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Fast and Accurate Algorithm for the Short-Pulse
Electromagnetic Scattering From Conducting

Circular Plates Buried Inside a Lossy
Dispersive Half-Space

Vicente Losada, Rafael R. Boix, Member, IEEE, and Francisco Medina, Senior Member, IEEE

Abstract—The method of moments in the Hankel transform do-
main is applied to the determination of the fields scattered by a
conducting circular plate buried in a lossy dispersive half-space
when the plate is illuminated by a plane wave. The scattered fields
obtained in the frequency domain are used to model the time-do-
main short-pulse scattering via the inverse fast Fourier transform.
The authors show that the choice of adequate basis functions in the
approximation of the current density induced on the plate makes
it possible to obtain very accurate results for the scattered fields
while using low computer memory requirements and short CPU
times. This implies that the algorithm developed for the particular
problem treated in this paper provides a good benchmark for the
validation of any other numerical algorithms dealing with the anal-
ysis of the scattering from buried conducting objects with more
complex geometry.

Index Terms—Buried objects, electromagnetic (EM) scattering,
fast algorithm, method of moments.

I. INTRODUCTION

GROUND-PENETRATING radar (GPR) using electro-
magnetic waves is an important tool for the detection

and identification of buried objects with military applications
[detection of mines or unexploded ordnance (UXO)] as well as
civilian applications (detection of conduits) [1]–[3]. In relation
to this topic, in the last few years many researchers have been
working in the development ofnumerical algorithms for theanal-
ysis of the electromagnetic scattering by buried conducting and
dielectric objects both in the frequency domain [3]–[8] and in the
time domain [9]–[15]. The scattering by buried objects has been
studied by different numerical methods such as the finite element
method (FEM) [3], finite differences in time domain (FDTD) [9],
[14], the method of moments (MoM) [4]–[7], [10]–[13], [15],
and the conjugate gradient method combined with fast Fourier
transform (CG-FFT) [8]. Among all these numerical methods,
the MoM is the method most frequently used.

In the particular case of the scattering by buried planar con-
ducting objects, little work has been carried out as mentioned
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in [15]. As far as the authors know, all the results published in
the literature refer to buried planar conducting objects of rect-
angular geometry [4]–[8], [15]. In this paper, the authors apply
the MoM in the frequency domain to the analysis of the scat-
tering by a circular conducting plate buried in a lossy disper-
sive half-space. Also, the results obtained in the frequency do-
main are used for modeling the time-domain short-pulse scat-
tering from the circular plate by means of the inverse FFT as in
[10]–[13] and [15]. In the study carried out, the revolution axis
of the circular plate is assumed to be normal to the air–ground
interface (i.e., the plate is treated as a body of revolution (BOR)
in the sense cited in [11] and [12]), which makes it possible to
compute the entries of the MoM matrix in the Hankel transform
domain (HTD) as in [16]. Special home-made basis functions
are used for approximating the current density on the plate so
that the basis functions provide a quick convergence of the MoM
with respect to the number of basis functions. Also, asymptotic
extraction techniques are used for the fast evaluation of the in-
finite integrals arising from the application of the MoM in the
HTD [16]. As a result of these two latter facts, the algorithm de-
veloped for the analysis of the scattering of buried circular con-
ducting plates in the frequency and time domains turns out to be
a very accurate and fast tool. The results obtained with this tool
can be used as a reliable benchmark for the validation of other
numerical algorithms devoted to the analysis of the scattering
from buried conducting objects.

The remainder of the text is organized as follows. In Section II
of the paper, the authors describe the application of the MoM
in the HTD to the determination of the fields scattered by the
buried circular plate under plane wave illumination, and the sub-
sequent use of the results obtained for computing the time-do-
main short-pulse scattering. In Section III, the validity of the al-
gorithmdeveloped ischecked bycomparingour resultswithpub-
lished results for the far fields scattered by a circular plate in free
space [17], [18]. Good agreement is found among the two sets
of results. Also, in Section III, original results are presented for
the fields scattered by a circular plate buried in a dispersive lossy
half-space both in the frequency domain and in the time domain.

