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Abstract: The goal of background reconstruction is to recover the background image of a scene from a
sequence of frames showing this scene cluttered by various moving objects. This task is fundamental
in image analysis, and is generally the first step before more advanced processing, but difficult
because there is no formal definition of what should be considered as background or foreground and
the results may be severely impacted by various challenges such as illumination changes, intermittent
object motions, highly cluttered scenes, etc. We propose in this paper a new iterative algorithm for
background reconstruction, where the current estimate of the background is used to guess which
image pixels are background pixels and a new background estimation is performed using those
pixels only. We then show that the proposed algorithm, which uses stochastic gradient descent for
improved regularization, is more accurate than the state of the art on the challenging SBMnet dataset,
especially for short videos with low frame rates, and is also fast, reaching an average of 52 fps on this
dataset when parameterized for maximal accuracy using acceleration with a graphics processing unit
(GPU) and a Python implementation.

Keywords: background reconstruction; background initialization; background generation; motion
detection; background subtraction; scene parsing

1. Introduction

We consider in this paper the task of static background reconstruction: starting from
a sequence of images X = X1, ..., XN of a scene showing moving objects, for example
cars, bikes or pedestrians, the goal is to recover the image of the background of this scene,
without any of the moving objects. This task is fundamental in image analysis: The moving
objects appearing in the scene may be considered as a nuisance, and background reconstruc-
tion allows to remove them completely and focus on the analysis of the background, for
example to localize or map the scene. More frequently, for example for video surveillance
or traffic monitoring, the moving objects are the main object of interest and the background
itself is considered as a nuisance, so that background reconstruction is a first step which
can be used to extract and analyze the moving objects of the scene. The task of background
reconstruction should not be confused with the task of background modeling that involves
building a statistical model of the background images whereas the task of background
reconstruction requires to predict a unique background image.

It is often assumed that all the images X1, ..., XN share the same background, which is
then called a static background. In this case, the output of the algorithm is composed of
only one background image X̂. It is however also possible that the backgrounds are slightly
different in each image, for example if the illumination conditions change or if the camera
is moving. In this situation, we expect a background reconstruction algorithm to output
a sequence of backgrounds X̂1, ..., X̂N and we say that the background reconstruction is
dynamic. In this paper, we consider the problem of static background reconstruction.

This problem is a difficult because there is no formal definition of what should be
considered as background or foreground. Moving trees, fountains and moving shadows are
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examples of instances that are usually considered as belonging to the background although
they show moving features. Other challenges such as illumination changes or the presence
of objects staying still for a short time (a problem called intermittent motion) may severely
impact the quality of a background reconstruction model.

One should distinguish between online methods, where the length of the dataset is
unknown and the background reconstruction algorithm has to update the background
model in real-time and batch methods, where the algorithm is provided with a fixed dataset.
The method proposed in this paper is a batch method.

The main contribution of this paper are the followings:

• We implement a new consistency criterion for background estimation: The back-
ground estimate produced by a background estimation method should not change
if we perform the background estimation using only pixels that are considered as
background pixels with regards to this background estimate.

• We then show that this consistency criterion can be described as an optimization
criterion and that that the associated optimization problem can be efficiently solved
using stochastic gradient descent.

The paper is organized as follows: In Section 2, we review related work in static
background reconstruction. In Section 3, we describe the proposed algorithm. Experimental
results are then provided in Section 4.

2. Related Work

Temporal median filtering (TMF) [1] simply computes the background color for a
pixel p as the median of the colors of this pixel on all the images X1, . . . , XN . Despite its
simplicity, this algorithm and its variant temporal median filter with gaussian filtering
(TMFG) [2] perform very well on several scene categories.

The current state-of-the-art models for unsupervised fixed background reconstruction
are the Superpixel motion detection algorithm (SPMD) [3] and LaBGen-OF [4]. Both of
these models, as well as the frame selection method and efficient background estimation
procedure (FSBE) [5], implement the idea that the regions of the input frames showing
foreground objects should not be considered to compute the background.

SPMD first selects the longest sequence with stable illumination, then uses superpixel
segmentation [6], and removes all superpixels with contain at least one moving pixel using
a frame difference method to detect moving pixels. The various pixel values associated with
one pixel position are then clustered, and the median value of the best cluster is selected to
produce the background value. Removing superpixels associated with moving pixels for
background initialization is also developed in [7].

