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Abstract

The aim of single image super-resolution is to recon-

struct a high-resolution image from a single low-resolution

input. Although the task is ill-posed it can be seen as find-

ing a non-linear mapping from a low to high-dimensional

space. Recent methods that rely on both neighborhood em-

bedding and sparse-coding have led to tremendous quality

improvements. Yet, many of the previous approaches are

hard to apply in practice because they are either too slow

or demand tedious parameter tweaks. In this paper, we pro-

pose to directly map from low to high-resolution patches

using random forests. We show the close relation of pre-

vious work on single image super-resolution to locally lin-

ear regression and demonstrate how random forests nicely

fit into this framework. During training the trees, we opti-

mize a novel and effective regularized objective that not only

operates on the output space but also on the input space,

which especially suits the regression task. During infer-

ence, our method comprises the same well-known computa-

tional efficiency that has made random forests popular for

many computer vision problems. In the experimental part,

we demonstrate on standard benchmarks for single image

super-resolution that our approach yields highly accurate

state-of-the-art results, while being fast in both training and

evaluation.

1. Introduction

Single image super-resolution (SISR) [18, 22] is an im-

portant computer vision problem with many interesting ap-

plications, ranging from medical and astronomical imaging

to law enforcement. The task in SISR is to generate a vi-

sually pleasing high-resolution output from a single low-

resolution input image. Although the problem is inherently

ambiguous and ill-posed, simple linear, bicubic or Lanzcos

interpolations [15] are often used to reconstruct the high-

resolution image. These methods are extremely fast but typ-

ically yield poor results as they rely on simple smoothness

assumptions that are rarely fulfilled in real images.

(a) Original (b) Bicubic: 38.33, 4.61

(c) BPJDL [23]: 40.79, 4.57 (d) RFL: 41.55, 5.77

Figure 1: Our super-resolution approach (RFL) compares

favorably with related work (upscaling factor is 3). The val-

ues define the PSNR and IFC scores, respectively.

More powerful methods rely on statistical image pri-

ors [17, 18] or use sophisticated machine learning tech-

niques [14, 37] to learn a mapping from low- to high-

resolution patches. Among the best performing algorithms

are sparse-coding or dictionary learning approaches, which

assume that natural patches can be represented using sparse

activations of dictionary atoms. In particular, coupled dic-

tionary learning approaches [35, 38, 39] achieved state-of-

the-art results for SISR. Recently, Timofte et al . [32] high-

lighted the computational bottlenecks of these methods and

proposed to replace the single dictionary with many smaller

ones, thus avoiding the costly sparse-coding step during in-

ference. This leads to a vast computational speed-up while

keeping the same accuracy as previous methods.



In this work, we show that the efficient formulation

from [32] can be naturally casted as a locally linear multi-

variate regression problem and that random forests [2, 6, 10]

nicely fit into this framework. Random forests are highly

non-linear learners that are usually extremely fast during

both learning and evaluation. They can easily handle high-

dimensional noisy inputs, which has led to their broad dis-

semination in many computer vision domains. We propose

a novel regularized objective function optimized during tree

growing that operates not only on the output label domain

but also on the input data domain. The goal of the objective

is to cluster data samples that have high similarity in both

domains. This eases the task for the locally linear regres-

sors that are learned in the leaf nodes of the trees and yields

higher quality results for SISR (see Figure 1). We thus coin

the approach super-resolution forests (SRF). Inference of

SRF is also fast as patches can be routed to leaf nodes using

only a few simple feature look-ups plus evaluating a linear

regressor.

Our experiments demonstrate the effectiveness of super-

resolution forests on different benchmarks, where we

present state-of-the-art results. Besides comparing with

previous SISR methods including dictionary-based as well

as other direct regression-based approaches, we investigate

different variants of our random forest model and validate

the benefits of the novel regularized objective. Furthermore,

we also evaluate the influence of several important parame-

ters of our approach.

2. Related Work

The task of upscaling images, i.e ., image super-

resolution, has a long history in the computer vision com-

munity. While many approaches assume to have multiple

views of the scene, either from a stereo setup or via tem-

poral aggregation, this work focuses on single image super-

resolution (SISR). We limit the related work to recent dic-

tionary learning and regression-based literature and refer in-

terested readers to a comprehensive survey paper [33].

