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Abstract. In this paper we present a perception system for agriculture
robotics that enables an unmanned ground vehicle (UGV) equipped with
a multi spectral camera to automatically perform the crop/weed detec-
tion and classification tasks in real-time.
Our approach exploits a pipeline that includes two different convolutional
neural networks (CNNs) applied to the input RGB+near infra-red (NIR)
images. A lightweight CNN is used to perform a fast and robust, pixel-
wise, binary image segmentation, in order to extract the pixels that rep-
resent projections of 3D points that belong to green vegetation. A deeper
CNN is then used to classify the extracted pixels between the crop and
weed classes.
A further important contribution of this work is a novel unsupervised
dataset summarization algorithm that automatically selects from a large
dataset the most informative subsets that better describe the original
one. This enables to streamline and speed-up the manual dataset label-
ing process, otherwise extremely time consuming, while preserving good
classification performances.
Experiments performed on different datasets taken from a real farm robot
confirm the effectiveness of our approach.

Keywords: agriculture robotics, classification, segmentation, convolu-
tional neural networks

1 Introduction

The application of autonomous robotics to precision agriculture is gaining a
great attention in the research community, also thanks to the positive impacts
that it may have in food security, sustainability and reduction of chemical treat-
ments. In this work, we focus on applications that aim to reduce the amount of
herbicides used to control weeds by means of autonomous robots that perform
selective spraying or mechanical removal of accurately detected weeds. The robot
in this case should autonomously detect and distinguish between crop and weeds
inside the field, using only its own perception system.
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Fig. 1: (a) One of the BOSCH Bonirob employed to acquire the datasets used in
the experiments; (b),(c) An example of an RGB+NIR images couple provided
by the multispectral camera mounted on the robot; (d) The output segmented
image obtained using our vegetation detection algorithm: blue pixels represent
projections of 3D points that belong to green vegetation; (e) The results of
the proposed pixel-wise classification algorithm: pixels that belong to crop are
highlighted in violet, pixels that belong to weeds are highlighted in red.

In this work we present a robust and efficient weed identification system
that leverages the effectiveness of convolutional neural networks (CNNs) in both
the detection and classification steps. Our system takes as input 4-channels
RGB+NIR images (e.g., Fig. 1(b),(c)), provided by a multi spectral camera
mounted on a farm robot (e.g., Fig. 1(a)) that autonomously monitors the crop
and can apply selective weed treatments. The weed identification task includes,
before plant classification, a plant detection step. Detection is generally a more
challenging and time consuming task compared with classification, since it may
require an exhaustive search in the whole image, with variable bounding boxes
sizes. In the context of green plants the detection task can be simplified by ex-
ploiting the Normalized Difference Vegetation Index (NDVI) [20], extracted from
the RGB+NIR images: NDVI enables to obtain a simple, fast and pixel-wise seg-
mentation between green vegetation and soil (e.g., [9, 15]). Unfortunately, being
threshold-based, this technique is not robust against illumination changes and
different soil conditions: a careful tuning of the threshold and an outlier removal
process are necessary to get a good segmentation [15]. To overcome these limi-
tations, in this work we propose to combine the NDVI based segmentation with
a trained lightweight CNN (that we call sNet in the following) that takes as
input small patches of the RGB+NIR images. The idea is to use a very conser-
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vative threshold in order to select trough the NDVI most of the true positive
pixels (i.e., pixels that represent vegetation). The CNN is then used to validate
each selected pixel, pruning most of the false positives (e.g., Fig. 1(d)). We will
experimentally show that this hybrid technique outperforms the NDVI based
segmentation, while preserving a good computational speed.
Pixels marked as vegetation in the segmentation step are then processed with a
deeper 3-classes CNN (that we call cNet in the following) in order to recognize
the category (crop, weeds or soil). Despite we are processing only pixels classified
as vegetation in the previous step, we found that including also the class ’soil ’
in the cNet CNN helps to prune at no cost the remaining false positives not
detected by the sNet CNN. In order to meet the real-time constraints required
by our system, i.e. we need the classification results within one second from the
image acquisition time1, we also propose to employ a blob-wise voting scheme,
where blobs are connected regions extracted from the segmentation mask. We
will experimentally show that: (a) our classification stage achieves state-of-the-
art results; (b) the pipeline composed by the two sequential CNNs (sNet + cNet)
obtains similar results if compared with a single cNet, but with a considerable
gain in speed.