LaBGen and LaBGen-P [8,9] assume that a background/foreground segmentation
algorithm is available. For a given pixel or spatial patch, these models select the frames
showing the lowest number of foreground pixels, and then perform a pixel-wise median
filtering. LaBGen-OF is a variant which uses an optical flow algorithm [4]. LaBGen-
semantic is another variant with uses a supervised semantic segmentation model [10].
This model has also been adapted in [11] to detect illumination changes and use only a
subsequence with stable illumination conditions.

The FSBE algorithm (frame selection and background estimation) [5] assumes that
an optical flow algorithm is available. It first selects a sequence of frames where the
illumination conditions do not change too much. Using the optical flow algorithm, it
classifies as background all pixels which have an optical flow magnitude below some
threshold and corrects this classification if it detects high dynamic motion or foreground
intermittent motion in the sequence. It then takes the pixel-wise average of the selected
background pixels.

Instead of only removing pixels or patches which show moving objects before per-
forming temporal median filtering, some models [12,13] try to select for each pixel only one
patch from the various frames, which is considered to be the best candidate to represent
the background, so that temporal median filtering is not needed. Photomontage [14] builds
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the background as a seamless montage composed of patches extracted from the images
X1, ..., XN so that the likelihood of the color at each pixel is maximum with respect to the
probability distribution function formed from the color histogram of all pixels in the span.

Some models try to benefit from the fact that if the content of the background is known
in some part of the image, it is easier to distinguish between background and foreground
objects in adjacent parts of the image, using a spatial or temporal consistency criterion.
The neighborhood exploration based background initialization (NExBI) algorithm [15]
divides the frame in blocks, and perform a temporal clustering for each block location. A
preliminary partial background model is then created for the blocks that remain stable
during all the sequence, i.e., where all the image patches associated with this block form
only one cluster, and then iteratively extended to the whole image as a puzzle game by
enforcing consistency between candidate background blocks and the partial background
model. Other iterative block completion models have been proposed in [16–21].

Another approach which has been investigated for background reconstruction is to
consider the sequence X = X1, . . . , Xn as a 3D tensor or a spatiotemporal matrix and
to decompose it as the sum of a low-rank part, which is assumed to be representative
of the background, and a sparse part, which should be representative of the foreground
objects. For example, the Motion-assisted spatiotemporal clustering of low-rank algorithm
(MSCL) [22], which is a dynamic background reconstruction model using robust principal
component analysis (RPCA) [23], is able to obtain better results than state of the art fixed
background reconstruction models on the scene background modeling (SBMnet) dataset
using this method, although it is not directly comparable to those models because it
requires some human supervision to select the final frame X̂ from the various predicted
backgrounds X̂1, . . . , X̂n associated with the frames X1, . . . , Xn. Another linear method
proposed to extract a low rank background is to apply singular value decomposition
(SVD) to spatiotemporal slices of the tensor X , consider that the first principal subspace
is associated with the background, and use the other components to detect foreground
objects, which can then be excluded from the background computation [24,25].

The background estimation by weightless neural network (BEWIS) [26] and self-
organizing background subtraction (SOBS) algorithms [27–29] involve weightless neural
networks, which are used as containers to build a statistical model of the background.

The current top performing algorithms for background reconstruction do not use deep
learning techniques, but several papers have proposed to use them for fixed background
reconstruction:

Fully-concatenated Flownet (FC-Flownet) [30] is a convolutional network with an
architecture similar to a U-net which is used to predict a background from a set of 20 color
images in a single inference step. Due to memory restrictions, the images are cut in
superposed 64 × 64 patches, and the 20 patches associated with one location are given as
input to the convolutional network. The output patches are then aggregated to build the
background. The network is trained end-to-end using samples and ground truths coming
from 54 different sequences.

Background modeling Unet (BM-Unet) [31] is a background reconstruction model
which also uses a U-net network but is trained without any supervision or ground-truth
data and can perform both fixed and dynamic background reconstruction. For fixed
background reconstruction, it is trained with pairs of random images sampled from one
frame sequence. Using the first image, the U-net network predicts a probability distribution
over the possible 256 values of each pixel of the output image, and the second image is
used as a target.

Deep context prediction (DCP) [32] considers the background reconstruction problem
as an inpainting problem: Using an optical flow algorithm, it first computes the motion
mask associated with the current frame and removes from this frame the pixels associated
with this motion mask. It then uses a multi-scale neural path synthesis network [33] to fill
the holes in the image and obtain a clean background. Other data reconstruction methods
using classical matrix completion or exemplar-based approaches are also possible [34–36].
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We refer to available surveys [37,38] for a more detailed description of related work.