Dictionary learning approaches for SISR typically build

upon sparse coding [27]. Yang et al . [38] were one of the

first who used a sparse coding formulation to learn dictio-

naries for the low- and high-resolution domain that are cou-

pled via a common encoding. Zeyde et al . [39] improved

upon [38] by using a stronger image representation. Fur-

thermore, [39] employed kSVD and orthogonal matching

pursuit for sparse coding [1], as well as a direct regression

of the high-resolution dictionary for faster training and in-

ference. While both approaches assume strictly equal en-

codings in the low- and high-resolution domains, Wang et

al . [35] relaxed this constraint to a linear dependence, which

they term semi-coupled. However, all these approaches are

still quite slow during both training as well as inference be-

cause a sparse encoding is required.

Very recently, two different approaches came up to ap-

proximate sparse coding, aiming at much faster inference

for different applications [26, 32]. The consent in both

works is to replace the single large dictionary and ℓ1-norm

regularization with many smaller sub-dictionaries with ℓ2-

norm regularization. Thus, finding encoding vectors or re-

construction vectors is a quadratic problem for each sub-

dictionary and can be solved in closed-form, leading to fast

inference. The main effort during inference is shifted to

finding the best sub-dictionary. While [26] looks for a sub-

dictionary with a small enough reconstruction error, Timo-

fte et al . [32] selects the sub-dictionary with highest corre-

lation to the input signal. We provide more details on [32]

in Section 3.

As mentioned in the introduction, a different approach to

single image super-resolution is to directly learn a mapping

from the low- to the high-resolution domain via regression.

Yang and Yang [37] propose to tackle the complex regres-

sion problem by splitting the input data space and learning

simple regressors for each data cell. Dai et al . [11] fol-

lows a similar approach but jointly learns the separation into

cells and the regressors. While the basic idea is similar to

our work, both approaches have a key problem: One has to

manually define the number of clusters and thus regressors,

which directly influences the trade-off between upscaling

quality and inference time. However, finding the appropri-

ate number of clusters is typically data-dependent. By using

random forests on the other hand, (i) the granularity of the

data cells in the input space is found automatically and (ii)

the effective size of small linear regressors is typically much

larger without increasing inference time.

Another recent work builds on convolutional neural net-

works to learn the complex mapping function [14], which

is termed SRCNN. Our experiments show that our random

forest approach can learn a more accurate mapping and out-

performs SRCNN. Moreover, our super-resolution forests

can be trained within minutes on a single CPU core, while

SRCNN takes 3 days to train even with the aid of GPUs.

Because we base our approach on random forests [2, 6,

10], we also have to mention that the training procedure can

be easily parallelized on multiple CPU cores, which reduces

the training time even further. The highly efficient training

(and also inference) is one of the key advantages of this

model. Random forests is a very effective machine learning

approach [7] and has been successfully applied to many dif-

ferent computer vision tasks. Examples include human pose

estimation [21, 30], object detection [19], facial fiducial de-

tection [9, 12], edge prediction [13, 25], semantic image

labeling [24, 28], and many more. Random forests are very

flexible in the sense that the input and output domains can

take almost arbitrary forms. A very general formulation is

presented by Dollár and Zitnick [13] where any structured

label can be predicted as long as an appropriate distance



function can be formulated for that domain. In contrast, we

have a multivariate regression problem where many possi-

ble choices for the objective function exist, which we dis-

cuss in Section 4. We refer the reader to [10] for a very

detailed investigation of random forests.

3. Coupled Dictionary Learning

In recent years, the predominant approaches for

dictionary-based single image super-resolution were based

on coupled dictionary learning. The first and most generic

formulation was proposed by Yang et al . [38]. We de-

note the set of N samples from the low-resolution do-

main XL ∈ R
DL×N and from the high-resolution domain

XH ∈ R
DH×N , each column corresponding to one sample

xL and xH, respectively. Throughout the paper, we use the

notation XL and XH for both sets and data matrices. Then,

the coupled dictionary learning problem is defined as

min
DL,DH,E

=
1

DL

‖XL −DLE‖
2
2+

1

DH

‖XH −DHE‖
2
2+Γ(E), (1)

where DL ∈ R
DL×B and DH ∈ R

DH×B are the low- and

high-resolution dictionaries, respectively. The common en-

coding E ∈ R
B×N couples both domains. The regular-

ization Γ(E) is typically a sparsity inducing norm on the

columns of E, e.g ., the ℓ0 or ℓ1 norm.

