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Since the publication of Elemente der Psychophysik
(Fechner, 1860), considerable effort has been made to
improve the psychophysical methods used to measure
sensory sensitivity (Guilford, 1936, 1954). We know that
two psychological processes influence detection and dis-
crimination performance: a sensory process and a deci-
sion process (Krantz, 1969; Swets, 1961; Swets, Tanner,
& Birdsall, 1961). It is now possible to measure the sen-
sitivity of the sensory process in a manner that is not in-
fluenced by the properties of the decision process. Such
measures of sensitivity are said to be bias-free.

How one measures sensitivitydependson the model of
the sensory process one adopts. Classical psychophysical
methods assumed that the sensory process had a thresh-
old, a stimulus value that must be exceeded in order for
the stimulus to have any effect on the observer. These
methods were therefore designed to measure the average
value of this threshold. Sensitivity to a particular stimu-
lus was represented by the probability, p, that the stimu-

lus would exceed the sensory threshold. A stimulus that
is equal to the average threshold value would have a p of
.5. Other threshold models assumed that the sensory pro-
cess had two or more sensory thresholds.

By the 1960s, however, it became clear that all models
of the sensory process that assume one or more thresh-
olds are invalid because they make predictions not sup-
ported by experimental data (Krantz, 1969; Swets, 1961,
1986a, 1986b, 1996). Sensitivity measures derived from
these threshold models are contaminated by properties
of the decision process.

Measures of sensitivity that are uncontaminated by
decision-process properties (i.e., response bias) have been
developedwithin the framework of signal detection theory
(SDT). One almost bias-free measure of sensitivity is per-
cent correct in the two-alternative forced-choice (2AFC)
experimental paradigm (Green & Swets, 1966/1974;
Macmillan & Creelman, 1991; Swets, 1986b). When per-
cent correct (or probabilityof being correct) is plotted as a
functionof stimulus intensity, the resultingS-shaped curve
forms what Urban (1908) first called a psychometric func-
tion. A typical 2AFC psychometric function formed by
20 stimulus intensities spanning a 3-log-unit range in
0.16-log-unit steps is illustrated in Figure 1. Each prob-
ability was computed from 1,000 presentations of the
corresponding stimulus intensity.

Sensitivity is specified by the stimulus intensity re-
quired for a subject to reach a certain percent correct on
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the psychometric function. Typically, that performance
point is halfway between chance and 100% correct per-
formance. The 2AFC function has a halfway point of
75%. In the data shown in Figure 1, no stimulus gave a
performance of exactly 75% correct, and this value must
therefore be estimated by some suitable means. A logis-
tic psychometric function (Berkson, 1951, 1953, 1955),
shown as the smooth curve, was fit to the data using a
maximum-likelihood technique (Harvey, 1986, 1997;
Treutwein & Strasburger, 1999). The logistic function is
given by

(1)

The function is specified by three parameters: a (the
stimulus at the halfway point), b (the steepness of the
function), and g (the probability of being correct by
chance). The stimulus intensity corresponding to a is
marked by the vertical line in Figure 1 and represents the
stimulus that would achieve 75% correct in the 2AFC
task (marked by the horizontal line). Even though the
sensory process, as formulated in SDT, has no sensory
threshold, the value of a is still widely referred to as the
threshold. In this paper, the term threshold will be used
to mean the stimulus value, a, that gives performance
halfway from chance to 100%.

With the above framework in mind, it can be seen that
the goal of all psychophysical methods for measuring

thresholds and sensitivity, from the classical methods of
Fechner (Guilford, 1936, 1954) to modern adaptive stair-
case methods (Cornsweet, 1962; Harvey, 1986, 1997;
Treutwein & Strasburger, 1999; Watson & Pelli, 1983;
Wetherill & Levitt, 1965), is to estimate the value of a.
In vision and audition, it is practical to measure sensitivity
with large numbers of trials using computer-generated
stimuli. In the chemical senses, however, the physical
presentation of the stimulus is not easily accomplished
without human intervention. Furthermore, the longer re-
covery time in the chemical senses prevents rapid suc-
cessive presentationof stimuli. These facts limit the total
number of psychophysical trials that can be presented in
a testing session before fatigue and/or boredom set in.
We are therefore faced with the question: “How can we
best estimate the threshold with a limited number of ex-
perimental trials?” A reasonable solution to this problem
would be especially valuable for clinical testing of taste
and smell function and for experiments in which sensitiv-
ity is repeatedly measured over a period of days or weeks.

A review of the taste and smell literature reveals that
the two most widely used methods to measure detection
sensitivity are the ascending method of limits for smell
(Apter, Gent, & Frank, 1999; Cain, Gent, Catalanotto, &
Goodspeed, 1983; Cometto-Muñiz & Cain, 1995; Deems
et al., 1991; Duffy, Cain, & Ferris, 1999; Gagnon, Mer-
gler, & Lapare, 1994; Lehrner, Brücke, Dal-Bianco, Gat-
terer, & Kryspin-Exner, 1997; Lehrner, Kryspin-Exner,
& Vetter, 1995; Moll, Klimek, Eggers, & Mann, 1998;
Murphy, Nordin, de Wijk, Cain, & Polich, 1994; Nordin
et al., 1996; Pierce, Doty, & Amoore, 1996; Rosenblatt,
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Figure 1. Typical S-shaped psychometric function for stimulus detection in a two-alternative
forced-choice paradigm. The data were generated by a Monte Carlo logistic observer having
an a of 1.0 stimulus intensity units, a b of 3.5, and a g of 0.5. Each of the 20 stimulus intensi-
ties was presented 1,000 times. The solid line is the best-fitting logistic function fit to the data
using a maximum-likelihood curve-fitting technique (Harvey, 1986, 1997).
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Olmstead, Iwamoto-Schaapp, & Jarvik, 1998) and the
one-up–two-down variant of the Wetherill and Levitt
staircase method (Wetherill & Levitt, 1965) for taste
(Anliker, Bartoshuk, Ferris, & Hooks, 1991; Cowart,
1989; Cowart, Yokomukai, & Beauchamp, 1994; Drew-
nowski, Henderson, & Shore, 1997; Grushka, Sessle, &
Howley, 1986; Murphy & Cain, 1986; Murphy et al.,
1994; Stevens, 1995; Weiffenbach, Baum, & Burghauser,
1982; Weiffenbach, Schwartz, Atkinson, & Fox, 1995).
The method of constant stimuli could be used to measure
a complete psychometric function like the one shown in
Figure 1 using a fixed number of stimuli presented nu-
merous times in random order. Even though the shape of
the function can be highly informative, this method is
only rarely used in taste and smell research, most likely
because of the large number of experimental trials re-
quired for stable estimates (Linschoten & Kroeze, 1991,
1992, 1994). A few experimenters have used an SDT par-
adigm (yes–no or rating scale judgments) to measure both
sensory sensitivity and response bias (Doty, Snyder,Hug-
gins, & Lowry, 1981; O’Mahony et al., 1979).