In the last part of this work we address a relatively new problem that we
call unsupervised dataset summarization. It is well known that CNNs to be ef-
fective require large manual labeled training datasets [21]. Unfortunately, plant
identification requires a challenging and extremely time consuming per-pixel la-
beling process. The proposed idea is to reduce the size of the dataset before the
manual labeling stage, in order to streamline and speed-up the manual dataset
labeling process while preserving good classification performances. We propose
an algorithm that automatically selects a subset of K images that contain the
most informative features over the N images of the whole dataset, K ≪ N , in
order to summarize in the best possible way the original dataset. The labeling
process will then involve only these K images. Our features based subsets selec-
tion method is different from other max-relevance and min-redundancy feature
selection methods (among others, [18, 25]) since it is unsupervised, i.e. it does
not require the labels as input. We formulate the unsupervised dataset sum-
marization problem as a combinatorial optimization problem, using as reward
a submodular set function inspired by the coverage set functions used in text
document summarization problems [14]. We will show that our dataset selection
algorithm outperforms in all the experiments both the random dataset selection
and the supervised manual selection strategies.

2 Related Work

The problem of plant classification can be considered an instance of the so called
fine-grained visual classification (FGVC) problem, where the purpose is for in-

1 In our setup, one second represents a resonable time constraint in order to enable
the robot to actively remove the weeds as soon as they are detected.
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stance to distinguish between species of animals, models of cars, etc. FGVC
problems are intrinsically difficult since the differences between similar cate-
gories (in our case, plant species) are often minimal, and only in recent works
the researchers obtained noteworthy results (e.g., [17, 27]).
Early works in plant classification faced this problems using features extracted
by co-occurrence matrices (CCM) from hue, saturation and intensity color space
[22] or morphological and color features as input of a Fuzzy classifier [10]. Burks
et al. [5] proposed to use CCM texture statistics as input variables for a back-
propagation (BP) neural network for weed classification. Borregaard et al. [4]
used two spectrometers covering both visible and near-infra-red, in order to
record reflectance spectra in the wavelength range 6601060 nm. The final crop-
weed discrimination accuracy is in this case up to 90%. Feyaerts and van Gool
[8] presented a performances of a classifier based on multispectral reflectance in
order to distinguish the crop from weeds. The best classifier, based on neural
networks, reached a classification rate of 80% for sugar beet plants and 91% for
weeds.
More recently, Tellaeche et al. [24] proposed an automatic approach for detec-
tion and differential spraying of weeds. The captured images are segmented into
cells, for each cell two area-based values are computed using crop, weed and
soil coverage measurements, a Bayesian decision making framework is finally ex-
ploited to decide which cells have to be sprayed. Cells are also used in Aitkenhead
et al. [2], where for each cell the classification is done by a pre-trained neural
network. Hussin et al. [7] used shape and color features, the former extracted
by the Scale Invariant Feature Transform (SIFT), the latter by the Grid Based
Color Moment (GBCM). All the extracted features from the test images are then
matched by Euclidean Distance with the ground truth, reaching an accuracy of
87,5%. In Haug et al. [9] a Random Forest (RF) classifier was proposed. It uses
a large number of simple features extracted from a large overlapping neighbor-
hood around sparse pixel positions. This approach achieves strong classification
accuracies, due to its ability of discriminating also crops that are very similar
to weeds. This approach has been improved in Lottes et al. [15] by extending
the features set and including a relative plant arrangement prior that helps to
obtain better classification results.
Other approaches rely on leaf classification and/or segmentation in order to de-
tect the plant species. The leaf classification problem in complicated background
has been addressed in Wang et al. [26], where leaf images are segmented using
morphological operators, shape features are extracted and used in a moving cen-
ter hyper-sphere classifier to infer plant species. Kumar et al. [12] presented an
automatic plant identification application called Leafsnap: the proposed algo-
rithm starts from segmented images of leaves and it exploits curvature features
compared with a given database to extract the best match, while using a binary
classifier on global image signatures as a validity test. Deformable leaf mod-
els and morphology descriptors have been exploited in [6] to cover the variety
of leaf shapes. Very recently Han Lee et al. [13] presented a leaf-based plant
classification system that uses convolutional neural networks to automatically
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learn suitable visual features. Also Reyes et al. [19] used CNN for fine-grained
plant classification: they used a deep CNN with the architecture proposed by
Krishevsky et al. [11], first initialized to recognize 1000 categories of generic ob-
jects, then fine-tuned (i.e., specialized) for the specific task to recognize 1000
possible plant species.