As mentioned in Section 2, Zeyde et al . [39] improved

upon [38] with some tweaks on the learning scheme. One

main difference to [38] is that they first learn the low-

resolution dictionary DL via sparse coding and compute the

encoding E. Then, they fix DL and E in (1) and directly

learn the high-resolution dictionary DH, which is a simple

least squares problem. This combination of low- and high-

resolution dictionaries is the basis and the first step for an-

chored neighborhood regression (ANR) [32] and A+ [31].

The key observation in [32] is that one can replace the

sparse coding during inference, which is time-consuming,

by pre-selecting so-called anchored points D̄iL ∈ DL for each

dictionary atom d
i in DL already during training. During in-

ference, a new data sample x selects the closest dictionary

atom d
∗ in DL according to the angular distance and uses

only the pre-defined anchor points D̄∗L for computing the en-

coding e. Thus, no sparse coding with ℓ1-norm regularizer

is required as the dictionary atoms are pre-selected. The

problem of finding an encoding e for sample x reduces to a

least squares problem and can be computed in closed-form

e = argmin
e

‖x− D̄
∗
Le‖

2
2 = (D̄∗⊤L D̄

∗
L)

−1
D̄
∗⊤
L x = P

∗
x . (2)

All matrices P
i for each dictionary atom can be pre-

computed in the training phase. Furthermore, using the cor-

responding high-resolution anchored points D̄∗H, the recon-

structed high-resolution sample x̂H can be computed as

x̂H = D̄
∗
H · e = D̄

∗
H · P∗ · xL = W

∗ · xL . (3)

As can be seen, the problem reduces to selecting an atom

from DL and applying the pre-computed mapping W
∗. While

ANR [32] is limited to selecting close anchor points (angu-

lar distance) from the learned dictionary DL, A+ [31] shows

that using a much larger corpus from the full training set

yields more accurate predictors and better results.

Both works [32, 31] still make a detour via sparse-coded

dictionaries. However, one can also see this problem more

directly as non-linear regression. In this work, we thus re-

formulate the problem of learning the mapping from the

low- to the high-resolution domain via locally linear regres-

sion. To do so, we realize that the mapping function W in (3)

depends on the data xL, which yields

x̂H = W(xL) · xL . (4)

Now, training only requires to find the function W(xL). Two

recent works [14, 37], already mentioned in Section 2, also

attack the super-resolution task with a direct regression for-

mulation to learn W(xL). In the next section, we detail our

approach and show how random forests [2, 6, 10] can be

used as an effective algorithm to learn this mapping, which

has some critical benefits over previous works.

4. Random Forests for Super-Resolution

In this section, we investigate the problem of learning

the data-dependent function W(xL) defined in Equation (4).

Assuming a regular squared loss the learning problem can

be formulated as

argmin
W(xL)

N
∑

n=1

‖xnH − W(xnL ) · x
n
L‖

2
2 . (5)

We can generalize this model with different basis functions

φ(x) resulting in

argmin
Wj(xL) ∀j

N
∑

n=1

‖xnH −

γ
∑

j=0

Wj(x
n
L ) · φj(x

n
L )‖

2
2 , (6)

where the goal is to find the data-dependent regression ma-

trices Wj(xL) for each of the γ+1 basis functions. While the

standard choice for φj(x) is the linear basis function, i.e .,

φj(x) = x, one can also opt for polynomial (φj(x) = x
[j],

where [·] denotes the point-wise power operator) or radial

basis functions (φj(x) = exp
(

‖x−µj‖
2

σj

)

, where µj and σj

are parameters of the basis function) [5]. We evaluate dif-

ferent choices of φj(x) in our experiments. Either way, the

objective stays linear in the parameters to be learned, if the

data-dependence is neglected for a moment. The question

remaining is how to define the data-dependence of W on xL.

In this work we employ random forests (RF) [2, 6, 10] to

create the data dependence. RF are ensembles of T binary

trees Tt(x) : X → Y , where X ∈ R
D is the input feature



space and Y is the output label space. The output space

Y always depends on the task at hand. For classification,

Y = {1, . . . , C} with C being the number of classes. For

our task, i.e ., multi-variate regression with DH dimensions,

we can define Y = R
DH (and X = R

DL ). At this point, we

postpone the description of the training procedure of our

super-resolution forests to Section 4.1 and assume that the

structure of each single tree already exists.