In audition and vision, adaptive psychophysical meth-
ods are widely employed, and the theoretical bases for
them are well understood. To minimize the number of

trials, the most efficient testing strategy is to compute an
estimate of the threshold after each psychophysical trial
and use a stimulus close to the threshold on the next trial
(Taylor & Creelman, 1967). The estimation of the thresh-
old is done by fitting a psychometric function to the data
collected up to that point in the experiment and estimat-
ing the value of the threshold from the best-fitting func-
tion.This method is formally called a maximum-likelihood
adaptive staircase method and is known by several dif-
ferent names: Best PEST (Pentland, 1980), QUEST (Wat-
son & Pelli, 1983), and ML-PEST (Harvey, 1986, 1997).
We will refer to it as the ML-PEST method (maximum-
likelihood parameter estimation by sequential testing).
The term PEST was originally coined by Taylor and
Creelman (1967).

That good estimates of the threshold can be obtained
from sparse data is shown in Figure 2, where psychome-
tric functions for the same 20 stimuli as in Figure 1 but
with 1,000, 100, 10, and 1 presentations per stimulus are
shown. As the number of trials per stimulus intensity de-
creases, the empirical psychometric function becomes
more and more irregular. The solid curve in each figure
is the best-fitting logistic function (best value of a was
found holdingb and g constant)obtainedwith a maximum-

Figure 2. Typical S-shaped psychometric function for stimulus detection in a two-alternative forced-choice paradigm. The data
were generated by a Monte Carlo logistic observer having an a of 1.0 stimulus intensity units, a b of 3.5, and a g of 0.5. Each of the 20
stimulus intensities was presented 1,000, 100, 10, and 1 times. The solid line is the best-fitting logistic function fit to the data using a
maximum-likelihood curve-fitting technique (Harvey, 1986, 1997).
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likelihood fitting technique (Harvey, 1986, 1997). Even
in the extreme case of 1 presentation per stimulus, the
best-fitting logistic function gives a good estimate of the
threshold.

Our goal in the present paper is to introduce the use of
the maximum-likelihood adaptive staircase procedure
for measuring sensitivity in the chemical senses. We will
compare the efficiency and the accuracy of this method
with those of other methods and present test–retest data
as an assessment of reliability.

MAXIMUM-LIKELIHOOD ADAPTIVE
STAIRCASE PSYCHOPHYSICAL METHOD

The principles of this method are described in a vari-
ety of sources (Hall, 1968, 1981; Harvey, 1986, 1997;
Hays, 1963; Watson & Pelli, 1983), which provide more
detail than is presented here. For this discussion, it is as-
sumed that the psychometric function is logistic and that
data are collected with a 2AFC experimental paradigm,
although other functions and paradigms could certainly
be used. During psychophysical testing, there are three
major questions that are answered by this method after
each trial: (1) What is the current estimate of the thresh-
old? (2) What stimulus should be presented to the sub-
ject on the next trial? (3) Should the psychophysical tri-
als be stopped? Although the answers are somewhat
interrelated, it is useful to consider them separately.

Estimation of the Threshold
During psychophysical testing, the raw data collected

on each trial are the stimulus concentration presented to
the subject and whether or not the subject made a correct
response. In order to estimate the threshold, a series of
possible psychometric functions is considered. A likeli-
hood function is constructed by computing the log like-
lihood for each of these possible psychometric functions,
each one having the same value of b (steepness) and g
(the probability of being correct by chance), and each
having a different value of a. The computational proce-
dure is described by Harvey (1986, 1997). The smallest
candidate a is chosen to lie below any possible real
threshold or at least lower than the lowest physical stim-
ulus. Successive values increase in 0.01-log-unit steps
up to an appropriate maximum. In testing the detection
of NaCl, for example, we consider 451 as ranging from

4.50 log molar concentration (log M) to 0.00 log molar
concentration in 0.01-log steps. Each candidate logistic
function has a fixed b (3.5) and a fixed g (0.5) for the
2AFC psychophysical paradigm. The b value is not crit-
ical for converging on the correct value of b. The value
of 3.5 is close to actual psychometric functions for NaCl
measured with the method of constant stimuli. The like-
lihood functions after having run 0, 5, 10, 15, 20, and 25
trials on a Monte Carlo observer with a true value of a
of 2.125 log M (0.0075 M) are plotted in the upper
panel of Figure 3. The best estimate of the threshold is

that value of a having the maximum likelihood (i.e., the
mean of the likelihood distribution). In this simulation,
the best estimate of a was 2.110 log M after 25 trials:
an error of 0.015 log M.

Choosing the Next Stimulus
At the beginningof an experiment, before any data have

been collected, all candidate as have equal likelihood of
being the threshold.But, often, the experimenterhas some
prior idea of what the threshold value should be, espe-
cially if the subject has normal sensory function. We in-
corporate these prior expectations into the method by
keeping track of a second likelihood function that starts
with the prior likelihoodsand adds the results of each trial
to it. We use a Gaussian distribution for the prior likeli-
hood function, with a standard deviation of 0.40, which is
the value we found in our test–retest experiment to be re-
ported below (Experiment 2). In the example, the initial
estimate of the threshold was 1.875 log M. These pos-
terior likelihoodfunctions are plotted in the lower panel of
Figure 3 after having run 0, 5, 10, and 15 trials on the same
observer. The mode of this posterior likelihood function
after each trial is used to choose the next stimulus.

