results on the FRGC v2 database. Two experiments

were selected. The first experiment is an identification ex-

periment using a gallery of all 466 first images of the dataset

and the rest of the 4007 images as a probe set. For this

experiment rank-1 results are reported. The second exper-

iment is a verification experiment where each of the 4007

images is compared to all others. The verification rate (VR)

at FAR = 0.1% is reported for 3 different masks of the data:

mask I (within semester recordings), mask II (within year

recordings) and mask III (between semester recordings). In

some publications separate results are published with only

neutral faces in the gallery or as reference and probe im-

ages. We only show results on the most difficult case where

all faces with expressions are included and even some of the

faces in the gallery of the identification experiment show ex-

pressions.

For these experiments we used registration to a range

image with a resolution of 1.5 mm, resulting in range im-

ages of 75 × 87 pixels. For the region classifiers the num-

ber of PCA and LDA components was set to 100 resp. 25.

For the identification experiment we fused 30 region clas-

sifiers trained on the Bosphorus data and 30 region classi-

fiers trained on the 3DFace data with alternative registration

resulting in a total of 60 region classifiers. For the verifica-

tion experiment we used 30 region classifiers for both reg-

istration methods and datasets, resulting in a total of 120

region classifiers. Straightforward majority voting was used

as before and for the verification the vote fusion method as

described in Sect. 5 with projected FARp = 0.00023. The

thresholds for the region classifiers were determined using

the FRGC v1 data.

Table 10 Comparison of rank-1 score on FRGC v2 data to top per-

forming 3D face recognition methods

Method rank-1 score

Kakadiaris et al. (2007) 97.0%

Faltemier et al. (2008a) 97.2%

Alyüz et al. (2009) 97.5%

Queirolo et al. (2010) 98.4%

Spreeuwers 99.0%

Table 11 Comparison of verification rates at FAR = 0.1% on FRGC

v2 data to top performing 3D face recognition methods

Verification rate VR @ FAR = 0.1%

Method Mask I Mask II Mask III All vs all

Maurer et al. (2005) 86.5%

Kakadiaris et al. (2007) 97.2% 97.1% 97.0%

Faltemier et al. (2008a) 94.8% 93.2%

Alyüz et al. (2009) 85.8% 86.0% 86.1%

Al-Osaimi et al. (2009) 94.6% 94.1% 94.1%

Queirolo et al. (2010) 96.6% 96.5%

Spreeuwers 94.6% 94.6% 94.6% 94.6%

The results of the identification experiment are shown in

Table 10. For this experiment our method obtains the best

performance. As shown in Sect. 6.6 in addition our method

is much faster than the other methods.

The results of the verification experiments are shown in

Table 11. As can be observed, our method does not reach

the highest verification rate, but still respectable scores are

obtained that puts our method between the top contenders.

As mentioned before, we plan to investigate more advanced

fusion strategies and optimisation of the regions and region

classifiers and expect further improvement of the verifica-

tion scores (and identification scores as well).

Finally, Fig. 36 shows the ROC for the verification ex-

periment for the three masks. Note that since the scores are

actually counts of the number of votes, the range of the

score is [0..120], because there are 120 region classifiers.

This means that the ROC consists of 121 points rather than

a continuous line and hence the staircase shaped curves.

7 Conclusions

We present a new fully automatic registration approach for

3D face recognition which registers 3D point clouds to an in-

trinsic coordinate system defined by the vertical symmetry

plane through the nose, the slope of the nose and the tip of

the nose. A robust approach to the registration is used where

first on low resolution an exhaustive search strategy is used
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Fig. 36 ROC curves for the verification experiments for the 3 masks

defined in the FRGC. Verification rates at FAR = 0.1% are 94.6%

to obtain rough estimates of the parameters and in a sec-

ond stage for a smaller search range accurate estimation of

the registration parameters is performed. Post processing in-

cludes resampling to a range image, spike removal and hole

filling. The registration method is robust, accurate and fast:

a C++ implementation takes an average of 2.5 seconds on a

standard PC for images from the FRGC database. An alter-

native registration method was also developed based on the

dent above the nose bridge and the point just below the tip

of the nose instead of the tip of the nose and the slope of the

nose bridge. In some cases this alternative approach is more

robust against artifacts around the tip of the nose and severe

facial expressions. Computation of this additional registra-

tion adds only negligible extra processing time to the aver-

age of 2.5 seconds.