3. Proposed Algorithm for Background Reconstruction
3.1. Motivation

We have noted in the review of previous work the good results of temporal median
filtering, despite its simplicity, and observe that the two best unsupervised algorithms
for background reconstruction, SPMD and LabGen-OF, also use some form of temporal
median filtering. One can intuitively understand that background reconstruction involves
performing some form of averaging of the input frames, and that computing the median
will give better results than computing the average of the frames because the median is
more robust to outliers.

We note however that using median filtering on color images may lead to inconsisten-
cies. Let us for example consider RGB images showing a red background with large green
and blue foreground objects. Assume that in the sequence considered, each red background
pixel is masked by a green object during 26% of sequence duration and by a blue object
during another 26% of the sequence duration. The red color channel of any pixel will then
be equal to zero during 52% of the sequence, and the blue and green channels are also equal
to zero during 74% of the sequence. As a consequence, the result of median filtering on
such a sequence is a uniform black image, which is clearly not satisfactory.

One can think that a better method to select the background color of an image from a
frame sequence would be first to guess in each frame which pixels are background pixels
and then to consider only those pixels for temporal median filtering. However, to be
able to guess which pixels are background pixels, we need to have some estimate of the
background. The main idea introduced in this paper is that we can successfully build an
iterative optimization process for background reconstruction, using the current estimate of
the background to guess which pixels are background pixels and then refining the estimate
of the background by performing temporal median filtering on those pixels only.

3.2. Bootstrap Weights

We observe that temporal median filtering can be described as a minimization problem
associated with a L1 error loss. More precisely, for a sequence of color images X1, ..., XN of
size h× w, noting xn,c,i,j the value (normalized in the range [0, 1]) of the pixel associated
with the image Xn and the color channel c at position (i, j) with 1 ≤ i ≤ h and 1 ≤ j ≤ w,
the L1 error loss associated with some background reconstruction X̂ can be described as

L1(X̂, (Xn)1≤n≤N) =
1
N

N

∑
n=1

L1(X̂, Xn) (1)

with

L1(X̂, Xn) =
1

hw

h,w

∑
i=1,j=1

3

∑
c=1
|x̂c,i,j − xn,c,i,j|, (2)

and it is immediate that if we take each x̂c,i,j to be a median of the sequence (xn,c,i,j)1≤n≤N , then
we obtain a minimum of this loss function, considering that the derivative of |x̂c,i,j − xn,c,i,j|
with respect to x̂c,i,j is equal to 1 if x̂c,i,j − xn,c,i,j > 0 and −1 if x̂c,i,j − xn,c,i,j < 0 .

We bootstrap the current estimate of the background to smoothly restrict this loss
function to background pixels only. We then give a low weight, called a bootstrap weight,
to the pixel-wise error terms ∑3

c=1|x̂c,i,j − xn,c,i,j| associated with foreground pixels in the
loss function. These bootstrap weights are computed in the following way (Figure 1):

Let us note ln,i,j the sum of the L1 errors for each color at the pixel (i, j) between the
predicted image X̂ and the input image Xn for all the color channels:

ln,i,j =
3

∑
c=1
|x̂c,i,j − xn,c,i,j| (3)
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If at least one of the color channels give a high error, then ln,i,j is large and we will
consider that the pixel (i, j) of the image Xn is a foreground pixel. We then build a soft
foreground mask mn ∈ [0, 1]h×w for the image Xn using the formula

mn,i,j = tanh
( ln,i,j

τ1

)
(4)

where τ1 is some positive hyperparameter, which can be considered as a soft threshold. As
a consequence, mn,i,j is close to zero for values of ln,i,j close to zero (background pixels),
and close to 1 for values of ln,i,j which are significantly larger than τ1 (foreground pixels).

This mask will however be noisy. We then compute a spatially smoothed version m̃n,i,j
of this mask by averaging using a square kernel of size (2k + 1)× (2k + 1), with k = bw/rc
(where w is the image width and r is some integer hyperparameter):

m̃n,i,j(X̂, Xn) =
1

(2k + 1)2

l=k,p=k

∑
l=−k,p=−k

mn,i+l,j+p (5)

We then finally define the associated pixel-wise bootstrap weights wbootstrap
n,i,j as

wbootstrap
n,i,j = e−βm̃n,i,j , (6)

where β is some positive hyperparameter, which we call the bootstrap coefficient.
For pixels which are considered to be background pixels (m̃n,i,j ' 0), this weight will be

close to 1 and will not change the pixel-wise loss terms ∑3
c=1|x̂c,i,j − xn,c,i,j| associated with

these pixels. However for pixels which are considered as foreground pixels (m̃n,i,j ' 1), this
weight will have a very low value close to e−β, which means that the associated pixel-wise
loss terms will get a very low importance in the loss function.