II. PROBLEM GEOMETRY AND NUMERICAL PROCEDURE

Fig. 1 shows the side view of a circular conducting plate of ra-
dius buried in a lossy dispersive half-space. The circular plate
is assumed to be a perfect electric conductor (PEC) of negli-
gible thickness, and the revolution axis of the plate is taken to
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Fig. 1. Side view of a circular conducting plate buried in a lossy dispersive
half-space. The circular plate is illuminated by either a time-harmonic plane
wave or a short-pulse plane wave. The direction of propagation of the plane
waves makes an angle� with thez axis.P (r ; � ; � ) is the point chosen for
the observation of the scattered fields.

be normal to the interface between the air and the lossy medium
(i.e., the circular plate is assumed to be a BOR in the sense of
[11]). The lossy half-space is assumed to be made of a nonmag-
netic material ( ) with frequency-dependent permittivity

and conductivity .

A. MoM in the HTD for the Computation of the Scattered
Fields in the Frequency Domain

Consider a time-harmonic TEM plane wave traveling through
the air upper half-space of Fig. 1 with direction of propaga-
tion characterized by the unit vector

. When this plane wave impinges on the
interface between the air and the lossy medium, a reflected wave
arises in the air half-space, a damped transmitted wave arises
in the lossy half-space, and finally, a scattered wave arises in
both half-spaces owing to the current induced in the circular
conducting plate by the transmitted wave. The electromagnetic
fields related to all these waves will be assumed to have a time
dependence of the type , which will be suppressed all along
this subsection. Let be the electric field gener-
ated in the two half-spaces of Fig. 1 by the incident plane wave
when the circular plate is absent. In the presence of the circular
plate, the total electric field generated by the incident plane will
be the sum of and the scattered electric field. If
we force that the tangential component of this total electric field
on the circular plate is zero, we obtain an electric field integral
equation (EFIE) for the induced current on the plate, .
This EFIE can be written as shown at the bottom of the page
where is a 2 2 matrix that stands
for the transverse (to) dyadic Green’s function (see [19, eq.
(10)]) of the two half-spaces medium of Fig. 1. The vector func-

tion appearing in (1) can be explicitly
written in terms of and as

(2)

where , and the quantities ( ) can
be obtained in closed form after a trivial calculation.

In order to solve the EFIE of (1), in the current paper the au-
thors have expressed the unknown current density on the circular
plate in cylindrical coordinates as a Fourier series of
the cylindrical coordinate (see [11, eq. (15)])

(3)

Then, the vector functions ( )
of (3) [which appear in the modal decomposition of ]
have been approximated as linear combinations of known basis
functions ( ; ) as

(4)

With a view to obtaining the unknown coefficients
( ; ), (3) and (4) have
been introduced in (1), and the Galerkin’s version of the MoM
has been applied to the resulting expression. The final product
of these operations has turned out to be a system of infinite
linear equations for (in practice, this system of equa-
tions has a finite number of unknowns since a finite number
of terms can only be retained in the series of (3) in the nu-
merical computations). Once Galerkin’s method has been ap-
plied to the EFIE of (1), the entries of Galerkin’s matrix have
been expressed as double infinite integrals in the two-dimen-
sional (2-D) Fourier transform domain (2-D–FT) by means of
Parseval’s theorem. This step is very convenient and is based
on the fact that whereas the transverse dyadic Green’s function
of (1) cannot be obtained in closed
form in the spatial domain, its 2-D–FT (see [19, eq. (11)]) can
be obtained in a straightforward way [19]. After expressing the
entries of Galerkin’s matrix in the 2-D–FT domain, a further
step has been to introduce polar spectral variables in the deter-
mination of these entries (as in [16]) so as to take advantage of
the revolution symmetry of the structure of Fig. 1 around the
axis. This latter step has made it possible to express the entries of
Galerkin’s matrix as single infinite integrals in the Hankel trans-
form domain (HTD) [16]. As a result of all the aforementioned
operations, the original system of infinite linear equations for
the unknowns ( )
has been transformed into a set of decoupled finite systems of
linear equations in such a way that all the unknowns sharing the