A 3DFace classifier was developed by fusion of many

region classifiers which are trained on specific regions of

the face that are supposed to remain stable under variation

of expression and occlusions by e.g. glasses, hair, caps etc.

For the region classifiers we used PCA-LDA likelihood ratio

classifiers. For the identification scenario the fusion of the

classifiers is straightforward majority voting. For the veri-

fication scenario all region classifiers are first tuned for a

specific projected FAR using a separate fusion training set.

The resulting thresholds are then applied to the region clas-

sifiers and fusion takes again place by counting votes of the

region classifiers. The resulting vote is regarded as a similar-

ity score and the performance of the fused classifier. Because

the classification only consists of a number of matrix multi-

plications, it is very fast at 670 000 comparisons per second

for a single region classifier.

A system consisting of the described registration meth-

ods and 2 or 4 sets of 30 region classifiers was evaluated

using the FRGC v2 database and the results were compared

to the best performing methods. The region classifiers were

trained using independent datasets: the Bosphorus dataset

and the 3DFace dataset. The FRGC v1 dataset was used to

find the thresholds for the region classifiers. Two tests of the

FRGC were performed: a closed set identification test using

the first image of all 466 subjects of the FRGC v2 dataset

and the remaining images as a probe set and an all vs all

verification test. The performance of our method compares

very favourably to the top ranking methods in the world:

the identification rate is 99% for this test, while the pre-

viously best reported identification rate was 98.4%. In ad-

dition, our method is more than 700 times faster than this

method. For the verification experiment our method reaches

an all vs all verification rate of 94.6%, which is not the high-

est score reported (97%), but is certainly one of the best

scores ever obtained. Although less significant for the verifi-

cation scenario, again the computation speed is much higher

than for the competition: the complete calculation of the full

4007 × 4007 score matrix for this experiment takes only

3.2 hours including registration.

Because registration is to an intrinsic coordinate system

of the face, each image only has to be registered once, which

is a huge advantage over one-to-one registration methods

like ICP. Furthermore, feature extraction from the range im-

ages allows for a compact template: for the classifier based

on 60 region classifiers with 25 LDA components, only

60 × 25 floating point numbers have to be stored or 6 kB.

For 120 region classifiers the required storage for a tem-

plate increases to a still very acceptable 12 kB. Unlike 3D

point clouds, these features can be used for privacy preserv-

ing template protection schemes as well.

There are many possibilities for further improvement of

the proposed method and extension to other fields. The reg-

istration method still leaves room for further improvement,

e.g. using more advanced hole filling and alternative ap-

proaches to nose tip localisation and determination of the

slope of the nose bridge, e.g. using more advanced robust

estimation techniques, like MLESAC (see Torr and Zis-

serman 2000) instead of RANSAC. Currently, for conve-

nience, the parameters for all of the region classifiers are

chosen the same. First experiments show however, that dif-

ferent region classifiers perform better or worse for differ-

ent resolutions of the range image and numbers of PCA and

LDA components. For fusion we used very simple methods

based on majority voting. In literature, more advanced ap-

proaches to automatically select the best combination of re-

gion classifiers and calculate weights for the voting process

are known, which would likely result in improved perfor-

mance. In future work we will investigate these improve-

ments to the method in depth. Finally, the proposed registra-

tion method works well for variations not represented in the

FRGC v2 data, like large variation in pose, occlusions by

caps or hats, glasses and hands. In some other datasets like

the 3DFace dataset and the Bosphorus dataset, these varia-

tion are present. In future research we intend to further in-

vestigate 3D face recognition for large variations of pose,

expression and various occlusions. We plan to make the 3D

face registration available as open source software so other

3D face comparison methods can be tested using this regis-

tration.
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