In taste and smell, it is usually not feasible to maintain
more than 20 or so different stimulus concentrations for
presentation to an observer. The stimulus recommended
by the maximum of the posterior likelihood function,
therefore, may not actually be available to the experi-
menter to use on the next trial. There will be an actual
stimulus that is lower than the recommendation and an-
other stimulus that is higher than the recommendation.
To choose between these two, we compute relative dis-
tance of the recommended stimulus between the two ac-
tual stimuli, and we compute the relative frequency of
each of the two actual stimuli. We choose one randomly
with a probability that favors the stimulus closer to the
recommendation and the stimulus with the fewer number
of trials. This computation is done in CStim->GetBest-
StimulusIndex() in the ML-PEST software package.
Keeping the list of candidate as separate from the list of
available stimuli means that the threshold a can be com-
puted to a precision that is not limited by the small num-
ber of actual stimuli used in the experiment.

For NaCl detection,we use 18 different concentrations
ranging from 4.00 log M to 0.25 log M in 0.25-log-unit
steps. The actual stimulus concentrations that were pre-
sented to the Monte Carlo observer are plotted in Fig-
ure 4 for each of the 25 trials. The solid circles represent
trials on which the observer was correct; the open circles
are incorrect trials. Because the observer was correct on
the first three trials, the stimuli that were presented were
successively weaker concentrations. On Trial 4, an error
was made, and the stimulus on the following trial was
the same concentration. Generally, but not always (be-
cause of the random process of choosing the next stimu-
lus), the next stimulus will be weaker after a correct re-
sponse and stronger after an incorrect response. The
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maximum-likelihood estimate of the threshold is plotted
by the solid line in Figure 4. Until both correct and in-
correct trials are collected, the estimate of the threshold
will be at either the lower or the upper end of the range
of candidate as. In this example, the observer was cor-
rect on the first three trials and then made a mistake on
Trial 4. The estimate of the threshold was extremely low
(not visible in the figure) until Trial 4, when it jumped up
to the region near the true value. As the trials continue,
the estimated threshold fluctuates around the true value
and eventually converges on it. After 25 trials, the esti-
mated threshold was 2.11 log M: an error of 0.015

log units. This low error is achieved even though no ac-
tual stimulus corresponding to the threshold was avail-
able for testing.

When to Stop
Two stopping criteria can be used to terminate psy-

chophysical testing: stop after a fixed number of trials or
stop after the estimation of the threshold reaches a re-
quired level of precision. Precision is measured by the
confidence interval, which is related to the width of the
likelihood function. Notice in Figure 3 that the likeli-
hood function becomes narrower as the number of trials

Figure 3. Log likelihood (upper panel) and log posterior likelihood (lower panel) as a function of
candidate a following 0, 5, 10, 15, 20, and 25 Monte Carlo trials, with a logistic observer having a
true a of 0.0075 M ( 2.125 log M) detecting NaCl in a two-alternative forced-choice detection
paradigm.
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increases. The confidence interval of the estimated
threshold is directly related to the width of the likelihood
distribution and is calculated using the likelihood ratio
test and the c2 statistical distribution with 1 degree of
freedom (Hays, 1963):

(2)

where Lx is the likelihood of a model whose a parameter
is x and Lmax is the likelihood of the best-fitting model.
We search for the stimulus concentrations (x) above and
below the threshold stimulus (the maximum-likelihood
a) at which the log likelihood drops to c2/2 below the
maximum log likelihood value. To find the 95% confi-
dence interval, the criterion value of c2 is 5.0239 (this
value is obtained from standard tables of the c2 distribu-
tion found in all statistic text books: The one-tailed value
of 5.0239 corresponds to a probability of .025; since the
confidence interval is two-tailed, 5.0239 corresponds to
a probability of .05).

In Figure 5, the same data shown in Figure 4 are plot-
ted with an expanded vertical scale to show the estimate
of the threshold along with the estimated 95% confi-
dence interval. Notice that as the number of trials in-
creases, the conf idence interval of the threshold de-
creases. After 25 trials, the 95% confidence interval of
the threshold extends 0.27 log units below the estimate
of the threshold (indicated by the solid horizontal line,
not by the filled circle, which represents the stimulus

presented on that trial) and 0.37 log units above it, for a
total confidence interval of 0.64 log units.

EXPERIMENT 1
Comparison of Three Psychophysical Methods

The goal of Experiment 1 was to compare the ML-
PEST method with two commonly used methods with
respect to their efficiency and their precision. Detection
thresholds for butyl alcohol were measured using three
methods: the ascending method of limits as described
by Cain et al. (1983), the up–down staircase method
(Wetherill & Levitt, 1965), and the ML-PEST maximum-
likelihood staircase method as described above (Harvey,
1986, 1997).

Method
Subjects. Thirty-two (16 males and 16 females) healthy, non-

smoking subjects participated in the experiment. Their mean age was
30.4 years (± 8.1), ranging from 17 to 60 years. None reported hav-
ing conditions that are normally associated with smell dysfunction.

Stimuli for ascending method of limits. For the ascending
method of limits the procedure described by Cain et al. (1983) was
used. Thirteen concentrations of butyl alcohol were prepared, with
distilled water as diluent. The strongest concentration was 4%. Ad-
jacent steps differed by a factor of 3.

Stimuli for staircase methods. The Wetherill and Levitt and
ML-PEST methods used a series of 24 concentrations of butyl al-
cohol. The lowest 20 concentrations were a factor of 1.5 apart, with
the strongest 0.1%. This series was augmented by the four strongest
of the series for the ascending method, which were separated by a
factor of 3.