Input images Xn , Xn+1

background current
estimate X̂

L1 error ln,i,j , foreground mask mn,i,j smooth mask m̃n,i,j
bootstrap weights

w
bootstrap
n,i,j

optical flow mask µn,i,j
optical flow weights

wOF
n,i,j

weighted L1 error gradient of total
weighted L1 error

×

×

×

global weight w
global
n

backpropagation

Figure 1. Schematic of loss function and gradient computation (Images are normalized in the
range [0,1]).

3.3. Optical Flow Weights

We have seen that background reconstruction algorithms could be improved by using
informations provided by optical flow models to remove parts of an image showing moving
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objects. We use the same approach to improve the loss functions L1. We then define optical
flow weights associated with each pixel xn,i,j which will be close to zero if this pixel appears
to be a moving pixel and has to be removed from the loss function computation. These
weights are computed in the following way (cf Figure 1):

We use an external algorithm (OpenCV implementation of Dense Inverse Search
algorithm [39]) to obtain an estimate of the magnitude φn,i,j of the optical flow associated
with each pixel (i, j) of an image Xn. We chose this algorithm because it is very fast
compared to other available optical flow implementations. We first normalize φn,i,j with
respect to the image width w and then define an optical flow mask µn,i,j using the formula

µn,i,j = min
(

1,
φn,i,j

wτ2

)
, (7)

where the hyperparameter τ2 can also be considered as a threshold. This mask is then equal
to 1 for high values of the optical flow φn,i,j, which suggests that the associated pixels show
a moving object, and it is close to zero if no motion is detected by the optical flow algorithm
at the associated pixel.

The weight associated with this optical flow mask is then defined as

wOF
n,i,j = e−φµn,i,j , (8)

where φ is another positive hyperparameter. This weight will then be equal to 1 if no motion
is detected at the associated pixel, and close to e−φ if a significant motion is detected, which
suggests that the associated pixel is not a background pixel. wOF

n,i,j is, however, set to 1 for
all pixels on short videos (less than ten images), considering that optical flows computed
from sequences with very low frame rates are not reliable.

3.4. Abnormal Image Weights

If the number of images in the dataset is large, we can afford to give a low weight
to images which appear to be abnormal, for example if the illumination conditions are
different on these images compared to the predicted background, or if there are too many
pixel errors on the image. We then first compute the average L1 error l̄n of the image Xn as

l̄n =
1

hw ∑
i,j

ln,i,j (9)

and define a global weight associated with each image Xn as

wglobal
n = e−γl̄n , (10)

where γ is another positive hyperparameter. As a consequence, this weight wglobal
n will

be close to zero if the image Xn is globally very different from the current estimate X̂ of
the background. We use this global weight if the size of the dataset is greater than 10. It
should be noted that this weight is not pixel-specific, as opposed to the bootstrap weights
and optical flow weights, but is assigned to a complete frame.

3.5. Management of Intermittent Motion

Existing benchmarks for background reconstruction require that objects which remain
still for a long time in the sequence be considered as foreground objects if they are moving
during some part of the sequence. This challenge is very difficult and is not addressed
by the previous weights. In order to handle it, we follow Javed et al. [22,40] and remove
from the frames sequence all frames which are not showing any motion. More precisely,
we first compute the maximum µ∗n of the optical flow mask values µn,i,j of the image Xn
as defined in previous section, and remove this image if µ∗n < τ3, where τ3 is another
threshold hyperparameter. The motivation of this suppression is that it appears that images
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containing still foreground objects are often motionless images, so that removing them
improves the robustness of the proposed model against the intermittent motion challenge.
We apply this motionless frame suppression when the number of frames in the sequence is
higher than 10, considering as in previous section, that removing frames when the number
of frames is very low will impact negatively the quality of the results. We note N′ ≤ N the
number of frames after motionless frame suppression.