(1)
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same value of the Fourier mode integerin (4) only appear in
one system of equations (just as in [11, eq. (19)]). The resulting
system of equations for theth Fourier mode can be written as

(5)

where the expression of the coefficients and in
the HTD is given by (6), shown at the bottom of the page, and
by

(7)

The 2 2 matrix of (6) is
the transverse dyadic Green’s function in the HTD defined in
[16, eq. (14)] (source and field points at the plane of the circular
plate). This matrix can be obtained in closed form for the par-
ticular case of the two half-spaces medium of Fig. 1 as shown
in the Appendix . Concerning the vector functions in the HTD

( ) appearing
in (6) and (7), these functions can be obtained in terms of the
Hankel transforms of the basis functions of (4) as

(8)

The infinite integrals of (6) have to be computed along an
integration path located in the first quadrant of the com-
plex plane above the two branch points and the poles of

[16], [20]. It should be pointed
out that the method used in this paper for studying the scattering
by the circular plate of Fig. 1 can be easily extended to deal
with the scattering of a circular plate embedded in a multilay-
ered lossy medium of the type cited in [12] and [20]. In the latter
case, the study just requires the use of (6) in the expression of

that is valid for a multilayered
medium, which can be obtained by means of a recurrent algo-
rithm based on the equivalent boundary method [16], [21].

Once the unknown coefficients are determined for a
certain choice of the basis functions of (4), it is possible
to compute the scattered electric field. In particular, the appli-
cation of the stationary phase method (see [22, pp. 164–169])
makes it possible to obtain an expression for the far-zone electric
field scattered by the circular plate of Fig. 1 in the air half-space

. This expression is given by (9),
shown at the bottom of the page, where the functions in the HTD

and can be obtained as

(10)

The Appendix describes how to obtain
, which stands for the transverse dyadic Green’s function

in the HTD when the source point is at the plane of the circular
plate of Fig. 1 and the field point is at the interface between the
air and the lossy medium.

If we establish an observation direction in the air half-space
of Fig. 1 characterized by the unit vector

( ), the different components
of the bistatic radar cross section (RCS) matrix of the buried
circular plate can be computed in terms of

(11)

where stands for the component of the scattered far
field ( ), and stands for the magnitude of the electric
field of an incident plane wave polarized in thedirection (

).
Although some GPR systems work in the far zone of the tar-

gets [1], [2], some others measure the scattered fields at the

(6)

(9)
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air–ground interface [11]. This indicates that it is not only in-
teresting to compute the fields scattered by the circular plate
of Fig. 1 in the far zone but also in the zone of the air half-
space closest to the buried plate. Since the scattered electric
field in this latter zone cannot be obtained by means of (9), it
is necessary to develop expressions for the scattered electric
field which are valid at any point of the air half-space. These
expressions can be obtained in cylindrical coordinates in the
HTD, as in (12)–(14), shown at the bottom of the page, where

and have been defined in (10).
Concerning the choice of the basis functions of (4),

( ; ), we have taken into
account that the scattering response of a buried target is strongly
related to its natural resonances [15]. Bearing in mind this idea,
the basis functions have been chosen to be very similar to those
used in the approximation of the current density on a circular
microstrip patch while studying the resonant modes of the patch
[16]. The following basis functions are used in this paper:

(15)

(16)

(17)

(18)

The basis functions of (15)–(18) have several advantages.
First, they accurately reproduce the expected physical behavior
of the current density around the center ( ) and the edge
( ) of the buried circular plate for each Fourier mode of
(3) [16], which ensures a quick convergence of the scattered
field results with respect to the number of basis functions when

Fig. 2. Incident time-domain short pulse used in the numerical calculations
and its spectrum.

MoM is applied (see Section III for more details). Second, their
Hankel transforms can be obtained in closed form in terms of
spherical Bessel functions (see [16, App. B]), and this makes
very efficient the numerical implementation of Galerkin’s
method in the HTD. And finally, these basis functions lead to
infinite integrals of the type shown in (8) which are amenable
to asymptotic analytical integration techniques (see [16, Sec.
IV and App. C]), and these integration techniques introduce
important CPU time savings in the numerical computation of
the aforementioned infinite integrals.