Each tree Tt independently separates the data space into

disjoint cells, which correspond to the leaf nodes. Using

more than one tree, i.e ., forests, leads to overlapping cells.

This separation defines our data dependence for W(xL) and

each leaf l can learn a linear model

ml(xL) =

γ
∑

j=0

W
l
j · φj(xL) . (7)

Finding all Wlj requires solving the regularized least squares

problem which can be done in closed-form as W
l⊤ =

(Φ(XL)
⊤Φ(XL) + λI)−1Φ(XL)

⊤ · XH, where we stacked all

W
l
j and the data into matrices Wl, Φ(XL), and XH. The regu-

larization parameter λ has to be specified by the user. Now,

we can easily see the relation to the locally linear regression

model from Equation (4). Because we average predictions

over all T trees during inference, the data-dependent map-

ping matrix W(xL) is modeled as

x̂H = m(xL) = W(xL) · xL =
1

T

T
∑

t=1

ml(t)(xL) , (8)

where l(t) is the leaf in tree t the sample xL is routed to.

We also note that the recently presented filter forests [16]

have similar leaf node models ml(xL). They use the linear

basis function and learn the model for a single output di-

mension within the context of image denoising. Our leaf

node model from (7) can be considered as a more general

formulation. Another option for ml(xL), which is typically

used in random regression forests, is a constant model, i.e .,

ml(xL) = m̂ = const. The constant prediction m̂ is often

the empirical mean over the labels xH of the training sam-

ples falling into that leaf. We evaluate different versions of

ml(xL) in our experiments.

4.1. Learning the Tree Structure

All trees in the super-resolution forests (SRF) are trained

independently from each other with a set of N training sam-

ples {xnL , x
n
H} ∈ X × Y . Training a single random tree

involves recursively splitting the training data into disjoint

subsets by finding splitting functions

σ(xL,Θ) =

{

0 if rΘ(xL) < 0
1 otherwise

, (9)

for all internal nodes in Tt. Splitting starts at the root node

and continues in a greedy manner down the tree until a max-

imum depth ξmax is reached and a leaf is created. The val-

ues of Θ define the response function rΘ(xL). It is often

defined as rΘ(xL) = xL[Θ1] − Θth, where the operator [·]
selects one dimension of xL, Θ1 ∈ {1, . . . , DL} ⊂ Z, and

Θth ∈ R is a threshold. Another option, which we also

adopt in this work, are pair-wise differences for the response

function, i.e ., rΘ(xL) = xL[Θ1]−xL[Θ2]−Θth, where also

Θ2 ∈ {1, . . . , DL} ⊂ Z.

The typical procedure for finding good parameters Θ for

the splitting function σ(·) is to sample a random set of pa-

rameter values Θk and choosing the best one Θ∗ according

to a quality measure. The quality for a specific splitting

function σ(xL,Θ) is computed as

Q(σ,Θ, XH, XL) =
∑

c∈{Le,Ri}

|Xc| · E(XcH, X
c
L) , (10)

where Le and Ri define the left and right child nodes and |·|
is the cardinality operator. With a slight abuse of notation,

we define for both domains XLe
{H,L} = {x{H,L} : σ(xL,Θ) =

0}, XRe
{H,L} = {x{H,L} : σ(xL,Θ) = 1}. The function

E(XH, XL) aims at measuring the compactness or the purity

of the data. The intuition is to have similar data samples

falling into the same leaf nodes, thus, giving coherent pre-

dictions.

For our task, we define a novel regularized quality mea-

sure E(XH, XL) that not only operates on the label space Y
but also on the input space X . We define it as

E(XH, XL) =
1

|X|

|X|
∑

n=1

(

‖xnH −m(xnL )‖
2
2 +

κ · ‖xnL − x̄L‖
2
2]
)

, (11)

where m(xnL ) again is the prediction for the sample x
n
L , x̄L

is the mean over the samples xnL , and κ is a hyper-parameter.

The first term in (11) operates on the label space and we

get different variants depending on the choice of m(xL). If

m(xL) is the average over all samples in XH, i.e ., a constant

model, we have the reduction-in-variance objective that is

employed in many works, e.g ., in Hough Forests [19]. As-

suming a linear model m(xL), we have a reconstruction-

based objective as in [16], which is typically more time con-

suming than the reduction-in-variance option. The model

chosen during growing the trees and for the final leaf nodes

does not necessarily has to be the same. For instance, one

could assume a constant model during growing the trees,

but a linear one for the final leaf nodes.

