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The 1000 Genomes Project and disease-specific sequencing 
efforts are producing large collections of haplotypes that 
can be used as reference panels for genotype imputation in 
genome-wide association studies (GWAS). However, imputing 
from large reference panels with existing methods imposes a 
high computational burden. We introduce a strategy called 
‘pre-phasing’ that maintains the accuracy of leading methods 
while reducing computational costs. We first statistically 
estimate the haplotypes for each individual within the GWAS 
sample (pre-phasing) and then impute missing genotypes into 
these estimated haplotypes. This reduces the computational 
cost because (i) the GWAS samples must be phased only once,  
whereas standard methods would implicitly repeat phasing 
with each reference panel update, and (ii) it is much faster to 
match a phased GWAS haplotype to one reference haplotype 
than to match two unphased GWAS genotypes to a pair of 
reference haplotypes. We implemented our approach in the 
MaCH and IMPUTE2 frameworks, and we tested it on data 
sets from the Wellcome Trust Case Control Consortium 2 
(WTCCC2), the Genetic Association Information Network 
(GAIN), the Women’s Health Initiative (WHI) and the 1000 
Genomes Project. This strategy will be particularly valuable for 
repeated imputation as reference panels evolve.

Genotype imputation is a key step in the analysis of GWAS. The 
approach works by finding haplotype segments that are shared between 
study individuals, who are typically genotyped on a commercial  
array with 300,000–2,500,000 SNPs, and a reference panel of more 
densely typed individuals, such as those provided by the International 
HapMap Project1,2 and the 1000 Genomes Project3 or obtained by 
sequencing a subset of study individuals. Imputation methods can 
accurately estimate genotypes or genotype probabilities at markers 
that have not been directly examined in a GWAS. Imputed geno-
types are now routinely used to increase the power of GWAS analyses, 
to guide fine-mapping efforts and to facilitate the meta-analysis of  
studies genotyped on different marker sets4,5.

The maturation of high-throughput genotyping and sequencing 
technologies has led to a rapid increase in the size of publicly available 

reference data sets. For example, whereas HapMap Phase 2 included 
210 unrelated individuals typed at ~4 million SNPs, the Phase 1 variant  
call set from the 1000 Genomes Project (released in March 2012) 
includes 1,092 individuals typed at >38 million polymorphic sites. The 
next phases of this project will extend this data set to over 2,000 indi-
viduals typed at an even greater number of sites, and other sequencing 
efforts are also producing large genetic variation resources.

These developments can provide immediate benefits to GWAS 
through imputation: a more complete catalog of variants increases the 
chances that causal or trait-associated variants will be imputed, and 
reference panels with more haplotypes increase imputation accuracy 
and power for downstream association analysis, especially for variants 
with low allele frequencies4,5. In contrast, many existing genotype 
imputation methods require substantial computing power when used 
with large reference data sets. This problem is compounded by the fact 
that reference collections are now regularly improved and expanded, 
such that investigators might benefit from imputing their samples 
multiple times over the course of a study.

Here, we propose a practical solution that maintains imputation 
accuracy while greatly reducing computational costs. Our approach 
is motivated by the observation that imputation methods spend much 
of their time accounting for the unknown phase of GWAS genotypes. 
Some methods do this through analytical calculations that integrate 
over all possible phase configurations for each study individual, 
whereas other methods average the imputation probabilities across 
multiple haplotypes sampled by a phasing algorithm4. Both approaches 
have limitations. Analytical phase integration becomes computation-
ally expensive as reference panels grow and is only possible when the 
study individuals are treated independently, which sacrifices linkage 
disequilibrium (LD) information in the GWAS data. Sampling-based 
methods can scale better with reference panel size and capture LD 
information to improve imputation accuracy6, but they may still have 
nontrivial computational costs because of the need to sample and 
impute into several haplotype configurations for each individual.