B. Computation of the Scattered Fields in the Time Domain

In order to perform the scattering analysis in the time do-
main, an ultrawideband short-pulse plane wave with direction
of propagation characterized by the unit vectoris assumed to
impinge on the interface between the air and the lossy medium.
The time dependence of the short pulse and its spectrum are
shown in Fig. 2. The spectrum contains frequencies up to ap-
proximately 3 GHz (center frequency is around 1 GHz), and its
mathematical expression is given by

(19)

where 1.2 ns and 0.27 ns. Once the scattered fields
have been computed in the frequency domain, the time-domain
scattered fields can be obtained via inverse Fourier transform.

(12)

(13)

(14)



992 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 5, MAY 2003

Fig. 3. Monostatic RCS components� and� of a conducting circular
plate in free space (a = 100 mm) versus frequency. Our MoM results (solid
lines) are compared with the results obtained by means of the low-frequency
formulae of [17] (dashed lines).

In particular, the time-domain far-zone scattered electric field
can be obtained in terms of its frequency domain

equivalent of (9), , as

(20)

Expressions similar to (20) can be derived for the determina-
tion of the components of the time-domain near-zone scattered
electric field in terms of their frequency domain equivalents of
(12)–(14).

The time-domain scattered field results appearing in Sec-
tion III of the current paper have been generated by means of
the FFT algorithm, and 1024 frequency points have always
been used as in [10]. Also, once the observation point of
spherical coordinates has been fixed (see Fig. 1),
in the results of Section III the time origin has been deliberately
shifted and chosen to be the instant at which the peak of the
incident short pulse passes through the point of spherical
coordinates ( ).

III. N UMERICAL RESULTS

In order to check the validity of the algorithm described in
Section II, in Figs. 3 and 4 our numerical results for the RCS of
a perfectly conducting circular plate in free space are compared
with published results obtained via application of the T-matrix
method [17], [18]. In Fig. 3, our results are compared with those
arising from the low-frequency closed-form expressions of the
scattered far-fields derived in [17, eqs. (4.18.a) and (4.18.b)] by
means of the T-matrix method. These low-frequency expres-
sions contain the exact first three terms in the power-series ex-
pansions of the scattered far-fields in . Note that our results
match those provided by the low-frequency expressions of [17]
up to 0.5 GHz (i.e., up to ) for incident waves with both
parallel and perpendicular polarizations. In Fig. 4(a) and (b), our
results for the RCS are compared with the T-matrix results pub-
lished in [18, Figs. 7.b and 10.b]. Despite the fact that in this
latter case , the agreement between our set of results

Fig. 4. Bistatic RCS components (a)� and (b)� of a conducting circular
plate in free space (a = 100 mm,f = 2 GHz,� = 0 ,� = 180 ) versus the
observation angle� . Our MoM results (solid lines) are compared with results
obtained by means of the T-matrix method [18] (�).

Fig. 5. Complex relative permittivities� � j� of wet soil (with about 20%
water content) reported in [14] (solid lines) and Puerto Rico clay (with 10%
water content) reported in [23] (dashed lines). The relative permittivity of the
wet soil is modeled by means of the Debye formula [14] (� = 15, � = 5,
� = 0.05 S=m, � = 9 � 10 s), and that of Puerto Rico clay is derived from
measurements published in [23].

and the set of T-matrix results of [18] is still excellent for the
two types of polarizations studied.