The contribution of this work is a visual detection strategy that allows an
UGV to autonomously detect crops and weeds in agricultural field environments.
The proposed approach makes use of a multispectral camera as input and two
CNNs to obtain accurate classification performances in different growth stages. A
further contribution is our novel unsupervised dataset summarization algorithm
that allows to reduce a large dataset into a smaller one with similar information
properties. Selecting smaller training sets with this approach permits to boost
up the labeling phase while preserving a good classification accuracy.

3 Vision-Based Plant Classification

3.1 Vegetation Detection

Input image
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Feature maps Fully connected
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15x15x64     s1 

7x7x64 
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subsampling
        2x2
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Fig. 2: Architecture of the sNet CNN.

The goal of the vegetation detection task is to discriminate in the RGB+NIR
images between pixels that represent projections of 3D points that belong to
green vegetation and the other pixels. This process enables to simplify and speed
up the subsequent plant detection and classification tasks.
Due to the photosynthesis, healthy green plants absorb more solar energy in the
visible spectrum, causing a low reflectance level in the RGB channels. Similarly,
the reflectance of the near-infra-red spectrum is affected by the same phenomena
with opposite results and, as a direct consequence, with a low reflectance level
in the NIR channel.

A well known indicator that is used to measure the reflectance properties of
the plants is the Normalize Difference Vegetation Index (NDVI) [20], which is
calculated as follows for each pixel (u, v):
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INDV I(u, v) =
INIR(u, v)− IR(u, v)

INIR(u, v) + IR(u, v)
(1)

where IR(u, v) and INIR(u, v) stand for the spectral reflectance measure-
ments taken from the R channel (visible red) and from the near-infrared chan-
nel, respectively. The vegetation detection task is typically solved by means of
a thresholding operation on the NDVI image: a pixel (u, v) is classified as vege-
tation if INDV I(u, v) > thV , with thV a fixed threshold. Unfortunately, a single
threshold usually is not robust against illumination changes and different soil
conditions, even inside a single image. To address this problem, our idea is to
combine the NDVI with a lightweight convolutional neural network. We first
perform a thresholding operation on the NDVI using a conservative threshold,
that allows to preserve most of the pixels that belong to vegetation. For each
pixel classified as vegetation, we exploit a trained CNN applied to a 15×15 pix-
els 4 channels patch around the pixel. This network (sNet, Fig. 2) includes a
single convolutional layer with rectified linear unit (ReLU) activation function,
followed by a max pooling layer and a local response normalization step. We set
both strides to 1 in the convolutional layer and both strides to 2 in the pooling
layer, where a max pool operator is applied to 2×2 patches. The normalized
neurons provided as output from the convolutional and pooling layers are used
as inputs for a fully connected layer. The final neurons are then fully connected
to the output labels ’plant ’ (i.e., vegetation) and ’soil ’ (i.e., not vegetation), that
are normalized through a softmax layer. The architectural choices made for this
CNN represent a good experimental trade-off between the sake of efficiency and
the segmentation performances (see Sec. 5.2).

3.2 Pixel-Wise Crop/Weed Classification
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Fig. 3: Architecture of the cNet CNN.