In our new approach, we first statistically estimate the haplotypes 
underlying the GWAS genotypes (in pre-phasing) and then impute 
into these haplotypes, as if they were correct; a schematic of a tradi-
tional workflow and the more efficient workflow proposed here are 
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shown (Fig. 1). Imputing into pre-phased haplotypes is known to 
be fast, and it is highly accurate when the haplotypes are estimated 
through genotyped family members7,8 or long segments of recent 
shared ancestry9. These two phasing techniques cannot be used on 
unrelated individuals from outbred populations (a common study 
design in GWAS), which means many data sets can only be phased 
by statistical algorithms that yield lower quality (but still reason-
able) haplotypes. The central aims of this work are (i) to show that 
the GWAS haplotypes estimated by existing algorithms can produce 
accurate imputation and (ii) to quantify the efficiency gains from pre-
phasing the study genotypes. We assume throughout that the refer-
ence genotypes were also phased before imputation, as is typical for 
public reference data sets.

RESULTS
Pre-phasing run-time performance
To show the computational advantages of pre-phasing, we analyzed a 
GWAS data set of 2,490 individuals from the 1958 British Birth Cohort 
of the WTCCC2 (ref. 10). We imputed this data set from a series of 
reference panels, using related imputation methods that account for 
phase uncertainty in different ways (Table 1). IMPUTE version 1 
(IMPUTE1)11 uses an analytical integration strategy. This was rela-
tively efficient with a reference panel of 60 individuals (41 min per 
genome with 1000 Genomes Pilot data), but the computational burden 
grew quickly as haplotypes were added to the reference set. By contrast, 
IMPUTE version 2 (IMPUTE2)6 uses a haplotype sampling strategy. 
This approach scaled more favorably with larger reference panels, but 
it still required 512 min per genome to impute from the latest 1000 
Genomes panel. By comparison, an updated version of IMPUTE2 that 
uses our proposed approach required a one-time pre-phasing invest-
ment of 25 min per genome and then just 24 min to impute each 
sample from the largest reference panel. We observed similar trends 
with MaCH12 (which typically uses a similar approach to IMPUTE1) 
and minimac (which performs imputation with pre-phased haplotypes 
in the MaCH framework) (Supplementary Table 1).

Haplotype estimation
These results show that pre-phasing can greatly speed up the imputa-
tion process, but the accuracy of imputation with this shortcut may 
depend on how well the GWAS haplotypes were estimated. The accu-
racy of computationally estimated haplotypes depends on a number 
of factors, including marker density, the relatedness of the sampled 
individuals, sample size and demography12,13. In founder popula-
tions14, long-range haplotypes can be estimated very accurately, even 
with modest sample sizes9. For example, by comparing the results 
of population- and trio-based phasing in Finnish samples from the 
Finland–United States Investigation of Non-Insulin–Dependent 
Diabetes Mellitus Genetics (FUSION) study of type 2 diabetes2,15, 
we estimated that population phasing produces <1 switch error16 per 
5.5 Mb of DNA. These results are highly accurate due to the large 
number of genotyped individuals (>2,000) and the fact that Finland 
is a founder population in which long haplotypes are shared by seem-
ingly unrelated individuals. In more diverse populations, haplotype 
estimation may often be less accurate. For example, the distance 
between switches in European GWAS data sets is typically in the 
range of 0.6–1.4 Mb17.

Genotype imputation accuracy in diverse populations
Here, we evaluate whether pre-phased haplotypes can be used to 
accurately impute missing genotypes in three GWAS data sets sam-
pled from diverse populations: the WTCCC2 data described above, 
a European-American case-control data set from a psoriasis study 
by GAIN18 and a set of data for African Americans from WHI19. 
In each data set, we masked and imputed a subset of the genotyped 
SNPs (details in Table 2). We measured imputation accuracy at 
these SNPs as the average squared correlation (mean R2) between 
masked array genotypes and imputed allele dosages (posterior  
mean genotypes).