In Fig. 5, the authors plot the real and imaginary parts of
the complex relative permittivity of the two lossy dispersive
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Fig. 6. Relative error in the monostatic RCS component� of a conducting
circular plate buried in Puerto Rico clay (see Fig. 5) versus the number of basis
functions used in (4) (a = 100 mm,h = 100 mm). Normal incidence is
considered (� = � = 0 ). The errors in the values of� (2M + 1) were
computed with respect to� (2M + 1 = 11) whenf = 1 GHz, and with
respect to� (2M + 1 = 15) whenf = 3 GHz.

materials used throughout this section for occupying the lower
half-space of Fig. 1. The first material is wet soil (with about
20% water content) for which the frequency-dependent relative
permittivity and conductivity are modeled via the Debye for-
mula as shown in [14, eqs. (1) and (2) and Table 1]. The second
material is Puerto Rico clay (with 10% water content) for which
the authors use the measured values of the relative permittivity
and conductivity that are published in [23] (as in [10]–[12] and
[20]). Note that both the relative permittivity and the conduc-
tivity of the Debye wet soil are roughly three times larger than
those of Puerto Rico clay.

In Fig. 6, the relative error made in the computation of the
RCS of a circular plate embedded in Puerto Rico clay (see
Fig. 5) is plotted as a function of the number of basis functions
used in the approximation of the current density. The incident
plane wave impinges normally on the air–soil interface (i.e.,

0 in Fig. 1), and it can be proved that for this particular
case (normal incidence), only the Fourier modes and

take part in the expansion (3) of the induced current
density. That means that the number of Fig. 6 strictly
refers to the basis functions of (17) and (18) for .
Despite of the fact that convergence in the values of is
reached in Fig. 6 for both 1GHz and 3 GHz, whereas
convergence is nearly exponential when 1 GHz, the
convergence turns oscillatory and requires a larger number of
basis functions when 3 GHz. In fact, whereas seven basis
functions suffice to provide convergence within four significant
figures when 1GHz, an accuracy of four significant figures
is not reached until when 3 GHz. In
order to explain why more basis functions are required in the
approximation of the current density as the frequency increases,
one should think that the dependence of the current density
with the radial cylindrical coordinatebecomes more complex
with increasing frequency. Fig. 7 shows results for the RCS of
a circular plate buried in Puerto Rico clay when the incident

Fig. 7. Relative error in the bistatic RCS component� of a conducting
circular plate buried in Puerto Rico clay versus the total number of Fourier
modes retained in (3) when�m � m � m (a = 100 mm,h =
100 mm). Oblique incidence is considered (� = 66.1 , � = 0 ), and the
observation is carried out in the reflection direction (� = 66.1 , � = 180 ).
The errors in the values of� (2m + 1) were computed with respect to
� (2m + 1 = 13) whenf = 1GHz, and with respect to� (2m +
1 = 21) whenf = 3 GHz.2M + 1 = 9 is used in all cases.

plane wave impinges obliquely on the air–soil interface, which
implies that no Fourier modes can be discardeda priori in the
expansion (3) of the current density. In Fig. 7, the authors plot
the relative error in the RCS values as a function of the total
number of Fourier modes retained in (3), (more
precisely, the Fourier modes retained are those located between

and . Note that convergence with
respect to is faster for lower frequencies. Thus,
whereas nine Fourier modes suffice to achieve convergence
within four significant figures when 1 GHz, 17 Fourier
modes are necessary for providing a similar accuracy when

3 GHz. As it happens with the number of basis functions,
the reason why more Fourier modes are required in (3) as the
frequency increases is that the dependence of the current den-
sity on the azimuthal cylindrical coordinatebecomes more
complex with increasing frequency. This close relation between
the number of Fourier modes retained in (3) and frequency has
been reported in [12]. One of the most important conclusions
that can be drawn from Figs. 6 and 7 is that extremely accurate
results can be obtained for the RCS of the buried circular
plate of Fig. 1 with a few basis functions of the type shown in
(15)–(18). This indicates that the mentioned basis functions are
very appropriate for approximating the surface current density
induced on the circular plate by an incident plane wave.

In Fig. 8, the bistatic RCS of a circular plate buried in Puerto
Rico clay is plotted versus frequency for different plate depths.
The incidence angle has been chosen to be the Brewster angle
of a lossless half-space with relative permittivity equal to that of
Puerto Rico clay at 1.5 GHz. Note that the effect of losses
on the RCS values begins to be important for depths around 300
mm, and especially for frequencies larger than 1 GHz (in fact,
Fig. 8 shows that beyond this frequency, the RCS values for

300 mm quickly decrease far below30 dBsm). Note that
the RCS values of the buried plate show oscillations which are
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Fig. 8. Bistatic RCS component� of a conducting circular plate buried in
Puerto Rico clay (see Fig. 5) for different plate depths (a = 100 mm,� =

66.1 , � = 0 ). Observation is carried out in the reflection direction (� =

66.1 , � = 180 ).