The detection system described so far provides an accurate vegetation mask
of the input image. Pixels that belong to vegetation need now to be classified
between crop and weeds. In this plant classification task there are a lot of possible
error sources, among others the similarity between plant species and the partial
overlapping between different plants. In order for the network to learn more
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Algorithm 1: Blob-Wise Crop/Weed Detection and Classification

Data: The input image I and a conservative threshold thNDV I for the NDVI.
Result: A set of classified blobs Bc

/* Compute the vegetation mask Iv */

1 foreach (u, v) ∈ I do

2 Iv ← ’soil’;
3 if INDV I(u, v) ≥ thNDV I then

4 if sNet(u, v) = ’plant’ then

5 Iv ← ’plant ’;
6 end if

7 end if

8 end foreach

9 Extract from Iv a set of blobs (i.e., connected regions) B = {bi, . . . , bn} of pixel
classified as ’plant ’;

10 Bc ← {};
11 foreach bi ∈ B do

/* We randomly sample a number of pixel from the blob, where s

depends on the blob size |bi| */

12 Sample s pixel (u, v)j from the blob bi, s < |bi|;
13 Classify each pixel (u, v)j using cNet ;
14 if The majority of the s pixels have been classified as ’sugar’ then

15 Bc ← Bc ∪ {bi, sugar};
16 else if The majority of the s pixels have been classified as ’weed’ then

17 Bc ← Bc ∪ {bi,weed};
18 end if

19 end foreach

specific features that help to disambiguate in these challenging conditions, we
move to a slightly deeper network with input patches of 61×61 pixel over the 4
RGB+NIR channels and, accordingly, an higher number of output neurons for
every layer. The final network cNet (Fig. 3) includes two convolutional layers
with ReLU activation function, each followed by a max pooling layer and a local
normalization layer. As in the sNet, both the max pooling layers of cNet operate
on 2×2 patches with strides of 2 pixels. The normalized feature maps are then
used as inputs for two fully connected layers before passing through a softmax
activation function.
Despite the cNet processes only pixels classified as vegetation by sNet (i.e, pixel
classified as “plant”), we still keep the class ’soil ’ as a possible output of cNet.
We experimentally found that this helps pruning at no cost the remaining false
positives not detected by the sNet CNN.

3.3 Blob-Wise Crop/Weed Classification

The plant detection and classification pipeline presented in the previous section
provide state-of-the-art results, but it still suffers from some limitations: (a) A
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pure pixel-wise approach can lead to the detection of false positive plants com-
posed by very few mis-classified pixels; (b) Differently from sNet, cNet does not
meet the real-time constraints required by our system.

In order to address these problems, we propose to employ a blob-wise based
voting scheme that speeds-up the processes while removing most of the small
false positives plants. The pseudo-code of the proposed method is reported in
Algorithm 1: we first compute the vegetation mask Iv as described in Sec. 3.1
(lines 1-8), we extract all the connected regions whose pixels are classified as
’plant ’ (line 9) and, finally, we classify the blobs by applying cNet on a subset of
pixels (lines 10-19): each pixel “votes” for a class, the majority decides the class
of the whole blob, blobs classified as ’soil ’ are discarded.

4 Unsupervised Dataset Summarization

The CNNs described above should be trained using pixel-wise labeled datasets:
unfortunately, pixel-wise data annotation is an extremely time consuming pro-
cess, even if the user can exploit specific labeling tools that allow to quickly
detect pixels belonging to vegetation by means of local thresholding operations
based on NDVI. A first solution to this problem would be to extract and label
only a subset of K images, randomly selected between the N images of the orig-
inal dataset, K ≪ N . Experimental evidence (Sec. 5) indicates that a randomly
selected subset often does not well describe the original dataset, i.e. the subset
provides a poor information “coverage” of the original dataset. Alternatively, the
subset selection process could be done manually, by looking for a “good” sub-
set of the sample images that well represent the original dataset: this strategy
usually enables to obtain better classification results compared with randomly
select subsets. We introduce here a simple but effective algorithm that enables to
automatically select a subset of the training set that shows very good coverage
properties over the original dataset. We call this problem unsupervised dataset

summarization, where unsupervised means that the subset is extracted before
the labeling process and summarization means that the subset must be very
informative about the original dataset. This problem can be formulated as a
special case of the Knapsack Problem, that given a set V of N elements, each
one with a given weight ci, asks for the subset S∗ that maximize a set function
F : 2V → R subject to a constraint that requires the total weight of the subset
to be less or equal than a given threshold K:

S∗ = argmax
S⊆V

F(S) subject to
∑

i∈S

ci ≤ K (2)

The set function F , also called objective function, measures the “quality” of a
given subset. In our case the setV is the original dataset that contains N images,
the constraint is represented by an equality constraint where for each i we have
ci = 1, while the set function F should tell us how well the subset S summarizes
the original dataset V. It is well know that this class of problems is NP-hard, so
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the computation of the optimal solution S∗ is often not feasible. Despite that, a
good approximated solution can be obtained if we provide a objective function
F that is monotone submodular. A set function F is submodular if for each
A ⊆ B ⊆ V and for some element x 6∈ B, we have that:

F(A ∪ x)−F(A) ≥ F(B ∪ x)−F(B) (3)

A submodular set function is monotone if for eachA ⊆ B we have F(A) ≤ F(B).
Submodular functions have a very attractive property [16]: it can be proven that

if F is monotone submodular, then F(Ŝ) ≥
(

1− 1

e

)

F(S∗) ≈ 0.632 F(S∗)2, with

Ŝ an approximated solution computed using a greedy algorithm.

4.1 Subset Selection as a Document Summarization

Our method is inspired by the document summarization task that, given a set
V that contains all the sentences of a text document, searches for a subset of
sentences S ⊆ V that well represents the original document. Typically this task
is subject to some constraints, such as the maximum number of words or the
maximum number of sentences that compose the subset.
Let us consider a dataset acquired by a robot moving in the field as the original
“document” V, possibly composed by thousands of images. If we consider each
image as a “sentence” of V, each one composed by a set of “visual words”
[23], we can reduce our problem of subset selection as a standard document
summarization problem. Lin and Bilmes [14] faced the document summarization
problem by proposing a class of submodular set functions that measure both
the similarity of the subset S to the document to be summarized (also called
“coverage” of the original document) and the “diversity” of the sentences that
compose the subset S. Since our goal is to encourage subset S that well describe
V, we employ as objective function a simple but in our case effective coverage
set function:

L(S) =
∑

i∈V,j∈S

wij (4)

where wij ≥ 0 represents a similarity between the image (i.e., “sentence”) i and
the image j. L(S) is clearly monotone submodular.

4.2 Bag-of-Visual-Words from the CNN

In the document summarization task sentences are usually represented using
bag-of-terms vectors: in a similar way, we represent each image using bag-of-
visual-words vectors [23]. Since the goal is to train a CNN (in our case, the
CNN of Fig. 3) using a very informative subset of the original dataset, we would
like to extract the visual words directly from the trained CNN. In a typical

2 This is a lower bound: in most of the practical cases the approximated solution
ensures much better results.
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CNN architecture, the sequence of convolutional layers usually computes a n-
dimensional vector f , used as input of a sequence of fully connected layers: the
decision over the output classes depends only on f . Such a vector represents a
descriptor, or signature, of the input image or patch. In our specific case, we apply
the cNet of Fig. 3 to 61×61 possibly overlapping patches of the input image.
After two convolutional + pooling layers (blue dotted box in Fig. 3) the patch
is reduced to a 384-dimensional vector f . The idea is to represent an image as a
collection of m visual words, derived from the vectors fi, i = 1, . . . ,m provided
by the CNN applied to m patches. If we denote with W the cardinality of our
vocabulary trough visual words, we can quantize the descriptors f into visual
words exploiting the k-means clustering algorithm [3]. The bag-of-visual-words
vector for a given image is simply the W -dimensional histogram that reports the
number of times that each visual word α appears in the image.
We computed wij using the following cosine similarity:

wij =

∑

α∈Si
(hα,i · hα,j · ih

2

α)
√

∑

α∈Si
(h2

α,i · ih
2
α)
√

∑

α∈Sj
(h2

α,j · ih
2
α)

(5)

where hα,i and hα,i are the number of times that the visual word α appears in
the image, and ihα is the inverse document frequency, that is calculated as the
logarithm of the ratio of the number of images where α appears, over the total
number of images N that compose the input dataset.