We used the GAIN data set to compare a well-benchmarked 
imputation method (MaCH) to a related method that uses pre-
phasing (minimac). Encouragingly, both methods produced results 
with similar accuracy when applied to a common reference panel 
of 60 individuals from the Utah residents of Northern and Western 
European ancestry (CEU) population (Table 2). In fact, our pre-
phasing strategy generated slightly better results, despite ignoring 
the uncertainty in the estimated GWAS haplotypes, possibly because 

table 1 running times in Wtccc2 controls for different 
imputation methods and reference panels

Reference panela

Imputation method

IMPUTE1
IMPUTE2  

(sampling)b
IMPUTE2  

(pre-phasing)c

HapMap 2 CEU  
(60 individuals, 2.5 million SNPs)

14 31 <1

1000 Genomes CEU  
(60 individuals, 7.3 million SNPs)

41 48 1

1000 Genomes EUR  
(283 individuals, 11.6 million SNPs)

1,287 144 6

1000 Genomes EUR  
(381 individuals, 37.4 million SNPs)

7,800d 512 24

Running times are shown as the central processing unit (CPU) minutes needed to 
impute across one whole individual genome. CEU, EUR: European populations.
aReference panels included HapMap 2 release 22, the 1000 Genomes low-coverage Pilot 
(June 2010), the 1000 Genomes interim release (August 2010) and the 1000 Genomes 
interim Phase 1 release (November 2010). bVersion of the IMPUTE2 algorithm published 
by Howie et al.6. This method averages the imputation results across 20 sampled haplotype 
configurations per individual. cRunning times do not include the initial investment required 
to phase the GWAS genotypes, which took 25 min per individual. dProjected running time 
extrapolated from existing benchmarks.
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Figure 1 Imputation schematic. Each box represents a genetic data set 
and each arrow represents an analysis step. The sizes of the boxes reflect 
the relative numbers of genotypes they contain, and the widths of the 
arrows reflect the relative computational costs of the analyses. Given 
a single GWAS data set (red box), successively larger reference panels 
(blue boxes) lead to larger and more accurate imputed data sets (orange 
boxes). The computational cost of imputation is much lower when using 
pre-phased GWAS haplotypes (purple box) than when using traditional 
imputation approaches (left). 
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pre-phasing captures joint LD information that is not used by the 
analytical phasing and imputation framework of methods like MaCH 
and IMPUTE1.

We then used the WTCCC2 data to compare pre-phasing to a 
haplotype sampling approach, both of which were implemented 
in IMPUTE2 (ref. 6). Our results again show that pre-phasing can 
provide comparable accuracy to that achieved with the existing 
imputation method, although, in this case, the pre-phasing results 
were slightly less accurate (Table 2). Both pre-phasing and haplo-
type sampling capture LD information in the GWAS data, but the 
sampling approach also accounts for some of the uncertainty in 
phasing the GWAS genotypes, which could explain why it was more  
accurate here.

Finally, as it is well established that phasing and imputation 
can be more challenging in individuals with recent African ances-
try because of their reduced LD and higher genetic diversity, we 
evaluated our pre-phasing approach in the WHI GWAS of African 
Americans. In this comparison, pre-phasing was less accurate than 
the analytical approach in MaCH by the largest (but still small) mar-
gin (Table 2), which we interpret as evidence that accounting for 
phase uncertainty is more important when the haplotypes are harder  
to estimate.

The advantages of pre-phasing become particularly clear when 
considering successive reference panels that have been updated over 
time. Following a relatively modest pre-phasing investment, each new 
reference panel can be imputed at a low computational cost while 
improving the accuracy and completeness of the imputed genotypes. 
In agreement with this, adding haplotypes to the 1000 Genomes 
Project resource increased accuracy for all SNPs, especially those with 
minor allele frequency (MAF) of 1–3%, enhancing mean R2 from 0.65 
to 0.75 to 0.82 in the WTCCC2 data, from 0.69 to 0.73 to 0.83 in the 
GAIN data and from 0.49 to 0.55 to 0.61 in the WHI data (Table 2). 
Beyond the accuracy increase at known variants, each new panel also 
introduces many novel variants that could lead to additional associa-
tion signals and biological insights.

Evaluation of imputation accuracy using sequence data
One caveat to the comparisons above is that SNPs on GWAS arrays 
tend to be more common (example in Supplementary Fig. 1) and are 
easier to impute than unascertained SNPs2. We addressed this issue by 
performing a cross-validation in the European (EUR) panel of 1000 
Genomes Phase 1, which includes a more complete set of SNPs dis-
covered by low-pass whole-genome and high-pass exome sequencing 
in >1,000 individuals. For each of the 381 EUR individuals in turn, we 
masked genotypes on chromosome 10 at all sites except those included 
on the Affymetrix 500k SNP array and then imputed the missing sites 
using the Affymetrix 500k scaffold and the remaining 760 EUR haplo-
types. To mimic pre-phasing in a GWAS, we reduced the EUR data 
set to sites present on the array scaffold, phased the genotypes again 
and then used these estimated haplotypes when imputing masked 
genotypes for a given individual (bottom rows in Table 2).