The second term in (11) operates on the data space and

can be considered as a clustering objective that is steered

with κ. The intuition of this regularization is that we not

only require to put samples in a leaf node that have similar



labels xH. We also want those samples themselves (i.e ., xL)

to be similar, which potentially eases the task for the linear

regression model ml(xL) in the leaf.

After fixing the best split σ(·) according to (10), the data

in the current node is split and forwarded to the left and right

children respectively. Growing continues until one of the

stopping criteria is met and the final leaf nodes are created.

5. Single Image Super-Resolution

In this section, we assess the performance of our direct

regression-based approach, SRF, for single image super-

resolution on different data sets as well as 3 upscaling fac-

tors. After outlining our experimental setup including de-

tails on data sets and evaluation metrics, we compare with

different random forest variants as well as several state-of-

the-art SISR approaches. To provide more insights into the

proposed method, we finally investigate several properties

and parameter choices in more detail.

5.1. Experimental Setup and Benchmarks

The publicly available framework of Timofte et al . [32]

is a perfect base for evaluating single image super-

resolution approaches. It includes state-of-the-art results of

different dictionary learning [32, 38, 39] as well as neigh-

borhood embedding [4, 8] approaches allowing for a fair

and direct comparison on the same code basis. As in many

other super-resolution works [8, 22, 39], this framework

also applies regular bicubic upsampling on the color com-

ponents and the sophisticated upsampling models only on

the luminance component of an image. The reason is the

human visual perception that is much more sensitive to high

frequency changes in intensity than in color.

Upscaling the luminance component of an image con-

sists of two steps [32, 39]. First, regular bicubic upsampling

is applied, which results in a rather low-frequency upscaled

image Ilow. To make up for the high-frequency compo-

nents, the second step is to apply a model that predicts the

high-frequency components Ihigh of the image. The final

upscaled image is then given as Ifinal = Ilow + Ihigh.

The above mentioned upsampling methods included in

the framework of [32] all operate on small image patches

and learn a mapping from the low- to the high-frequency

component. All patches in a low-resolution image (typically

overlapping) are upsampled to their corresponding high-

resolution patches. Overlapping high-resolution patches

are simply averaged to produce the final output. The

main task is thus to find a mapping function Phigh =
fL→H(F (Plow)), where Plow and Phigh are low- and high-

frequency patches and F (·) is a feature extractor. The most

basic feature is the patch itself. However, better results can

be achieved by using first- and second-order derivatives of

the patch followed by a basic dimensionality reduction, as

was used in [32, 39]. In this work we use the exact same

Set Set5 Set14

Factor x2 x3 x2 x3

RFC 35.3 0.6 31.3 0.3 31.4 1.2 28.2 0.6

RFL 36.4 0.7 32.1 0.4 32.2 1.5 28.9 0.8

RFP 36.4 0.9 32.2 0.5 32.2 1.7 28.9 1.0

Table 1: Comparison of different random forest variants on

two data sets and for different upscaling factors. For each

setting, the left column presents the PSNR in dB and the

right column the upscaling time in seconds.

features allowing for a direct comparison of the upsampling

method itself.

For our evaluations, we use three different sets of

images, Set5 from [4], Set14 from [39], and BSDS

from [3], consisting of 5, 14, and 200 images, respectively.

Unless otherwise noted, the standard settings for our SRF

are: T = 15, ξmax = 15, λ = 0.01, and κ = 1.

5.2. Random Regression Forest Variants

Before comparing with state-of-the-art SISR ap-

proaches, we evaluate different variants of our super-

resolution forests. In Section 4, we formulated our approach

as a locally linear regressor, where locality is defined via a

random forest. Thus, the random forest holds a linear pre-

diction model in each leaf node, akin to filter forests [16].

For the linear model, we can choose between different ba-

sis functions φ(x). We evaluate the linear (RFL) and the

polynomial (RFP) cases. In contrast, one can also store a

constant model (RFC) in each leaf node by finding a mode

in the continuous output space of the incoming data, e.g .,

by taking the average (see Section 4). Another choice is us-

ing structured forests from Dollár and Zitnick [13], which

learn a mapping from input to arbitrary structured outputs.