Procedure. Thresholds were determined with a temporal 2AFC
procedure. In each trial, a stimulus was paired with a blank, and the
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Figure 4. Stimulus presentation as a function of trial number in the two-alternative forced-
choice Monte Carlo simulation. Trials on which the subject’s response was correct are repre-
sented by the filled circles; trials on which the subject’s response was incorrect are represented
by the open circles. The resulting maximum-likelihood estimate of a is plotted by the solid line.
The horizontal dotted line marks the true value of a.
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subjects were asked to select the bottle containing the stimulus. The
subjects were asked to give their best guess, even when they were
certain that the two stimuli were identical. The stimulus and the
blank were presented in 250-ml squeezable polyethylene bottles
containing 60 ml of liquid. The subjects were instructed to keep one
nostril closed while the other nostril was tested with three puffs out
of each bottle. For each subject, four thresholds were obtained, two
for each nostril. In randomized order, and alternating nostrils, one
threshold was determined with the ascending method, one with the
up–down method, and two with the adaptive maximum-likelihood
method. Testing took about 45 min.

The definition of detection threshold differs in several aspects
among the three methods. In the ascending method, testing started
with the lowest concentration. A correct response led to the pre-
sentation of the same concentration on the next trial. When an in-
correct response was given, the next higher concentration was used.
Testing stopped when five correct answers had been given in a row.
The threshold was defined as the last-used concentration (Cain et al.,
1983) and, thus, corresponded to a detection probability of 1.0.

In the up–down staircase method, testing could start at any step
in the concentration series. The first subject was started in the mid-
dle of the range, and each subsequent subject started where the for-
mer subject had ended. After one correct response, the same con-
centration was presented; if two correct responses were given, the
next lower concentration was presented on the next trial. One in-
correct response led to the presentation of a concentration one step
higher. This decision rule is called the one-up–two-down rule. Al-
though this decision rule is widely used, the actual threshold esti-
mate depends more on the size of the stimulus step than on the par-
ticular up–down rule (Garcia-Perez, 1998). Testing stopped after
five reversals, and the threshold was computed as the average of the

stimulus concentrations at the last four reversals. This threshold
corresponded to a detection probability of approximately .75.

In the maximum-likelihood adaptive staircase method, testing
started in the middle of the stimulus range. After each response, the
estimate of the threshold was calculated, and the next stimulus was
a concentration close to that threshold. Testing stopped when the
confidence interval of the estimated threshold reached a predefined
criterion (0.8 log concentration units). This threshold corresponded
to a detection probability of exactly .75. All these computations
were carried out in real time on a Power Macintosh computer using
a program, SensoryTester, written by author L.O.H.

Data analysis. The mean threshold (and standard error) pro-
duced by each method is presented in Table 1, labeled “Native
Threshold.” As noted above, each method produces a threshold es-
timate that corresponds to a different performance level of detec-
tion. To obtain threshold and confidence interval estimates for the
ascending method of limits and the up–down staircase method that
could be directly compared with those obtained by the ML-PEST
method, a logistic psychometric function was fitted to the actual se-
quence of stimulus presentations and responses from these two
methods. The values of b and g were held constant at the same values
used in the ML-PEST method. The maximum-likelihood threshold
and the confidence interval were then computed in exactly the same
manner as with the ML-PEST method. This f itting procedure will
give a lower threshold for the ascending method of limits data than
that reported by the method of limits procedure itself because the
ascending method of limits looks for a threshold stimulus giving
100% correct, whereas the maximum-likelihood threshold corre-
sponds to 75% correct. A repeated measures analysis of variance
(ANOVA) was computed using StatView 5.01 (SAS Institute, 1998a,
1998b) on each of four dependent variables: native log threshold,

Figure 5. Stimulus presentation as a function of trial number in the two-alternative forced-choice
Monte Carlo simulation. Trials on which the subject’s response was correct are represented by the
filled circles; trials on which the subject’s response was incorrect are represented by the open cir-
cles. The resulting maximum-likelihood estimate of a is plotted by the solid line. The horizontal
dotted line marks the true value of a. The vertical bars show the 95% confidence interval of each
estimate of a.
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number of trials to reach the native threshold, maximum-likelihood
logistic threshold, and confidence interval of the maximum-likelihood
threshold.

Results
The native threshold values, the mean numbers of tri-

als needed to reach the stopping criterion, the maximum-
likelihood logistic thresholds, and the mean confidence
intervals of the maximum-likelihood thresholds are sum-
marized in Table 1. A repeated measures ANOVA on the
native thresholds showed no significant main effect of
method [F(3,31) = 1.61, p < .187]. Subsequent statistical
contrast comparisons, using the standard Huynh–Feldt e
to correct the p value and the degrees of freedom, re-
vealed that the native threshold of the ascending method
of limits was just significantly higher than the other
methods [F(1,31) = 3.92, p = .051]. These higher thresh-
olds are to be expected, given that the ascending method
of limits computes the threshold to be the concentration
corresponding to a detection probability of 1.0, whereas
the othermethods use a performance criterion of about .75.

A repeated measures ANOVA on the number of trials
needed to reach the stopping criterion showed a signifi-
cant main effect of method [F(3,31) = 6.26, p < .0008].
Statistical contrast comparisons showed that the ascend-
ing method required significantly fewer trials to deter-
mine threshold [F(1,31) = 6.41, p < .014] and that the
up–down method required significantly more trials
[F(1,31) = 6.06, p < .017] than the average of the two
measurements with the maximum-likelihood method.

A repeated measures ANOVA on the maximum-like-
lihood logistic thresholds showed no significant main ef-
fect of method, and the thresholds computed from the
trial-by-trial data from the ascending method of limits
were not significantly different from the thresholds com-
puted from the data collected with the other methods
[F(1,31) = 1.77, p = .19]. This result is to be expected,
since, presumably, the performance of each observer is
driven by the same sensory process when tested by each
of the three psychometric methods.