To provide a point of comparison with the GWAS results in  
Table 2, we initially imputed only the SNPs that were used in the 
WTCCC2 analysis (WTCCC2 SNPs). The imputation accuracy at 
these SNPs was slightly lower in the EUR cross-validation than in 
the WTCCC2 analysis; for example, pre-phasing in EUR produced 
mean R2 values of 0.81, 0.85 and 0.91 for SNPs in ascending MAF 
bins, compared to 0.82, 0.86 and 0.91 for the WTCCC2 experiment 
with the same scaffold SNPs, reference panel and phasing approach 
(Table 2). These differences in pre-phasing accuracy may reflect the 
relative amount of phase information in a sample of 381 individuals  
(1000 Genomes EUR) and a sample of nearly 2,500 individuals 
(WTCCC2). Nonetheless, the overall similarity in results suggests 
that our EUR cross-validation provides a good approximation to a 
European GWAS.

We next extended the experiment by imputing the full set of SNPs 
in the EUR sequence data (sequence SNPs). As expected, the sequence 
SNPs were imputed less accurately than the WTCCC2 SNPs within 
each frequency bin. For example, haplotype sampling produced mean 
R2 values of 0.82, 0.86 and 0.92 (for MAFs of 1–3%, 3–5% and >5%, 
respectively) in the array SNP analysis, but the accuracy dropped 

table 2 accuracy of different imputation methods and 1000 Genomes reference panels applied to various GWas data sets
Imputation accuracy (mean R2)c

GWAS data set Imputation methoda Reference panelb MAF 1–3% MAF 3–5% MAF >5%

GAIN psoriasis MaCH or minimac 60 CEU individuals 0.67 0.76 0.91

(European American; N = 2,759) 0.69 0.77 0.91
283 EUR individuals 0.73 0.78 0.92
381 EUR individuals 0.83 0.85 0.94

WTCCC2 IMPUTE2 60 CEU individuals 0.66 0.78 0.88

(UK; N = 2,490) (sampling or pre-phasing) 0.65 0.77 0.87
283 EUR individuals 0.77 0.82 0.89

0.75 0.81 0.88
381 EUR individuals 0.84 0.88 0.92

0.82 0.86 0.91
WHI MaCH or minimac 60 CEU and 59 YRI individuals 0.51 0.73 0.83

(African-American; N = 8,421) 0.49 0.70 0.80
283 EUR and 172 AFR individuals 0.55 0.72 0.81
381 EUR and 174 AFR individuals 0.61 0.75 0.83

1000 Genomes EUR IMPUTE2 380 EUR individuals 0.82 0.86 0.92

(European ancestry; N = 381) (sampling or pre-phasing) (WTCCC2 SNPs) 0.81 0.85 0.91
380 EUR individuals (sequence SNPs) 0.66 0.79 0.91

0.64 0.78 0.90

YRI, Yoruba from Ibadan, Nigeria; AFR, African population; CEU, EUR, European populations; from 1000 Genomes.
aWe imputed each GWAS data set with an existing imputation method and its pre-phasing counterpart. bReference panels used to impute each GWAS data set included the 1000 Genomes 
low-coverage Pilot (June 2010), the 1000 Genomes interim release (August 2010) and the 1000 Genomes interim Phase 1 release (November 2010). cEach cell shows the mean R2 between 
true genotypes and imputed dosages for the specified MAF window and reference panel. For a given GWAS data set, all accuracy values within a MAF window were calculated on the same set of 
SNPs; the corresponding SNP counts are shown in supplementary Figure 1. Accuracy values from pre-phasing are shown in bold (some analyses were performed only with pre-phasing).
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to 0.66, 0.79 and 0.91, respectively, when evaluating all sequence 
SNPs in the same frequency ranges (Table 2). Despite the added dif-
ficulty of imputing low-frequency and unascertained variants, pre-
phasing was still nearly as effective as haplotype sampling at these 
SNPs (mean R2 of 0.64 versus 0.66 for MAFs of 1–3%; Table 2). This 
analysis also allows us to measure the accuracy at SNPs with MAFs of  
< 1%, for which we observed mean R2 values of 0.42 and 0.44 for pre-
phasing and haplotype sampling, respectively. Hence, although all 
methods have lower imputation accuracy at unascertained and low-
frequency SNPs, pre-phasing still achieves competitive accuracy at  
such variants.