4.3 The Proposed Algorithm

The proposed method is not directly applicable: we tacitly assumed that the
CNN is already able to provide valid results even if we are still training it (i.e.,
we are looking for a good subset of the original data set to be used for training).
We solve this issue by pre-training the CNN using a general labeled auxiliary
dataset or a randomly selected, manually labeled subset of the input dataset.
The pseudo-code of our Unsupervised Dataset Summarization technique is re-
ported in Algorithm 2: we first compute the CNN descriptors from a set of
patches (lines 1-4), we then extract the bag-of-visual-words vectors (lines 5-8)
and finally we select the subset S using a simple greedy algorithm that exploits
the coverage set function reported in Eq. 4 and the similarity between images
reported in Eq. 5 (lines 9-13).

5 Experimental results

The experimental results presented this section are designed to show the accu-
racy of our classification system. They also confirm the performances reached
by a CNN trained on a small and very representative dataset, build up by our
unsupervised dataset summarization approach.
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Algorithm 2: Unsupervised Dataset Summarization

Data: The input dataset V with N images I, the size W of the visual word
vocabulary, the size K of the output subset

Result: The selected subset S
1 foreach I ∈ V do

2 Extract in a fixed grid a number of m patches;
3 For each patch, compute the descriptor f provided as output of the

convolutional layers of the pre-trained CNN;

4 end foreach

5 Quantize all the descriptors into W visual words using the k-means algorithm;
6 foreach I ∈ V do

7 Compute the W -dimensional histogram that reports the numbers of times
that each visual word α appears in I;

8 end foreach

9 S← {};
10 for k ← 1 to K do

11 I∗ ← argmax
I∈V\S

L(S ∪ {I});

12 S← S ∪ {I∗};

13 end for

5.1 Experimental setup

We use two datasets, both collected from a BOSCH Bonirob farm robot (Fig. 1(a))
moving on a sugar beet field. Both the datasets are composed by a set of im-
ages taken by a 1296×966 pixels 4-channel JAI AD-130 camera mounted on the
Bonirob. During the acquisition, the camera pointed downwards on the field and
took images with a frequency of 1 Hz.
The first dataset (Dataset A) is composed by 700 images and it has been col-
lected in the first growth stage of the plants, when both crop and weeds have
not yet developed their complete morphological features. The second dataset
(Dataset B) is composed by 900 images and it has been collected after 4 weeks:
plants in this case are in an advanced growth stage. From each dataset we ex-
tract different subsets, each one manually labeled.
The performances of our classification approach have been measured by using
two widely used metrics: the mean accuracy (MA, Eq. 6) and the mean average
precision (MaP, Eq. 7):

MA =
1

N

N
∑

n=1

Tpos + Tneg

Tpos + Fpos + Tneg + Fneg

(6)

MaP =
1

Q

Q
∑

q=1

AP (q) (7)

where Tpos and Fpos are the numbers of true and false positives, Tneg and Fneg

are the numbers of true and false negatives, and AP (q) is the average precision.
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We implemented and trained the proposed CNNs cNet and cNet using the open
source library TensorFlow [1].

5.2 Vegetation Detection

The first set of experiments is designed to show the performances of our vege-
tation detection approach that makes use of a conservative NDVI segmentation
as initial pixel segmentation (see Sec. 3.1).
We train different networks in terms of amount and sizes of convolutional and
fully connected layers by using the same training set taken from the dataset A.
The results are shown in Table 1. We achieve the best mean average precision and
accuracy (96.8% and 91.3%, respectively) with the biggest networks, composed
by two convolutional and two fully connected layers. Nevertheless, our choice
is to use the sNet1c10-1f20, being it a perfect trade-off between average time
and accuracy. We compared the performance of this network with the standard
NDVI based vegetation detection algorithm for some fixed thresholds (Table 2):
the results of sNet are remarkable since it outperforms NDVI in all cases while
it does not depend on any threshold.