3.6. Statement of the Optimization Problem

Finally, the loss function is adapted using these weights and becomes the following:

LW(X̂, (Xn)1≤n≤N′) =
1

N′hw

N′ ,h,w

∑
n=1,i=1,j=1

wglobal
n wbootstrap

n,i,j wOF
n,i,j

3

∑
c=1
|x̂c,i,j − xn,c,i,j| (11)

We are then interested to solve the following optimization problem: Considering the
dataset (Xn)1≤n≤N′ , find an image X̂ so that, when the weights wglobal

n and wbootstrap
n,i,j are considered

as constants, the loss function LW(X̂, (Xn)1≤n≤N′) is minimal with respect to X̂.
We can find a solution to this problem by performing an iterative computation of

the weighted median of the images using the various weights defined in the previous
paragraph followed by an update of the weights. We observe, however, that the images
produced using this method are not smooth and that additional regularization is necessary.
We then propose to use stochastic gradient descent on the loss function LW(X̂, (Xn)1≤n≤N′)
using standard deep learning tools. The pixel values x̂c,i,j are then considered as parameters
and optimized using stochastic gradient descent (Figure 2).

input frame sequence after motionless frames suppression

minibatch
(64 images)

average gradient on
minibatch
( cf Fig. 1 )

random initialization background
reconstruction after 1

iteration

background
reconstruction after 20

iterations

background
reconstruction after 21

iterations

final background
reconstruction (3000

iterations)

− −

Figure 2. Overview of the stochastic gradient descent optimization process.

It should be noted that performing a stochastic gradient descent on this loss function
is not equivalent to minimizing it: During the optimization process, the weights wboostrap

n,i,j

and wglobal
n depend on the current estimation of the background and change; we then call

these weights dynamic weights. At each iteration they are, however, considered as fixed so
that we do not compute and use the gradient of the loss function with respect to the value
of these weights.
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4. Evaluation of the Proposed Model

Two public benchmarks are available for the evaluation of fixed background recon-
struction models: the SBMnet dataset [41] and the SBI dataset [42]. We first provide a
quantitative evaluation of the proposed model on those two datasets. We then perform an
ablation study and some computation speed measurements.

4.1. Implementation Details

A desktop computer with an Intel Core i7 7700K@4.2GHz CPU and a Nvidia RTX
2080 TI GPU is used for this experiment.The model is implemented in Python using the
Pytorch framework and is publicly available on the Github platform. We use the Adam
optimizer [43], with learning rate 0.03 and batch size 64, reduced by a factor of 10 when
3/4 of the epochs have been computed. The number of epochs depends on the size of
the dataset and is adjusted so that the total number of optimization iterations is close to
3000, with a minimum of two epochs. In order to accelerate computations, each frame
sequence is fully loaded in the GPU video RAM during the optimization process. A manual
hyperparameter search has been performed using the video sequences of the SBI and SBM
datasets for which a ground truth is available. The hyperparameters have then been set to
the following values: β = 6, φ = 2, γ = 3, r = 75, τ1 = 0.25, τ2 = 255/40000, τ3 = 240/255.
Before starting the optimization, background image pixel color values are initialized with
random numbers sampled from a uniform distribution between 0 and 1. The DIS optical
flow OpenCV implementation is used with the FAST preset mode. In order to obtain a low
gradient when ln,i,j is close to zero, we replace the expression |x̂c,i,j − xn,c,i,j| with a smooth
L1 loss using a threshold equal to 3 (assuming the pixel values are scaled in the range
0–255). When |x̂c,i,j − xn,c,i,j| is lower than 3, we replace it with the quadratic expression
0.5(x̂c,i,j − xn,c,i,j)

2/3, otherwise we replace it with |x̂c,i,j − xn,c,i,j| − 0.5× 3.

4.2. Evaluation on SBMnet dataset

The SBMnet dataset [41] (http://scenebackgroundmodeling.net/, accessed on
20 November 2021) is composed of 79 sequences, which have been selected to cover a
wide range of challenges and are representative of typical indoor and outdoor visual
data captured today in surveillance, smart environment, and video database scenarios.
The dataset includes the following eight categories with associated challenges: basic,
intermittent motion, clutter, jitter, illumination changes, background motion, very long and
very short. Although this dataset is freely available on the SBMnet website, ground truth
images are publicly available for only 18 frame sequences, either on the SBMnet website or
on the SBI dataset website. In order to benchmark a new algorithm, one has to submit the
predicted fixed background images associated with each frame sequence to the website,
which performs the evaluation of the submitted results.

Six criteria are computed to evaluate the accuracy of background reconstruction:

• Average Gray-level Error (AGE);
• Percentage of Error Pixels (pEPs);
• Percentage of Clustered Error Pixels (pCEPs);
• Multi-Scale Structural Similarity Index (MS-SSIM);
• Peak-Signal-to-Noise-Ratio (PSNR);
• Color image Quality Measure (CQM).