Multiple imputations
The examples in Table 2 show that imputation accuracy may some-
times decrease when using the most likely haplotype pair for each 
GWAS individual rather than integrating over the phase uncertainty. 
We also note that, over the span of entire chromosomes and in the 
data sets examined here, haplotype estimates will almost never match 
the true underlying haplotypes. These considerations led us to assess 
whether we could improve accuracy for a reasonable increment in 
computing time by saving multiple sampled haplotype configura-
tions at the pre-phasing stage and then imputing into each of these 
(details in the Supplementary Note). Imputing into 4–10 sampled 
haplotypes per individual provided a small increase in accuracy 
while increasing computational costs by 4–10× (Supplementary  
Figs. 2 and 3). Using a much larger number of sampled haplotypes  
(up to 500 per individual, for a 500× increase in computing time) pro-
vided only a modest additional increase in accuracy (Supplementary 
Fig. 2), which confirms that a single pre-phased configuration pro-
vides nearly as much accuracy as much more computationally inten-
sive methods for capturing haplotype uncertainty. These results 
suggest that pre-phasing is a good general strategy for genome-wide 
imputation, whereas slower but more accurate approaches may be 
useful for follow-up analyses near putative disease-causing loci.

DISCUSSION
We have described a practical strategy for imputing genotypes from 
the large reference panels that are now emerging from sequencing 
efforts, such as the 1000 Genomes Project. These panels are regularly 
updated, both to incorporate newly sequenced individuals and to 
take advantage of improved methods for analyzing next-generation  
sequencing data that can handle increasingly diverse variant types, 
including insertion and/or deletion polymorphisms and copy-
number variants. New reference data sets may provide substantial 
benefits for disease studies, but imputing them into large-scale 
GWAS currently requires substantial computational resources. The 
pre-phasing strategy introduced here will allow investigators to  
routinely impute from these emerging reference panels at a reason-
able computational cost and will thereby enhance studies of complex 
disease genetics.

Overall, our results show that pre-phasing provides comparable 
accuracy to state-of-the-art imputation methods. Although we focus 
on selected combinations of data and methods (Tables 1 and 2),  
we also find that minimac and IMPUTE2 produce very similar 
trends in accuracy and running time when applied to the same data 
set (for details, see Supplementary Fig. 4 and compare Table 1 and 
Supplementary Table 1).

It is somewhat unexpected that pre-phasing remains competi-
tive with other methods when imputing rare variants (MAF < 1%;  
Table 2). Such variants should require longer flanking haplotypes for 
successful imputation, and a single pre-phasing solution may include 

errors that break up long-range haplotypes. One possible explanation 
is that existing methods also struggle to infer very long haplotypes, 
such that pre-phasing still seems accurate by comparison. Conversely, 
it is important to realize that imputation accuracy is affected by phas-
ing accuracy in the reference panel and by the GWAS SNPs used to 
drive imputation4,5. Imperfections in the reference haplotypes would 
limit imputation accuracy, even with perfectly phased GWAS haplo-
types, and it may be difficult to impute rare variants with any method 
when using sparse GWAS scaffolds. These factors may outweigh the 
differences between methods that use pre-phasing and those that 
integrate over phase uncertainty.

In the Supplementary Note, we consider extensions of the pre-
phasing approach, including an exploration of haplotype sampling 
approaches and an example of how imputation accuracy can be improved 
by pre-phasing with other haplotyping engines, such as SHAPEIT17. 
We also note that when genotypes from family members are available,  
it may be particularly attractive to use our imputation software with 
haplotypes informed by transmission patterns in pedigrees, where the 
best phasing tool may depend on family structure.