However, this option makes little sense for this task because

the output space is continuous and a quality measure can be

defined easily also for high-dimensional output spaces, see

Section 4.1.

For the comparison between these different random for-

est choices, we set the number of trees to T = 8 and keep

the remaining standard settings. For the constant leaf node

model (RFC), we fix the minimum number of samples per

leaf node to 5. For the two linear models (RFL and RFP),

this parameter is set higher (64) as a linear regression model

has to be learned. We evaluate on Set5 and Set14 for two

different magnification factors. All results are presented in

Table 1. We report the upscaling quality (PSNR in dB) as

well as the upscaling time (in seconds), respectively. While

the performance gap between RFL and RFP is almost zero,

one can clearly observe the inferior results of the constant

leaf node model.



Bicubic Zeyde [39] ANR [32] NE+LLE RFL ARFL

data set factor PSNR/IFC/Time PSNR/IFC/Time PSNR/IFC/Time PSNR/IFC/Time PSNR/IFC/Time PSNR/IFC/Time

Set5 x2 33.66/6.08/0.0 35.77/7.86/3.9 35.82/8.07/0.7 35.76/7.86/5.4 36.55/8.52/1.2 36.70/8.56/1.2

x3 30.39/3.58/0.0 31.91/4.51/1.8 31.91/4.60/0.4 31.84/4.51/2.5 32.46/4.92/0.9 32.58/4.92/1.0

x4 28.42/2.33/0.0 29.73/2.96/1.1 29.73/3.03/0.3 29.62/2.96/1.4 30.15/3.22/0.8 30.21/3.19/0.7

Set14 x2 30.23/6.07/0.0 31.81/7.64/8.0 31.78/7.81/1.3 31.75/7.65/11.1 32.26/8.14/2.2 32.37/8.14/2.1

x3 27.54/3.47/0.0 28.68/4.23/3.6 28.64/4.31/0.7 28.60/4.24/5.2 29.05/4.54/1.7 29.13/4.53/1.7

x4 26.00/2.24/0.0 26.91/2.75/2.3 26.87/2.81/0.5 26.82/2.76/3.0 27.24/2.95/1.3 27.30/2.92/1.3

BSDS x2 29.70/5.68/0.0 30.99/7.10/19.5 30.94/7.24/0.9 30.91/7.08/10.8 31.50/7.58/2.3 31.62/7.56/2.3

x3 27.26/3.21/0.0 28.05/3.87/5.8 27.99/3.91/0.5 27.97/3.85/4.4 28.39/4.15/2.2 28.46/4.14/2.3

x4 25.97/2.04/0.0 26.60/2.50/3.6 26.56/2.53/0.3 26.53/2.49/2.7 26.86/2.67/2.1 26.90/2.64/2.1

Table 2: Results of the proposed method compared within the framework of [32] on 3 data sets for 3 upscaling factors. The

results of RFL are averaged over 3 independent runs. We omit the standard deviation in the table as it was negligibly low

(0.0059 and 0.0058 on average for PSNR and IFC, respectively).

A+ [31] SRCNN [14] BPJDL [23] RFL RFL+ ARFL+

data set factor PSNR/IFC/Time PSNR/IFC/Time PSNR/IFC/Time PSNR/IFC/Time PSNR/IFC/Time PSNR/IFC/Time

Set5 x2 36.55/8.47/0.8 36.34/7.52/3.0 36.41/7.77/129.8 36.55/8.52/1.1 36.73/8.66/2.0 36.89/8.66/2.1

x3 32.59/4.93/0.5 32.39/4.31/3.0 32.10/4.50/110.0 32.46/4.92/1.0 32.63/5.00/1.6 32.72/4.99/1.7

x4 30.28/3.25/0.3 30.09/2.84/3.2 - 30.15/3.22/0.8 30.29/3.27/1.5 30.35/3.24/1.5

Set14 x2 32.28/8.10/1.5 32.18/7.23/4.9 32.17/7.60/243.8 32.26/8.14/2.3 32.41/8.28/3.9 32.52/8.25/3.9

x3 29.13/4.53/0.9 29.00/4.03/5.0 28.76/4.17/217.7 29.05/4.54/1.8 29.17/4.60/2.5 29.23/4.57/2.5