We refer to [41] for the full definition of these criteria. A good background recon-
struction should minimize the criteria AGE, pEPs and pCEPs, but maximize the criteria
MS-SSIM, PSNR and CQM. We have computed the 79 background images using the pro-
posed algorithm and uploaded the reconstructed backgrounds to the SBMnet website,
which provided the evaluation results described in Tables 1 and 2.

http://scenebackgroundmodeling.net/


J. Imaging 2022, 8, 9 9 of 16

Table 1. Evaluation results per criteria on the SBMnet 2016 dataset. ↓ indicates lower score is better, ↑
indicates higher score is better. Source: SBMnet website http://pione.dinf.usherbrooke.ca/results/294/
(accessed on 20 November 2021).

Method Average
AGE ↓

Average
pEPs↓

Average
pCPEPs↓

Average
MS-SSIM↑

Average
PSNR↑

Average
CQM↑

BB-SGD (ours) 5.6266 0.0447 0.0147 0.9478 30.4016 31.2420
SPMD [3] 6.0985 0.0487 0.0154 0.9412 29.8439 30.6499
LabGen-OF [4] 6.1897 0.0566 0.0232 0.9412 29.8957 30.7006
FSBE [5] 6.6204 0.0605 0.0217 0.9373 29.3378 30.1777
BEWIS [26] 6.7094 0.0592 0.0266 0.9282 28.7728 29.6342
NExBI [15] 6.7778 0.0671 0.0227 0.9196 27.9944 28.8810
Photomontage [14] 7.1950 0.0686 0.0257 0.9189 28.0113 28.8719
SOBS [28] 7.5183 0.0711 0.0242 0.9160 27.6533 28.5601
Temporal Median Filter [1] 8.2761 0.0984 0.0546 0.9130 27.5364 28.4434

We provide a comparison of the proposed model with models that are fully unsuper-
vised, i.e., which do not use a supervised segmentation model (such as LabGen-semantic)
and do not require any human supervision. The proposed model, named BB-SGD (back-
ground bootstrapping using stochastic gradient descent) obtains a better average score
than all referenced unsupervised models on all criteria as shown in Table 1. Table 2 lists
AGE results per category of the SBMnet dataset. It shows that the proposed models shows
better AGE results than all referenced unsupervised models on 4 categories: basic, clutter,
background motion and very short video, with a 15% accuracy improvement on the very
short video category compared to the best unsupervised model in this category, which
illustrates the efficiency of the bootstrapping mechanism introduced in the proposed model
considering that for these sequences, the optical flow weights and global weights are not
used and no frame is suppressed.

Table 2. Evaluation results for the AGE criterion per category on the SBMnet 2016 dataset. Source:
SBMnet website http://pione.dinf.usherbrooke.ca/results/294/ (accessed on 20 November 2021).

Method Basic Interm. Clutter Jitter Illumin. Backgr. Very Very
Motion Changes Motion Long Short

BB-SGD (ours) 3.7881 4.8898 3.8776 9.5374 4.5227 8.5607 5.6494 4.1872
SPMD [3] 3.8141 4.1840 4.5998 9.8095 4.4750 9.9115 6.0926 5.9017
LabGen-OF [4] 3.8421 4.6433 4.1821 9.2410 8.2200 10.0698 4.2856 5.0338
FSBE [5] 3.8960 5.3438 4.7660 10.3878 5.5089 10.5862 6.9832 5.4912
BEWIS [26] 4.0673 4.7798 10.6714 9.4156 5.9048 9.6776 3.9652 5.1937
Photomontage [14] 4.4856 7.1460 6.8195 10.1272 5.2668 12.0930 6.6446 4.9770
SOBS [28] 4.3598 6.2583 7.0590 10.0232 10.3591 10.7280 6.0638 5.2953
Temporal Median Filter [1] 3.8269 6.8003 12.5316 9.0892 12.2205 9.6479 6.9588 5.1336

4.3. Evaluation on SBI Dataset

The SBI dataset [42] (https://sbmi2015.na.icar.cnr.it/SBIdataset.html, accessed on
20 November 2021) is composed of 14 image sequences. Ground truth backgrounds
are available for all sequences. We use the Matlab tool available on the SBI website for
fair comparison with other models, but do not report the CQM results considering that
other sequences were evaluated with a Matlab tool which included a bug for the CQM
computation, as indicated in the SBI website. We run the proposed model on the SBI dataset
using the same hyperparameters as those used for the SBMnet dataset. The results of this
evaluation are listed in Table 3 and show that the proposed model obtains better results
than all other compared unsupervised models for the evaluation criteria AGE, MS-SSIM
and PSNR, and is ranked second for the criteria pEPs and pCEPs.

http://pione.dinf.usherbrooke.ca/results/294/
http://pione.dinf.usherbrooke.ca/results/294/
https://sbmi2015.na.icar.cnr.it/SBIdataset.html
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Table 3. Evaluation results per criteria on the SBI dataset. ↓ indicates lower score is better, ↑ indicates
higher score is better.