Our results show that pre-phasing is a highly generalizable strategy 
that can be adapted to most imputation engines, and we expect that it 
will be combined with future methodological developments to make 
imputation even faster and more flexible. Software implementing our 
approach, using either the IMPUTE2 or MaCH and minimac frame-
work, is available from the authors’ websites (see URLs).

URLs. Minimac and instructions on how to implement the pre-
phasing approach describe here using MaCH, http://genome.sph.
umich.edu/wiki/minimac; separate pre-phasing and imputation 
with IMPUTE 2.0, http://mathgen.stats.ox.ac.uk/impute/impute_
v2.html#prephasing_gwas; the data sets analyzed here available from 
the database of Genotypes and Phenotypes (dbGaP), http://www.ncbi.
nlm.nih.gov/gap, and WTCCC, http://www.wtccc.org.uk/.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.

ACknowledGMentS
We thank M. Boehnke for critical reading, advice and suggestion, Y. Li for aid 
with cleaning the WHI data and the two anonymous reviewers for their helpful 
comments. B.H. and M.S. were supported by a grant from the National Human 
Genome Research Institute (NHGRI; HGO2585) to M.S. J.M. was supported by a 
grant from the UK Medical Research Council (G0801823). C.F. and G.R.A. were 
supported by grants from the US National Institutes of Health (NIH; DK0855840, 
HG005552 and HG005581). This study makes use of data generated by the 
WTCCC, GAIN and WHI. A full list of the investigators who contributed to the 
generation of the WTCCC data is available from the WTCCC web site (see URLs). 
The WTCCC was partially funded by the Wellcome Trust under awards 076113 
and 085475. For details of contributors to the GAIN and WHI studies, please see 
the corresponding dbGaP accessions.

AUtHoR ContRIBUtIonS
B.H., C.F., M.S., J.M. and G.R.A. designed the methods and experiments. B.H. and 
C.F. ran the experiments and wrote the first draft; all authors contributed critical 
reviews of the manuscript during its preparation. 

CoMPetInG FInAnCIAl InteReStS
The authors declare no competing financial interests.

Published online at http://www.nature.com/doifinder/10.1038/ng.2354.   
Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

np
g

©
 2

01
2 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://genome.sph.umich.edu/wiki/minimac
http://genome.sph.umich.edu/wiki/minimac
http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://www.ncbi.nlm.nih.gov/gap
http://www.ncbi.nlm.nih.gov/gap
http://www.wtccc.org.uk/
http://www.nature.com/doifinder/10.1038/ng.2354
http://www.nature.com/doifinder/10.1038/ng.2354
http://www.nature.com/doifinder/10.1038/ng.2354
http://www.nature.com/doifinder/10.1038/ng.2354
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html


Nature GeNetics  VOLUME 44 | NUMBER 8 | AUGUST 2012 959

t e c h n i c a l  r e p o rt s

1. International HapMap Consortium. The International HapMap Project. Nature 426, 
789–796 (2003).

2. Altshuler, D.M. et al. Integrating common and rare genetic variation in diverse 
human populations. Nature 467, 52–58 (2010).

3. 1000 Genomes Project Consortium. A map of human genome variation from 
population-scale sequencing. Nature 467, 1061–1073 (2010).

4. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. 
Nat. Rev. Genet. 11, 499–511 (2010).

5. Li, Y., Willer, C., Sanna, S. & Abecasis, G. Genotype imputation. Annu. Rev. 
Genomics Hum. Genet. 10, 387–406 (2009).

6. Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation 
method for the next generation of genome-wide association studies. PLoS Genet. 
5, e1000529 (2009).

7. Burdick, J.T., Chen, W.M., Abecasis, G.R. & Cheung, V.G. In silico method for 
inferring genotypes in pedigrees. Nat. Genet. 38, 1002–1004 (2006).

8. Chen, W.M. & Abecasis, G.R. Family-based association tests for genomewide 
association scans. Am. J. Hum. Genet. 81, 913–926 (2007).

9. Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype 
imputation. Nat. Genet. 40, 1068–1075 (2008).

10. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 
cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 
(2007).

11. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint 
method for genome-wide association studies by imputation of genotypes. Nat. Genet. 
39, 906–913 (2007).

12. Li, Y., Willer, C.J., Ding, J., Scheet, P. & Abecasis, G.R. MaCH: using sequence 
and genotype data to estimate haplotypes and unobserved genotypes.  
Genet. Epidemiol. 34, 816–834 (2010).

13. Varilo, T. & Peltonen, L. Isolates and their potential use in complex gene mapping 
efforts. Curr. Opin. Genet. Dev. 14, 316–323 (2004).

14. Peltonen, L., Palotie, A. & Lange, K. Use of population isolates for mapping complex 
traits. Nat. Rev. Genet. 1, 182–190 (2000).

15. Scott, L.J. et al. A genome-wide association study of type 2 diabetes in Finns 
detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

16. Marchini, J. et al. A comparison of phasing algorithms for trios and unrelated 
individuals. Am. J. Hum. Genet. 78, 437–450 (2006).

17. Delaneau, O., Marchini, J. & Zagury, J.F. A linear complexity phasing method for 
thousands of genomes. Nat. Methods 9, 179–181 (2012).

18. Manolio, T.A. et al. New models of collaboration in genome-wide association studies: 
the Genetic Association Information Network. Nat. Genet. 39, 1045–1051 
(2007).

19. Women’s Health Initiative Study Group. Design of the Women’s Health Initiative 
clinical trial and observational study. The Women’s Health Initiative Study Group. 
Control. Clin. Trials 19, 61–109 (1998).

np
g

©
 2

01
2 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



Nature GeNetics doi:10.1038/ng.2354

ONLINE METHODS
FUSION data set. The FUSION Study consists of 1,161 Finnish individuals 
with type 2 diabetes (T2D) and 1,174 normal, glucose-tolerant Finnish con-
trols. Samples were genotyped with the Illumina Human-Hap300 BeadChip 
(v1.1). In total, 306,222 autosomal SNPs passed quality control (Hardy-
Weinberg equilibrium P ≥ 1 × 10−6 in the total sample; call frequency ≥ 0.90; 
and MAF > 0.01)15. In addition, 120 trios were genotyped with the same chip, 
and haplotypes were estimated on the basis of the most likely pattern of gene 
flow using Merlin20 and were compared with haplotypes estimated statistically 
using population information and MaCH12.

GAIN psoriasis data set. GAIN21 supported a series of GWAS designed to 
identify specific positions of DNA variation associated with the occurrence 
of a particular common disease. Data used for this study were from 1,359 
psoriasis cases and 1,400 controls genotyped at Perlegen Sciences using a cus-
tom genotyping array. In total, 438,670 autosomal SNPs passed the quality 
control filters (Hardy-Weinberg equilibrium P ≥ 1 × 10−6 in the total sample; 
call frequency ≥ 0.95; and MAF > 0.01)21. In this study, 88 individuals were 
also genotyped using Affymetrix 6.0 arrays and these genotypes were used to 
evaluate imputation accuracy by examining the correlation between imputed 
dosages and array genotypes (for markers that were present on the Affymetrix 
6.0 arrays but not on the Perlegen custom array).

WTCCC2 data set. We used genotype data from the WTCCC2 (ref. 10) on 
members of the 1958 British Birth Cohort, which is comprised of controls 
sampled from the UK. These individuals were genotyped on Affymetrix 6.0 
and Illumina 1.2 M SNP arrays. The WTCCC2 merged genotypes across 
platforms and applied standard quality control filters, which resulted in data 
from 2,490 individuals at 71,190 SNPs on chromosome 10. For our imputation 
experiments, we masked the SNPs not found on the Affymetrix 500k array, 
imputed the masked SNPs and compared the imputed dosages to the original 
array genotypes.

WHI data set. We obtained genotype data for the WHI19 study from dbGaP 
(see URLs). The data set included 8,421 African Americans genotyped on 
Affymetrix 6.0. We removed SNPs with genotype call rate of <90%, Hardy-
Weinberg equilibrium P value of <1 × 10−6 or MAF of <1%, resulting in 
829,370 SNPs passing quality control criteria. For our imputation experiments, 
we masked every tenth SNP and repeated in sliding windows, such that each 
analysis was informed by ~90% of the array SNPs and every array SNP was 
imputed exactly once.