x4 27.32/2.96/0.6 27.20/2.61/5.2 - 27.24/2.95/1.3 27.35/2.98/2.1 27.41/2.96/2.1

BSDS x2 31.44/7.46/1.2 31.38/6.77/3.4 31.35/6.92/144.1 31.50/7.58/2.5 31.52/7.61/2.8 31.66/7.60/3.1

x3 28.36/4.09/0.6 28.28/3.69/3.4 28.10/3.72/137.6 28.39/4.15/2.3 28.38/4.15/2.0 28.45/4.13/2.0

x4 26.83/2.63/0.4 26.73/2.38/3.5 - 26.86/2.67/2.1 26.85/2.66/1.7 26.89/2.63/1.7

Table 3: Results of the proposed method compared with state-of-the-art works on 3 data sets for 3 upscaling factors.

5.3. Comparison with Stateoftheart

We split our comparison with related work into two

parts. First, we compare with methods that build upon the

exact same framework as [32, 39] in order to have a ded-

icated comparison of our regression model. Besides stan-

dard bicubic upsampling, we compare with a sparse coding

approach [39], ANR [32], as well as neighborhood embed-

ding [8]. We use the same 91 training images as in [32]

for Set5 and Set14. For BSDS, we use the provided

200 training images. Second, we compare with state-of-the-

art methods in SISR that eventually build upon a different

framework and use different sets of training images. We

compare with A+ [32], SRCNN [14], and BPJDL [23]. We

do not include the results of [11] as they are slightly worse

than A+ [31]. Beside our standard model (RFL), we also

evaluate an improved training scheme for random forests

presented in [29], which we denote ARFL. This algorithm

integrates ideas of gradient boosting in order to optimizes a

global loss over all trees (we use the squared loss) and can

be readily replaced with standard random forests. Addition-

ally, we add two variants (RFL+ and ARFL+) which use an

augmented training set consisting of the union of the 200
BSDS and the 91 images from [32].

Tables 2 and 3 show the quantitative results for both parts

of our evaluation on different upscaling factors and image

sets, respectively. We report both PSNR (in dB) and the IFC

score, which was shown to have higher correlation with the

human perception compared to other metrics [36]. As can

be seen in Table 2, our super-resolution forests with linear

leaf node models, RFL and ARFL, achieve better results

than all dictionary-based and neighborhood embedding ap-

proaches. Furthermore, all our models compare favorably

with state-of-the-art methods, see Table 3. We can even out-

perform the complex CNN, although our approach can be

trained within minutes while [14] takes 3 days on a GPU.

Note however that training the models with the scheme

of [29] takes longer as intermediate predictions have to be

computed, which involves solving a linear system. The in-

ference times of SRCNN (in the table) differ from the ones

reported in [14] as only the slower Matlab implementation

is publicly available. Qualitative results can be found in

Figures 1 and 2. As can be clearly seen, the proposed RFL

produces sharp edges with little artifacts.

In Figure 3 we visualize the trade-off between up-

scaling quality and inference time for different methods.

We include two additional neighborhood embedding ap-

proaches [4, 8] (NE+LS, NE+NNLS) as well as different



(a) Original (b) Bicubic: 28.64, 3.82 (c) ANR [32]: 30.08, 4.72 (d) A+ [31]: 31.54, 5.04

(e) SRCNN [14]: 31.35, 4.38 (f) BPJDL [23]: 30.53, 4.44 (g) RFL: 31.33, 5.03 (h) RFL+: 31.82, 5.18

Figure 2: Some qualitative results of state-of-the-art methods for upscaling factor x3 on image legs. The numbers in the

subcaptions refer to PSNR and IFC scores, respectively. Best viewed in color and digital zoom.

variants of our random forest (with different number of trees

T = {1, 5, 10, 15}). The figure shows the average results

from Set5 for an upscaling factor of 2. One can see that

RFL provides a good trade-off between accuracy and in-

ference time. Already the variant with a single tree (RFL-

1) gives better results than many related methods. Using 5
trees improves the results significantly with only a slight in-

crease in inference time. SRCNN [14] is clearly the fastest

method because no feature computation is required (timings

taken from [14]), which could potentially be sped-up in the

framework of Timofte [32].