The mean confidence intervals for the thresholds (and
standard errors) are shown in the last column of Table 1.
The mean confidence interval of the maximum-likelihood
method is smaller than those of the other two. Note that
the standard error of the confidence interval reported for
the ML-PEST method is very small (0.02). This is be-
cause the confidence interval was used as the stopping

criterion: Trials were stopped when the confidence in-
terval of a reached 0.8. A repeated measures ANOVA
indicated that there was a significant main effect of
method [F(3,31) = 17.27, p < .0002]. Contrasts tests re-
vealed that the confidence intervals for the up–down
method were significantly larger than those for both the
maximum-likelihood method [F(1,31) = 50.93, p <
.0001] and the ascending method [F(1,31) = 23.72, p <
.0016].

Discussion
The native absolute threshold values obtained with the

ascending method were higher than those obtained with
the other two methods. One should remember that these
values are not conventional thresholds, in the sense that
they represent the concentration chosen correct five out
of five times. It is to be expected that this value will be
a higher concentration than thresholds based on a lower
percent correct. Furthermore, this method, at least as de-
scribed by Cain et al. (1983), has considerably larger steps
between adjacent concentrations, and only actual stimu-
lus concentrations can be threshold values.

The ascending method needed the fewest number of
trials (~13) relative to either the maximum-likelihood
method (~15) or the up–down staircase method (~17).
The clear superiority of the maximum-likelihoodmethod,
however, came with the high precision of the measured
thresholds, as indicated by the small confidence inter-
vals. The confidence intervals of the up–down staircase
were almost three times larger than those given by the
maximum-likelihood method.

MONTE CARLO SIMULATIONS

When measuring the threshold of an actual subject, it
is not possible to know what the error is between the
measured value and the “true” value because the true
value is not known. In order to evaluate the accuracy of
the three psychophysical methods, we resorted to Monte
Carlo evaluations of simulated observers having a pre-
determined threshold value. We used each of the three
psychophysical methods to measure the threshold of
each simulated observer and compared the result with
the true value.

Monte Carlo simulations were run for each of the
three psychophysical procedures using the same rules
and stimulus series as were used in the threshold mea-

Table 1
Mean Performance (and Standard Error) of Three Psychophysical Methods

With Butyl Alcohol in Experiment 1

Native Number of ML Logistic Confidence
Threshold Trials Threshold Interval

Method M SE M SE M SE M SE

ML-PEST
Left 3.41 0.16 15.13 0.65 3.41 0.16 0.80 0.02
Right 3.27 0.13 15.41 0.76 3.27 0.13 0.84 0.02

Wetherill–Levitt 3.30 0.10 17.44 0.72 3.30 0.11 2.32 0.34
Ascending limits 3.10 0.13 13.03 0.68 3.48 0.14 1.14 0.02
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surements for butyl alcohol with the real subjects re-
ported above in Experiment 1. A population of 10,000
simulated subjects was defined whose thresholds fol-
lowed a Gaussian distribution with a mean threshold of

3.00 log percent concentration and a standard devia-
tion of 0.4 log units. These values are representative of
the distribution of real subjects’ detection thresholds for
butyl alcohol, as found in Experiment 2 below. The pre-
determined threshold for each of the 10,000 simulated
observers was drawn from the above distribution.
Threshold values higher than the highest stimulus con-
centration and lower than the lowest stimulus concentra-
tion were not used.

Simulation 1
On each trial, the simulated subject was presented

with a stimulus. Each subject’s detection behavior was
driven by a logistic psychometric function with a steep-
ness of 3.5 and a chance level performance of 0.5. The
probability of making the correct response on a trial was
determined by the probability predicted by the logistic
function for the stimulus and for that subject and a uni-
form random number between 0 and 1. If the random
number was less than the logistic function probability for
that stimulus, the response was scored as correct; other-
wise, it was scored as wrong. The starting stimulus for
the up–down staircase and maximum-likelihood meth-
ods was chosen randomly between the two stimuli that
bracketed the mean threshold of 3.0 log concentration.
These stimuli were 3.113 and 2.937 log concentra-
tion. The ascending method started with the lowest stim-
ulus in its series, 5.130 log percent concentration.

An ascending limits run was considered a failure if the
procedure called for a stimulus stronger than the highest
stimulus concentration. A Wetherill–Levitt staircase run
was considered a failure if, during the trials, a stimulus
stronger than the highest stimulus concentration or
weaker than the lowest stimulus concentrationwas called
for. In the present simulation, the Wetherill–Levitt stair-

case failed 66 times. All of these failures were caused by
the procedure’s calling for a lower stimulus concentra-
tion than the lowest available. An ML-PEST run would
have been considered a failure if the final estimate of the
threshold were more than half the stopping confidence
interval below the lowest candidate or above the highest
candidate a. There were no such failures. The failed runs
are excluded from the data analyzed below.

The distribution of errors for each method (estimated
threshold minus true threshold) for the 10,000 subjects
is shown in the left side of Figure 6. The distribution of
the number of trials to reach stopping criterion for the
10,000 subjects is shown on the right side of Figure 6.
The maximum-likelihood method was more accurate
than the Wetherill–Levitt staircase, and both of these
methods were superior to the ascending method of lim-
its. The median error and the number of trials required
for each method are shown in Table 2. The median error
for the maximum-likelihood method was almost half as
large as that for the up–down staircase, although both er-
rors were quite small.

The error on each of the 10,000 subjects is plotted in
Figure 7 as a function of the number of trials for that run.
The range of errors became smaller as the number of tri-
als increased for both the Wetherill–Levitt staircase
method and the ML-PEST method, and the median error
stayed close to zero. The ascending staircase method
showed quite different behavior. The direction of the
error depended on the number of trials before the stop-
ping criterion of five correct in a row had been reached.
The estimated thresholds were too low when the number
of trials was less than about 15, whereas the estimates of
threshold were too high when the number of trials was
more than 15.

Simulation 2
Because the Wetherill–Levitt staircase method and the

ML-PEST method generally required different numbers of
trials before the stopping criterion was reached on each
run, comparison of the accuracy is not straightforward.
We repeated the Monte Carlo simulations so that the stair-
case method and the ML-PEST method used the same
number of trials on each run. First, the Wetherill–Levitt
staircase was run until the stopping criterion was
reached. Then, the ML-PEST method was run with the
same number of trials on that observer using the same
starting stimulus.