Table 1: Vegetation detection results for different sNet networks. The network
names follow the convention: sNet < x > c < y > − < z > f < w >, where
x: number of convolutional layers, y: size of output feature maps, z: number of
fully connected layers, w: size of the fully connected layers.

Net Type MA MaP Average Time[s]

sNet1c10-1f20 96.7% 91.2% 0.43
sNet1c5-1f10 96.6% 90.8% 0.34

sNet1c20-1f40 96.7% 91.2% 0.45
sNet2c10-2f20 96.8% 91.3% 1.05
sNet2c5-2f10 96.8% 91.3% 0.98
sNet2c20-2f40 96.8% 91.3% 1.23

Table 2: Comparison between the NDVI threshold based vegetation detection
and the sNet1c10-1f20

Net Type sNet NDVI160 NDVI170 NDVI180 NDVI190 NDVI200

Mean Accuracy 96.7% 90.2% 95.6% 96.4% 95.2% 92.3%
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5.3 Crop/Weed Classification

In order to show the classification accuracy of our pipeline, we perform ex-
periments for both the pixel-wise and blob-wise approaches. The results of a
comparison among different networks in the case of pixel-wise classification are
reported in Table 3(a). As described in Sec. 3, we use a combination of a sNet fol-
lowed by a cNet. We report the average timing results for sample steps of 1 (i.e.,
the cNet is applied to each active pixel) and 3 pixels (i.e., the cNet is applied
on a grid with spacing 3 by 3 pixels). The best trade-off in terms of accuracy,
precision and computational time is obtained by the combination sNet1c10-1f20

+ cNet2c64-2f192 , where the cNet is composed by four layers, equally divided
into two convolutional and two fully connected layers. This network reaches a
MaP of 96.1% with a lower computational time with respect to the others. We
also compare the combinations of sNet and cNet with the cNet network used
alone. In this case the cNet has to be applied to the whole image, and the com-
plete image classification is done in 23 seconds without any significant increase
in precision. Examples of pixel-wise and grid classification are shown in Fig. 4(a)
and 4(b).
In Table 3(b) we report the classification performances obtained using our blob-
wise classification algorithm (Seq. 4.3). The results are remarkable since the
reported statistics refer only to the image pixels classified as vegetation by the
sNet. We obtain these results without employing any plant position prior. More-
over, the timing results meet the real-time constraints required by our system.
Some qualitative results are reported in Fig. 4(c).

5.4 Unsupervised Dataset Summarization

We finally evaluated the performances of our unsupervised dataset summariza-
tion algorithm. We compared the pixel-wise classification results using a CNN
similar to the cNet depicted in Fig. 3, with a descriptor size of 384 entries (i.e.
the size of the first fully connected layer). We used subsets of K = 50 images for
both dataset A and dataset B : we trained the CNN using K randomly chosen
images taken only from the dataset A (cNetRandomA in Table 4) and K ran-
domly chosen images taken only from the dataset B (cNetRandomB in Table
4). We repeated the training steps using K images manually chosen from the
dataset A (cNetManualA in Table 4) and K images manually chosen from the
dataset B (cNetManualB in Table 4): in both cases, we looked for subsets that
well represent the original dataset. We finally trained the CNN using the au-
tomatically selected subsets obtained by applying Algorithm 2 (cNetUdsA and
cNetUdsB), where we used cNetRandomA and cNetRandomB as pre-trained
CNNs, respectively, and a vocabulary of W = 4096 visual words. We also per-
formed a cross-validation of the trained CNNs, evaluating a CNN trained with
the dataset A with a validation set extracted from dataset B, and vice versa.
As shown in Table 4, the network trained by using subsets selected by our un-
supervised dataset summarization algorithm outperform in all the evaluations
the network trained with the manually and the randomly chosen training sets,
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Table 3: Classification results for different cNet networks. The network names
follow the convention: cNet < x > c < y > − < z > f < w >, where x:
number of convolutional layers, y: size of output feature maps, z: number of
fully connected layers, w: size of the fully connected layers.