Finally, we compare different dictionary sizes for

dictionary-based approaches with our random forest in Fig-

ure 4a. For our model, we include four variants with dif-

ferent number of trees T = {1, 5, 10, 15}. As can be seen,

our weakest model (T = 1) already outperforms dictionary

based models up to a dictionary size of 2048 while being

almost as fast as GR [32] (Figure 4b). When using more

trees, RFL outperforms even larger dictionaries. Figure 4c

shows that our random forest model (trained from 91 im-

ages) takes less time to train than ANR [32], even though

we do not train our trees in parallel yet.

5.4. Influence of the Tree Structure

The main factor influencing the tree structure of ran-

dom forests, beside the inherent randomness induced, is the

objective function used to evaluate potential splitting func-

tions. We investigate the influence of six different choices.

First, a fully random selection of the splitting function (Ra),

i.e ., extremely randomized trees [20]. Second, an objective

that prefers balanced trees (Ba), which we define as

Q(σ,Θ, X) =
(

|XLe| − |XRi|
)2

, (12)
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Figure 3: Visualization of the trade-off between accuracy

and inference time for different methods. The results are

the average over the images from Set5.

where XLe and XRi are the set of samples falling into left and

right child node according to splitting function σ. The re-

maining options are reduction-in-variance with κ = 0 (Va)

and κ = 1 (VaF) and the reconstruction-based objective,

again with κ = 0 (Re) and κ = 1 (ReF), respectively.

Another parameter in our implementation is the number

of samples N̂ considered for finding a splitting function σ

in each node. We use reservoir sampling [34] to shrink

the data X to min(|X|, N̂) samples and use those to find a

splitting function σ, which significantly reduces the train-

ing time without sacrificing quality. After fixing σ, all the

data is forwarded to the left and right for further growing.

We present our results in Figure 5. The upscaling scores

(Figure 5a) reveal that Va and Re are similarly good, while

VaF and ReF give better results confirming the importance

of the regularization in the objective function (11). While

Ba and Ra are inferior, it is worth mentioning that the sim-

ple balanced objective function (Ba) (12) gives relatively
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Figure 4: Our random forest model with different number of tress (1, 5, 10, and 15) compared to dictionary learning based

approaches with different sizes of the dictionary D. We present the upscaling quality (a), the inference time (b), and the

training time for ANR [32] (c) compared to our approach.
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Figure 5: Influence of the tree structure (splitting objective

and subsample size N̂ ) on (a) the upscaling quality and (b)

the training time of the trees. See text for more details.

good results and being faster during training, c.f ., Fig-

ure 5b. On the other hand, the parameter N̂ (evaluated for

2{8,9,10,11,12,15}) has little effect on the scores.

5.5. Important Random Forest Parameters

Our final set of experiments on single image super-

resolution investigate several important parameters of our

super-resolution forests (beside those that have already been

investigated). These parameters include the number of trees

T in the ensemble, the maximum tree depth ξmax, the reg-

ularization parameter λ for the linear regression in the leaf

nodes, and, finally, the regularization parameter κ for the

splitting objective. Figure 6a shows the expected behavior

of the parameter T for the random forest approach. The

performance steadily increases with increasing T until sat-

uration, which is at around T = 13 for this particular ap-

plication. The second parameter in our evaluation is the

maximum tree depth ξmax, which has strong influence on

training and inference times. From Figure 6b, we can see

a saturation of the accuracy at depth ξmax = 12 and even a

slight drop in performance with too deep trees. Figure 6c

indicates to use a rather low regularization parameter λ. In

Figure 6d we can again see that the regularization in Equa-

tion (11) is important and should be activated.
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Figure 6: Random forest parameter evaluation on Set5: (a)

number of trees T , (b) maximum tree depth ξmax, regular-

ization parameters (c) λ, and (d) κ.

6. Conclusion

In this work, we present a new approach for single image

super-resolution via random forests. We show the close re-

lation between recent sparse coding based approaches and

locally linear regression. We exploit this connection and

avoid the detour of using a sparse-coded dictionary to learn

the mapping from low- to high-resolution images. Instead,

we follow a more direct approach with a random regression

forest formulation. Our super-resolution forests build on

linear prediction models in the leaf nodes instead of typ-

ically used constant models. Additionally, it employs a

new regularization on the splitting objective function which

operates on the output as well as the input domain of the

data. Our results confirm the effectiveness of this approach

on different benchmarks, where we outperform the current

state-of-the-art. The inference of our random forest model

is among the fastest methods and the training time is typ-

ically one or several orders of magnitude less than related

approaches.
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