The results are presented in Table 2. When the ML-
PEST method had the same number of trials as the
up–down staircase, the ML-PEST method was slightly
more accurate. As in Simulation 1, both of these meth-
ods were superior in accuracy to the ascending staircase.
There were 60 failures out of the 10,000 cases where the
up–down staircase called for a stimulus that was lower
than the lowest available concentration. Because the
ML-PEST method was not permitted to run as many tri-
als as it would normally require, this method failed on 30
out of the 10,000 cases.

Table 2
Results of the Four Monte Carlo Simulations

Method Median Error Median Number of Trials

Simulation 1
Maximum-likelihood 0.027 16
Wetherill–Levitt 0.045 17
Ascending limits 0.331 14

Simulation 2
Maximum-likelihood 0.094 17
Wetherill–Levitt 0.101 17
Ascending limits 0.419 14

Simulation 3
Maximum-likelihood 0.03 16
Wetherill–Levitt 3.60 16
Ascending limits 3.54 16

Simulation 4
Maximum-likelihood 2.75 115
Wetherill–Levitt 0.93 21
Ascending limits 3.36 22
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Simulation 3
An important ability of sensory testing is to detect

people who deliberately try to appear to have diminished
sensitivity. We therefore repeated the Monte Carlo sim-
ulations of 10,000 subjects using the same starting con-
ditions and the same test conditions as those in Simula-
tion 1, but each simulated subject generated “untruthful”
responses (i.e., responses just the opposite of that called
for by the subject’s psychometric function). In the ML-

PEST computer program, two likelihood functions are
maintained: one based on the hypothesis that the subject
is responding truthfully and the other based on the hy-
pothesis that the subject is deliberately choosing the
wrong response. The program explicitly tests the hy-
pothesis that a subject is deliberately choosing the wrong
response by comparing the maxima of the two likelihood
distributions and, therefore, should be able to measure
a sensory threshold as effectively as when a subject is

Figure 6. Distribution of errors (left) and number of trials (right) for three psychophysical methods: maximum-likelihood
adaptive staircase (upper panel), Wetherill and Levitt up–down staircase (middle panel), and ascending method of limits (lower
panel). The vertical line in the left panels marks the zero-error bin of each histogram. See text for details. The abscissa scale
for the upper two left panels covers a range of 1.5 log units and is 5 log units for the lower left histogram.
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Figure 7. Error as a function of number of trials for three psychophysical
methods: ML-PEST (upper panel), up–down staircase (middle panel), and as-
cending method of limits (lower panel).
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telling the truth. The other two methods do not have an
explicit way of dealing with this situation. It is of inter-
est to learn how all three methods behave under these
circumstances.

The results of this simulation are presented in Table 2.
The ML-PEST method successfully measured the thresh-
old and explicitly detected the lying condition in all
10,000 cases and was therefore able to measure the
threshold of the underlying psychometric function with
a small median error. The up–down staircase method and
the ascending method of limits reached the highest con-
centration and tried to go higher, resulting in 9,824 fail-
ures for the staircase method and 8,648 failures for the
method of limits. If we consider a failure as a successful
detection of the lying behavior, the up–down staircase
method detected 98% of the cases, and the ascending
method of limits detected 86% of the cases. These two
methods required about the same number of trials (see
Table 2).

Simulation 4
It is important in clinical testing that people with ele-

vated thresholds be easily detected. One of the subjects in
Experiment 1 f irst had smell tested by the up–down
method and exhibited a normal threshold. Later, the same
nostril was tested using the maximum-likelihoodmethod,
and no threshold could be measured because, as it turned
out, he was anosmic on that side. The fact that the up–
down method did not detect the anosmia is of concern.

We therefore repeated the Monte Carlo simulations of
10,000 subjects using the same starting conditions and
the same test conditions as those in Simulation 1, with
one change: Each simulated subject generated a random
response, as would be the case if a person had no sensory
sensitivity. The ideal behavior of a testing method would
be to indicate that the threshold was at the highest value
that is possible with that method or to have some other
explicit way of indicating that the subject is responding
randomly.

None of the three methods performed very well in de-
tecting the random responding. The median errors and
number of trials are given in Table 2. The up–down stair-
case method did the poorest because it gives a median
error of .93. This rather low error occurs because, on
87% of the cases, the stopping criterion of 5 reversals
was satisfied before the method reached the upper limit
of the stimulus concentrations. The ML-PEST method
failed on 11% of the cases, but, overall, the thresholds
were estimated to be very high. Unfortunately, it re-
quired a great number of trials to achieve this perfor-
mance. The ascending method of limits reached the
upper limit of stimulus concentration on 66% of the
cases and also gave the highest values for the threshold.

Since, in Monte Carlo simulations, the distribution of
the actual thresholds is known, we can apply an SDT analy-
sis (Green & Swets, 1966/1974; Macmillan & Creelman,
1991) to compare the distribution of estimated thresh-
olds made by each method under random responding
with the true distribution. Using the means and standard

deviations of the above distributions, we computed the
signal detection measures of sensitivity da and accuracy,
the area under the ROC curve, Az (Harvey, 1992; Simp-
son & Fitter, 1973). The ML-PEST method had the high-
est sensitivity and accuracy (da = 2.27, Az = .95). The as-
cending method was next best (da = 1.99, Az = .92), and
the up–down staircase method was the least sensitive
(da = 1.50, Az = .86).

Discussion
The results of the simulations lead to the conclusionthat

both the up–down staircase method and the maximum-
likelihood method have considerable strengths for use in
measuring taste and smell thresholds. The ascending
method of limits should not be used if one is interested
in obtaining an accurate estimate of the threshold. These
threshold estimates covary with the number of trials
taken to stop, as is illustrated in the lower panel of Fig-
ure 7. The simulation results offer an explanation for the
published finding that ascending limit measurement of
olfactory thresholds are less reliable than staircase mea-
sured thresholds (Doty, McKeown, Lee, & Shaman,
1995).