Method Average Average Average Average Average
AGE ↓ pEPs ↓ pCEPs ↓ MS-SSIM ↑ PSNR ↑

BB-SGD (ours) 2.4644 0.0083 0.0058 0.9896 37.6227
LabGen-OF [4] 2.7191 0.0145 0.0106 0.9824 35.9758
SS-SVD [24] 2.7479 0.0345 0.0907 0.9464 31.8116
LabGen [8] 2.9945 0.0139 0.0092 0.9764 35.2028
NExBI [15] 3.0547 0.0077 0.0027 0.9835 35.3078
BEWIS [26] 3.8665 0.0242 0.0142 0.9675 32.0143
Photomontage [14] 5.8238 0.0469 0.0372 0.9334 31.8573
SOBS [28] 3.5023 0.0415 0.0222 0.9765 35.2723
Temporal Median Filter[1] 10.3744 0.1340 0.1055 0.8533 28.0044

4.4. Ablation Study

In order to check the contribution of the various weights described in this paper, we
provide results obtained using truncated versions of the proposed model while keeping the
hyperparameters fixed: Version 0 does not use any weight and does not remove motionless
frames, and is then equivalent to temporal median filtering. Version 1 uses only the
optical flow weights and does not remove motionless frames. Version 2 uses both optical
flow weights and global weights and does not remove motionless frames. Version 3 uses
bootsrap weights, global weights and optical flow weights, but does not remove motionless
frames. The AGE scores obtained by these truncated models on the 18 videos of the SBMnet
dataset for which a ground truth is available and using the evaluation tool available on the
SBMnet website are provided in Table 4. They show that temporal median filtering (v0)
gives the best results for five scenes, confirming that this is a good baseline. Introducing
optical flow weights (v1) improves average AGE scores on scenes of the “clutter” category,
but has no beneficial impact on other categories. Adding global weights (v2) has a positive
impact on the “illumination change” category, which was expected, but also on the “clutter”
category”. Adding bootstrap weights has an impact on the “clutter” category, but also on
the “short video” category. Finally, removing motionless frames, which leads to the full
model, has a positive impact on the “intermittent motion” category, which was expected,
but also on the scene “boulevardJam” of the “clutter” category, which also shows some
intermittent motions.

4.5. Computation Time

We have performed computation times measurements and tested the impact of re-
ducing the number of optimization iterations, while keeping all other parameters frozen,
excluding the learning rate. The results of these experiments are provided in Table 5. The
total computation times necessary to reconstruct the 79 backgrounds from the associated
video sequences of the SBMnet dataset are estimated by performing a sequential compu-
tation for all the videos, so that the computation times indicated in this table are the sum
of the computation times of each of the 79 videos. If we divide the number of frames of
the full dataset (73,355) with the total computation time of the proposed model, which
is 1409 s, we obtain an average of 52 frames per second (fps). Table 5 shows, however,
that the number of optimization iterations can be reduced from 3000 to 250, increasing the
average speed to 187 fps, without major impact on the overall accuracy of the algorithm.
The computation times with such a low number of iterations are mainly associated with
optical flow computations and JPEG images decoding.

Although the proposed model requires a GPU, these computation time measurements
compare very favorably with the processing speeds reported by the authors of other
models. The average computation speed of LabGen-OF is estimated to 5 fps in [4]. The
computation speed of SPMD is estimated in [3] to 1.6 fps for 640 × 480 images and 22.8 fps
for 200 × 144 images using a Intel Core i7 2600@3.4Ghz CPU.
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Table 4. AGE scores obtained using various truncated versions of the algorithm on 18 SBMnet
sequences where a ground truth background is available.