Phasing. Haplotyping approaches, such as those implemented in MaCH and 
IMPUTE2, proceed through a series of iterative steps. In each step, a new pair 
of haplotypes is sampled for each individual as an imperfect mosaic22 of the 
estimated haplotypes (templates) for other individuals in the data set. After a 
number of iterations, best-guess haplotypes are constructed for each individual 
by combining information across the sampled haplotype configurations; both 
MaCH and IMPUTE2 perform this step by minimizing the expected switch 
error rate23. The computational cost of phasing with these methods depends 
on the number of iterations performed and the number of template haplotypes 
that are used in each update. For the experiments described here, we used 20 
iterations and 200–400 templates for MaCH and 30 iterations (first 10 dis-
carded as burn-in) and 80 templates for IMPUTE2. These methods differ in 
various details, such as how they fit the parameters of their models and how 
they choose templates for each haplotype sampling step; further information 
is provided in the original papers6,12.

Imputation into phased haplotypes. When GWAS genotypes have been 
phased before imputation, each haplotype can be imputed separately, if we 
assume that the GWAS haplotypes are conditionally independent, given a 

reference panel. The reference panel provides template haplotypes for the 
imputation model, and marginal probabilities for the untyped alleles in each 
GWAS haplotype are estimated via standard hidden Markov model (HMM) 
calculations (the forward-backward algorithm)24. The parameters of HMM 
are estimated in different ways by minimac and IMPUTE2; see elsewhere for 
details6,12. Allelic probabilities are converted to genotypic probabilities for 
each individual by assuming Hardy-Weinberg equilibrium; these genotypic 
probabilities can be directly compared with those produced by other imputa-
tion approaches.

Computational costs. Many existing imputation methods (for example, MaCH 
and IMPUTE1) use analytical integration to account for the unknown phase 
of GWAS genotypes. The computational cost of this approach is proportional 
to the number of GWAS individuals (N), the number of genotyped markers 
in the reference panel (MREF) and the square of the number of reference haplo-
types (H2), or O(N × MREF × H2). Some methods, such as fastPHASE23 and 
Beagle25, reduce H by grouping similar haplotypes into clusters. The quadratic 
term affects all markers, whether they are typed in a GWAS or only in the 
reference panel. Consequently, the computational cost grows quickly with 
reference panel size, and it can be time-consuming to run these methods on 
modern reference data sets.

IMPUTE2 aims to reduce the computing burden through a Monte Carlo 
algorithm that separates the phasing and imputation tasks. This approach 
alternately samples phase configurations for genotyped markers and imputes 
allele probabilities for markers not typed in the GWAS. The cost of the phas-
ing component is proportional to the number of GWAS individuals (N), the 
number of genotyped markers in the GWAS data (MGWAS), the number of 
iterations (I) and the square of the number of templates used in each phasing 
update (K2), or O(N × MGWAS × I × K2). The cost of the imputation compo-
nent is proportional to the number of GWAS haplotypes (2N), the number of 
markers in the reference panel (MREF), the number of iterations (I) and the 
number of haplotypes in the reference panel (H), or O(N × MREF × I × H). 
Partitioning the analysis in this way allows better scaling with reference panel 
size, but it requires I repetitions of the imputation step (one for each sampled 
phase configuration).

Like the IMPUTE2 Monte Carlo algorithm, pre-phasing separates the phas-
ing and imputation steps when imputing a GWAS data set. The computational 
cost of pre-phasing in our framework is O(N × MGWAS × I × K2). This is the 
same as the phasing cost for Monte Carlo integration, although, in this context, 
the phasing must be performed only once per GWAS data set. Given a set of 
pre-phased GWAS haplotypes, the cost of imputation is then O(N × MREF × H); 
the efficiency of this step makes imputation from pre-phased haplotypes very 
fast. The cost of each step in our current computing system, in CPU hours, is 
approximately N × MGWAS × I × K2 × 10−11 for phasing and N × MREF × H ×  
10−11 for imputation.
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