The up–down staircase method gives an average error
twice as large as that of the ML-PEST method, although
both values are small and, therefore, similar to each
other. The up–down staircase method failed by calling
for a stimulus too low on 66 out of 10,000 cases, whereas
the ML-PEST method had no such failures. Although
the median number of trials gives the edge to the ML-
PEST method, on some occasions the ML-PEST method
required over 50 trials to reach its stopping criterion.

A strength of the ML-PEST method is its ability to
consider alternate hypotheses about the response strat-
egy of the observer. The ML-PEST method was able to
correctly detect all 10,000 dishonest responders. We are
currently preparing a paper that will go into considerable
detail on how to distinguish malingerers from true anos-
mics using a variety of methods. Another strength is that
there is virtually no bias introduced into threshold mea-
surements by having the ML-PEST steepness different
from the “true” value set in the Monte Carlo observer
(Treutwein & Strasburger, 1999). Data generated from a
Monte Carlo Weibull function observer can be well fit by
virtually any s-shaped psychometric function, although
the Weibull will usually fit slightly better. We therefore
recommend the ML-PEST method for testing taste and
smell.

EXPERIMENT 2
Test–Retest Reliability

In order to assess the stability of the measures ob-
tained with the adaptive maximum-likelihood procedure,
we tested the subjects on four occasions.

Method
Subjects. Twenty-seven nonsmoking, healthy subjects partici-

pated in the experiment (mean age = 31.6 ± 8.7 years, range =
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22–57 years). The 14 women and 13 men were divided into two
groups. Group 1 (“consecutive,” 7 females and 7 males) was tested
on 4 consecutive days, and Group 2 (“distributed,” 7 females and 6
males) was tested on Days 1, 2, 8, and 22.

Stimuli. Smell thresholds for butyl alcohol were assessed using
the same range of concentrations as were used with the maximum-
likelihood method in Experiment 1. Taste thresholds were measured
using 20 concentrations of NaCl in quarter-log steps. The highest
concentration was 1.7 M. The same maximum-likelihood adaptive
method as described in Experiment 1 was used in this experiment.

Procedure. Thresholds were determined with a temporal 2AFC
procedure. Taste sensitivity was measured with a whole-mouth sip-
and-spit procedure. The stimuli and the blanks were presented in
30-ml plastic medicine cups, containing 5 ml of liquid. The sub-
jects were requested to take the first sample in their mouths, swish
it around, and spit it out, then rinse with distilled water, and do the
same with the second sample. They were asked to choose the sam-
ple that had a taste different from water. In each of the four sessions,
taste thresholds were determined first and smell thresholds last. All
four smell thresholds were determined in the preferred nostril. The
subjects were tested at the same time of each day.

Results
Because the measurement and specification of test–

retest reliability is a rather complex topic (Linn, 1989),

we have chosen four different ways to demonstrate the
reliability of the maximum-likelihood method. For the
first method, the four threshold measurements for each
subject are plotted in Figure 8. The thick line in each
panel is the mean threshold. It is clear from examination
of Figure 8 that most individual thresholds were stable
over 4 days (left column of panels) and over 22 days
(right column of panels), with a few subjects showing
shifts of more than a 1 log unit. The mean thresholds for
the two groups are shown in Table 3. A repeated mea-
sures ANOVA confirmed the stability of the thresholds:
The effect of testing day was not significant.

A second approach is to compute the correlations
among the four threshold measurements (see, e.g., Mattes,
1988). Pearson correlation coefficients between thresh-
olds obtained on different days are shown in Table 4. The
correlations were generally higher for pairs of thresholds
that were measured close together in time. As Mattes
pointed out, correlations are highly influenced by small
changes in ordinal ranking of the subjects. The fact that
the pairwise correlations became smaller as time sepa-
ration between them increased is shown in Figure 9. The

Figure 8. Log threshold concentration as a function of test day for NaCl (upper row) and butanol (lower row) measured on 4 suc-
cessive days (left column) and over 22 days (right column). The thin lines connect the four thresholds of individual subjects. The thick
line is the mean threshold concentration of all subjects.
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solid line is the least squares regression line. It indicates
that the correlation between two thresholds diminished
as the time between them increased. The slope of the re-
gression line becomes even steeper if the data for 1-day
separation are removed from the regression, indicating
that the decrease in correlation started with the 2-day
separation condition.

The third method to assess test–retest reliability is
based on the differences between successive threshold
measurements. Each threshold was subtracted from the
previous threshold: The four threshold measurements re-
sulted in three difference measurements. The distribu-
tions of these differences for NaCl and for butyl alcohol
are plotted on the left side of Figure 10. If the measured
thresholds do not systematically increase or decrease
over time, we expect that the mean difference would be
zero. The mean of the distribution for NaCl (upper panel
of Figure 10) was 0.018, and for butyl alcohol (lower
panel) was 0.002. Neither of these was significantly dif-
ferent from zero. The standard deviationsof these distri-
butions were 0.413 log units for NaCl and 0.422 log units
for butyl alcohol.

A fourth way to examine test–retest reliability is by
means of the spread of the four threshold measures for
each subject. A standard deviation of 0.0 would mean
that all four thresholds were exactly the same value. The
standard deviation of the four measurements was com-
puted for each subject. The distribution of these standard
deviations for NaCl (upper panel) and butyl alcohol
(lower panel) are plotted on the right side of Figure 10.
The median standard deviation was about 0.15 log units
for both NaCl and butyl alcohol. This good test–retest
reliability is consistent with the other three methods of
assessing reliability reported above.

Discussion
The maximum-likelihood method gives estimates of

thresholds that are stable within individuals over time
and that are responsive to individual differences. By all
four indicators, the test–retest reliability of both NaCl
and butyl alcohol thresholds measured by the maximum-
likelihood method was very good.