(a) Pixel-wise and 3×3 grid classification

Net Type MA MA3×3 MaP Map3×3 Time[s] Time3×3[s]

scNet2c64-2f192 92.3% 93.3% 96.2% 95.6% 200 23
sNet1c10-1f20 + cNet2c64-2f192 91.7% 91.8% 96.1% 94.3% 25-37 2.8-3.4
sNet1c10-1f20 + cNet2c32-2f100 90.8% 90.7% 95.2% 94.1% 22-35 2.5-3.2

sNet1c10-1f20 + cNet2c96-2f384 91.7% 91.7% 97.2% 94.5% 28-40 2.6-3.3
sNet1c10-1f20 + cNet3c64-3f192 91.8% 91.8% 97.4% 95.7% 33-48 3.6-4.5
sNet1c10-1f20 + cNet3c96-3f384 92% 91.9% 97.4% 94.9% 35-50 3.7-4.9

(b) Blob-wise classification

Net Type MA MaP Time[s]

scNet2c64-2f192 92.3% 96.2% 23
sNet1c10-1f20 + cNet2c64-2f192 97.1% 98.3% 0.99
sNet1c10-1f20 + cNet2c32-2f100 95.6% 97.8% 0.93

sNet1c10-1f20 + cNet2c96-2f384 97.2% 98.3% 1.02
sNet1c10-1f20 + cNet3c64-3f192 98% 98.3% 1.74
sNet1c10-1f20 + cNet3c96-3f384 98% 98.7% 2.01

in both datasets A and B. The relatively poor classification results (59.4%) ob-
tained with a CNN tested with a subset of the dataset B and trained using
samples taken from dataset A are due to the fact that the dataset A includes
only plants that are in their first growth stage, thus without their complete
morphological features.

Table 4: Pixel-wise classification performances comparison for both datasets A

and B for a cNet trained with different trainings sets.

TrainSet & Dataset MaP A MaP B

cNetRandomA 94.5% 57.7%
cNetManualA 95.4% 57.9%
cNetUdsA 96.1% 59.4%

cNetRandomB 78.1% 97.5%
cNetManualB 79.1% 98.6%
cNetUdsB 82.3% 99.4%
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(a)

(b)

(c)

Fig. 4: (a)(b) Pixel-wise and 3x3 grid based classification mask outputs from the
sNet1cm1fm + cNet2cm2fm network: in black, green and blue are represented,
respectively, pixels that belong to soil, weed and crop; (c) Final blob-wise clas-
sification outputs from sNet1cm1fm + cNet2cm2fm network: pixels that belong
to crop are highlighted in violet, pixel that belong to weeds are highlighted in
red.

Globally, our results are comparable with the ones recently reported in [15],
obtained using the same datasets but, differently from [15], we do not exploit
any row arrangement. We expect to obtain even better results by integrating
also this type of information.

6 Conclusions

In this work we addressed the problem of plant detection and crop/weed classifi-
cation trough a multi-spectral camera mounted on a ground robot. We leverage
the effectiveness of the convolutional neural networks by proposing the follow-
ing contributions: (a) A parameterless vegetation detection approach that out-
performs conventional methods based on the Normalized Difference Vegetation
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Index (NDVI); (b) A fast classification pipeline that achieves state-of-the-art
results by exploiting a sequence of a lightweight CNN followed by a deeper CNN
that votes on connected vegetation blobs; (c) A dataset summarization algo-
rithms that enables to streamline and speed-up the manual dataset labeling
process while preserving good classification performances. The latter represents
the main contribution of this paper. We reported detailed validations of each
contribution, where we used real datasets taken from a farm robot moving in
a sugar beet field. The results confirm the effectiveness of the proposed solutions.
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