Category Video Truncated Model Full

Version Model
v0 v1 v2 v3

background motion
advertisementBoard 1.61 1.62 1.60 1.34 1.71

basic
511 3.42 3.44 3.43 3.44 3.43
Blurred 1.80 1.69 1.68 1.68 1.61

clutter
Foliage 32.87 5.86 3.62 3.41 3.37
Board 21.37 6.78 7.84 7.37 7.39
People and Foliage 31.36 9.66 3.75 2.54 2.60
boulevardJam 21.37 15.89 19.5 11.0 2.03

illumination change
CameraParameter 11.49 22.19 2.16 2.81 2.95

intermittent motion
busStation 5.31 5.40 5.47 5.67 5.32
Candela_m1.10 4.93 5.09 5.18 5.21 2.81
CaVignal 12.57 12.61 13.58 14.04 2.05
AVSS2007 10.98 10.32 10.25 10.01 8.73

jitter
badminton 2.62 2.00 1.93 1.74 1.84
boulevard 9.61 10.09 10.29 10.51 9.71

very long
BusStopMorning 3.68 3.66 3.64 3.62 3.61

very short
Toscana 8.79 8.80 8.79 3.30 3.30
DynamicBackground 6.96 6.96 6.96 8.20 8.18
CUHK_Square 2.77 2.77 2.77 2.99 2.98

Average AGE by category 8.06 7.53 4.94 4.51 3.75

Table 5. Impact of reducing the number of iterations on average AGE score and computation time.

Number of Iterations 100 250 500 1000 3000
Learning Rate 0.06 0.03 0.03 0.03 0.03

Computation time for 79 videos of the
SBMnet dataset (seconds) 337 391 482 666 1409

Average AGE by category on 18 videos of
the SBMnet dataset listed in Table 4 4.07 3.83 3.80 3.76 3.75

Average AGE on SBI dataset 2.78 2.56 2.53 2.49 2.46

The asymptotic time complexity of the proposed algorithm is O(p2) where p = hw
is the number of pixels of an image. It does not depend on the number of frames of the
input frame sequence since a maximum of 64× 3000 images are sampled from the input
sequence (3000 minibatches of 64 images) and optical flow computations can be restricted
to those images only. The quadratic expression O(p2) is a consequence of Equation (5),
which involves a kernel which has a size proportional to the size of the images for r fixed.

4.6. Image Samples

Figures 3 and 4 show for qualitative evaluation some examples of background recon-
struction for sequences of the SBMnet dataset, with the associated ground-truth when it
is available and a comparison with the results obtained with LabGen-OF and SPMD. The
bottom five rows of Figure 4 show some examples of poor quality reconstructions suffering
from challenging issues such as intermittent motion, headlights and moving trees.
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input example ground truth BB-SGD SPMD LabGen-OF
(if available) (ours)

N/A

N/A

N/A

N/A

Figure 3. Examples of background reconstruction using the proposed model and comparison with
SPMD and LabGen-OF.
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input example ground truth BB-SGD SPMD LabGen-OF
(if available) (ours)

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Figure 4. Examples of background reconstruction. The bottom five rows show examples of low
quality reconstructions.
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4.7. Hyperparameter Tuning

The proposed model involves a significant number of hyperparameters. Although
the default hyperparameters proposed in Section 4 allow us to obtain state-of-the-art per-
formances on existing benchmarks, these hyperparameters may be fine-tuned to improve
results on specific situations or use cases. We provide below some indications on the
influence of the main hyperparameters:

• τ1: the soft threshold used for computing soft foreground mask should be decreased
for frame sequences with very low average illumination.

• τ2: the soft threshold used for computing optical flow masks should be decreased for
video sequences with high frame rates and increased for sequences with low frame
rates, considering that optical flow values are lower for a high frame rate sequences
and higher for a low frame rate sequences.

• Optical flow weight φ: as shown in the ablation study, the use of optical flow weights
is only necessary for highly occluded scenes. More precise results may be obtained by
setting this parameter to lower value if a high level of occlusion is not expected.

• r: the value of r is associated with the expected sizes of the foreground objects: If it is
forecast that the scenes will contain only small foreground objects, this value may be
increased on high definition images for faster training.

• Bootstrap coefficient β: a lower value of β leads to faster training, but decreases the
ability to handle occlusions. A higher value of β may lead to slower or unstable
training and artifacts in the final image.

• Global weight γ: increasing the value of γ may be useful to handle low intensity
illumination changes.

5. Conclusions

We have presented a new algorithm for fixed background reconstruction using stochas-
tic gradient descent which is simple, fast using a GPU and is more accurate than the current
state of the art. This shows that with modern hardware, stochastic gradient descent can be
used efficiently for real-time applications and that the tools and frameworks which have
been recently developed for deep learning and neural networks can also be useful for other
optimization problems with a proper design of the loss function. Further works include
using the same approach to handle the task of dynamic background reconstruction and
change detection.
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