GENERAL DISCUSSION

The two experiments and the Monte Carlo simulations
reported here demonstrate that the maximum-likelihood
method is a viable alternative to other methods currently
in use to measure taste and smell detection thresholds.
Because the method attempts to use stimuli that are op-
timal (close to the predicted threshold), the confidence
intervals of the measured thresholds are considerably
smaller than those achieved by the other two methods
(Experiment 1).

One of the strengths of the maximum-likelihood
method is that it provides an explicit way of estimating
the confidence interval of the threshold, a facility not
provided by the other two methods. The experimenter is
free to establish a stopping confidence interval to suit
his/her needs. If greater precision is desired, it can be
achieved at the expense of running more trials. This ex-
plicit tradeoff between precision and number of trials is
not possible with the other two psychophysical methods.
One could, of course, use a hybrid combination of meth-
ods: an up–down staircase method for generating the next
stimulus to use combined with a maximum-likelihood
method for estimating the threshold and its confidence
interval. In effect, we used this approach after the data
from Experiment 1 were collected by reanalyzing them

Table 3
Mean NaCl and Butyl Alcohol Thresholds (and Standard Errors) From Experiment 2

Day 1 Day 2 Day 3 Day 4

M SE M SE M SE M SE

NaCl
Consecutive (Group 1) 2.62 0.13 2.67 0.11 2.82 0.13 2.63 0.11
Distributed (Group 2) 2.90 0.19 2.83 0.09 2.83 0.11 2.77 0.10

Butyl Alcohol
Consecutive (Group 1) 3.19 0.14 3.17 0.15 3.25 0.12 3.10 0.13
Distributed (Group 2) 3.00 0.16 3.10 0.14 3.09 0.10 3.09 0.11

Table 4
Pearson Correlation Coefficients Between Thresholds

Paired Sessions

1–2 1–3 1–4 2–3 2–4 3– 4

NaCl
Consecutive (Group 1) .46 .66* .66* .44 .75** .66**
Distributed (Group 2) .58* .72** .40 .55* .20 .51
Butyl alcohol
Consecutive (Group 1) .86*** .83*** .86*** .67** .71** .76**
Distributed (Group 2) .26 .68** .56* .51* .21 .65*

*p < .05. **p < .01. ***p < .001.
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with the maximum-likelihood technique, in order to as-
sess the confidence interval of the resulting threshold.

The Monte Carlo simulations allow the analysis of the
ideal behavior of the three psychophysical methods. One
major conclusion is that the ascending staircase method
gives threshold measurements that are severely biased.
This bias is a function of the number of trials carried out
before the stopping criterion of 5 correct in a row with
one stimulus. When the number of trials was small (less
than approximately 15), the threshold estimate was too
low; when the number of trials was greater than 15, the
threshold estimate was too high (see Figure 7). This

characteristic is due to the fact that the stimulus concen-
tration used can only increase as trials progress. The
maximum-likelihood method has the least amount of
bias, although it is always slightly negative (i.e., the
threshold estimate is, on the average, slightly lower, by
0.02 log units, than the true value).

In clinical testing, especially for cases that involve the
legal system, it is important to be able to detect malin-
gerers. One of the strengths of the maximum-likelihood
method is that it explicitly tests hypotheses. Normally,
the hypothesis is that the subject is responding truthfully
and that the threshold has a certain value. In the present

Figure 9. Test–retest reliability as indicated by correlation coefficients between all
pairs of measurements plotted as a function of the number of days separating them.
The solid line is the least squares linear regression through the data.
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implementation of the maximum-likelihood method, the
computer routines maintain three hypotheses about the
response strategy of the subject: that the subject is re-
sponding truthfully, that the subject is lying on each trial
(i.e., always choosing what he/she believes is the wrong
alternative in the 2AFC procedure), and that the subject
is responding randomly (i.e., not making use of any sen-
sory information). The ability to detect a malingerer—
one who has sensory sensitivity but tries to respond ran-
domly—is based on the fact that it is difficult for humans
to generate truly random sequences (Bar-Hillel & Wa-
genaar, 1993). A subject who can taste or smell the stim-
ulus and therefore knows in which interval it occurs
tends to respond more wrongly than they would by
chance alone. In this case, the hypothesis that the subject
is lying will have a higher likelihood than the hypothesis
that the subject is telling the truth. We are currently
working to refine this ability of the maximum-likelihood
method, because it holds great promise. The other two
psychophysical procedures do not easily distinguish be-
tween a malingerer and a person with no sensory sensi-
tivity and have no explicit way to detect malingerers.

Finally, in Experiment 2, we demonstrated that the
maximum-likelihoodmethod gives estimatesof thresholds

that are stable over time. This stability is actually based
on two aspects of our testing procedure. The maximum-
likelihood method gives the smallest confidence inter-
vals of the three methods tested and thus contributes the
least amount of random or systematic error variance to
the measured thresholds. The second source of reliabil-
ity is the experimental paradigm: The 2AFC procedure
minimizes the effects of response bias (e.g., Green &
Swets, 1966/1974) and thus minimizes error variance in
the threshold measurements that would be introduced by
variance in response bias. Actually, it would be desirable
to use more than just two forced-choice alternatives, be-
cause the ML-PEST methods converges more rapidly on
the threshold value with more alternatives (Manny &
Klein, 1985; Schlauch & Rose, 1990). The time required
to present chemosensory stimuli, however, usually pre-
cludes using more than two alternatives.

Test–retest reliability is not achieved at the expense of
precision. Our measured thresholds show an approxi-
mately normal distribution, with a standard deviation of
about 0.4 log units. The maximum-likelihood method is
able to estimate thresholds that lie on a continuum, even
though a small number of discrete stimulus concentra-
tions are available for testing. Although a computer is re-

Figure 10. Distribution of differences between successive thresholds (left) and of the standard deviation of the four threshold
measurements for the 27 subjects (right) for NaCl (upper panel) and butyl alcohol (lower panel).
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quired to run ML-PEST software, the widespread avail-
ability of inexpensive desktop or laptop computers
makes this requirement much less of a barrier than in the
past.
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