Fig. 9. Monostatic RCS component� of a conducting circular plate buried
in Debye wet soil (see Fig. 5) for different plate depths (a = 100 mm). Normal
incidence is considered (� = � = 0 ).

not present when the plate is placed at the air–soil interface (case
). These oscillations show resonant peaks which period-

ically appear every time the depth roughly increases one-half
wavelength in the soil region, which is in agreement with the
theory exposed in [24]. Fig. 9 shows results for the monostatic
RCS of a circular plate buried in Debye wet soil (see Fig. 5)
under normal incidence conditions. If Figs. 8 and 9 are com-
pared, one observes that the RCS values of a plate placed at the
air–soil interface are of the same order for all frequencies. How-
ever, since Debye wet soil losses are larger than Puerto Rico
clay losses, the RCS values of a circular plate buried in Debye
wet soil tend to be smaller than those of a circular plate buried
in Puerto Rico clay at the same depth, the differences between
the two set of RCS values being more relevant as the depth in-
creases. Note that for plates buried at the same depth, the period
of the RCS oscillations are smaller in Fig. 9 than in Fig. 8, which
is due to the fact that the relative permittivity of Debye wet soil
is larger than that of Puerto Rico clay (and therefore, the wave-
length at the same frequency is smaller).

Figs. 10 and 11 show results for the fields backscattered by a
conducting circular plate in free space when the short pulse of

Fig. 10. Time-domain fields backscattered by a conducting circular plate in
free space (a = 100 mm). Normal incidence is considered (� = � = 0 ),
and the observation point is located a distancer = 10 mm above the circular
plate center. Convergence with respect to the number of basis functions used in
(4) is studied.

Fig. 11. Time-domain fields backscattered by a conducting circular plate in
free space (a = 100 mm). Normal incidence is considered (� = � = 0 ),
and the observation point is located a distancer = 200 mm above the circular
plate center. Convergence with respect to the number of basis functions used in
(4) is studied.

Fig. 2 normally impinges on the plate. Whereas in Fig. 10 the
observation point is chosen to be a distance from the plate center
much smaller than the plate radius, in Fig. 11 the observation
point is chosen to be a distance from the plate center equal to the
plate diameter. Both Figs. 10 and 11 show the convergence of
the scattered fields with respect to the number of basis functions
used in (4). The convergence of the scattered fields is reached in
visual form when only five basis functions are used in the case
of Fig. 10, and when three basis functions are used in the case of
Fig. 11. This indicates that the basis functions of (15)–(18) not
only provide a quick convergence of the results in the frequency
domain (see Figs. 6 and 7) but also in the time domain. Note that
the number of basis functions required to achieve convergence is
larger in Fig. 10 than in Fig. 11. This is attributed to the fact that
the accurate computation of the scattered fields requires a more
and more accurate determination of the induced current density
as we move closer to the plate surface. The shape of the scattered
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Fig. 12. Time-domain fields backscattered by a conducting circular plate
buried in Debye wet soil (a = 100 mm,h = 150 mm). Normal incidence is
considered (� = � = 0 ), and the observation point is located at the air–soil
interface above the circular plate center (r = 0).

Fig. 13. Time-domain fields scattered by a conducting circular plate buried in
Puerto Rico clay (a = 100 mm,h = 250 mm). Oblique incidence is considered
(� = 66.1 , � = 0 ), and the observation point is assumed to be placed in
the air region far–zone along the reflection direction (r = 100 m,� = 66.1 ,
� = 180 ). The incident pulse is polarized along the�̂̂�̂� direction.

pulse of Fig. 10 is basically that of the pulse of Fig. 2 with the
sign changed, which indicates that the circular plate roughly
behaves as an infinite conducting plane at the observation point
of Fig. 10. However, the shape of the scattered pulse of Fig. 11
strongly differs from the shape of the pulse of Fig. 2, which
shows that the effect of the finite size of the plate on the scattered
pulse is noticeable at the observation point of Fig. 11.

Fig. 12 considers short-pulse scattering from a conducting
circular plate buried in Debye wet soil. The observation point
is assumed to be placed at the air–soil interface above the center
of the circular plate. The scattered fields show a first return from
the circular plate centered around 4 ns, which is roughly the time
that the short pulse takes to go from the observation point to
the plate and come back. Also, there is a weaker second return
around 8 ns and a much weaker third return around 12 ns (no-
ticeable in the detail of Fig. 12), which are attributed to rever-
berations between the air–soil interface and the circular plate.
Note that the shape of the first return closely resembles that of
the scattered pulse of Fig. 11. Also, the shape of the second re-

turn is similar to that of the first return with the sign changed. In
Fig. 13, results are presented for the short-pulse scattering from
a conducting circular plate buried in Puerto Rico clay. Oblique
incidence is assumed in this case. Whereas the scattered fields
of Figs. 10–12 have been obtained in terms of the time-domain
version of the exact expressions (12) and (13), in Fig. 13 the
time-domain scattered fields have been computed in the far zone
via the asymptotic expressions (9) and (20). In this latter figure,
there is a first return from the circular plate around 670.5 ns,
which is roughly the time that the pulse of Fig. 2 takes to go
from the point of spherical coordinates ( ) to the cir-
cular plate plus the time that the scattered pulse takes to go from
the circular plate to the observation point. There is also a much
weaker second return around 674 ns, which corresponds to an
oblique reverberation between the air–soil interface and the cir-
cular plate.

It should be pointed out that the CPU time required to ob-
tain the curve of Fig. 12 was roughly 4 min on a 300-MHz PC
(with the code written in Fortran 77), and the CPU time required
for the curve of Fig. 13 was roughly 7 min. These CPU times
could have been considerably diminished if the elements of the
MoM matrix had been interpolated as a function of frequency
as commented in [10], but interpolation was not carried out. The
authors of [11] and [12] said that they needed hours of CPU time
(in personal computers similar to that employed by the authors
of the current paper) for the computation of the time-domain
fields scattered by conducting bodies of revolution, despite the
fact they interpolated the MoM matrix. This shows that the algo-
rithm described in Section II for the particular problem solved
in this paper is not only accurate (as demonstrated in Figs. 6, 7,
10, and 11) but also extremely fast by comparison with previ-
ously developed algorithms for the study of related problems.

IV. CONCLUSION

The MoM in the HTD has been applied to the analysis of
the electromagnetic scattering from a conducting circular plate
buried in a lossy dispersive half-space. The results obtained in
the frequency domain have been used for modeling the time-do-
main short-pulse scattering from the circular plate by means of
the inverse FFT. The use of adequate basis functions in the ap-
proximation of the current density on the plate has made it pos-
sible to develop an algorithm which provides very accurate re-
sults for the scattered fields while using low computer memory
requirements and short CPU times. This algorithm can be used
as a reliable benchmark for the validation of other numerical al-
gorithms devoted to the analysis of the scattering from buried
conducting objects. The algorithm has been checked by com-
paring our results with published results for the RCS of circular
plates in free space. Good agreement has been found between
the two sets of results. Some original results have been presented
for the RCS of circular plates buried in realistic lossy dispersive
soils. These RCS results tend to oscillate with increasing fre-
quency, and quickly decrease as the plates depth increases. Also,
some new results have been presented for the short-pulse scat-
tering from buried circular plates. These results clearly show the
first echo from the circular plate and subsequent reverberations
between the air–soil interface and the circular plate.



996 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 5, MAY 2003

APPENDIX

In order to obtain the expressions of the two matrices

[see (6)] and

[see (10)] for the two half-spaces medium of Fig. 1, let us define

first the three matrices , , and given by

(21)

(22)

(23)

where

(24)

(25)

and

(26)

(27)

Then, and

can be obtained in terms of, , and as

(28)

(29)
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